NOTE ON SPECTRAL SEMISTAR OPERATIONS, III

Ryûki Matsuda

Ibaraki University Mito, Ibaraki 310-8512, Japan e-mail: rmazda@adagio.ocn.ne.jp

Abstract

We prove that an integral domain D admits only spectral semistar operations if and only if D is a discrete valuation domain.

1. Introduction

This is a continuation of [6]. Let D be an integral domain with quotient field K. Let $\overline{F}(D)$ be the set of non-zero D-submodules of K, let F(D) be the set of non-zero fractional ideals of D, i.e., $E \in F(D)$ if $E \in \overline{F}(D)$ and there is an element $d \in D \setminus \{0\}$ such that $dE \subseteq D$. A semistar operation on D is a mapping $\star : \overline{F}(D) \to \overline{F}(D)$, $E \mapsto E^{\star}$, such that for every $x \in K \setminus \{0\}$ and for every $E, F \in \overline{F}(D)$, the following conditions hold: $(xE)^{\star} = xE^{\star}$; $E \subseteq F$ implies $E^{\star} \subseteq F^{\star}$; $E \subseteq E^{\star}$, and $(E^{\star})^{\star} = E^{\star}$. For every $\Delta \subseteq \operatorname{Spec}(D)$, the mapping $E \mapsto \bigcap_{P \in \Delta} ED_P$ is a semistar operation on D, and is denoted by \star_{Δ} . A semistar operation \star on D is called *spectral* if there is a subset $\Delta \subseteq \operatorname{Spec}(D)$ such that $\star = \star_{\Delta}$. Picozza [7] posed the following

© 2012 Pushpa Publishing House

2010 Mathematics Subject Classification: Primary 13A15.

Keywords and phrases: semistar operation, integral domain.

Received June 16, 2012

question: When are all semistar operations on an integral domain spectral? We study the question, and prove the following:

Theorem. D admits only spectral semistar operations if and only if D is a discrete valuation domain.

A valuation domain with value group Γ is called *discrete* if, for every pair H_1 , H_2 of adjacent convex subgroups of Γ (say, $H_1 \subsetneq H_2$), the ordered factor group $\frac{H_2}{H_1}$ is order isomorphic with \mathbf{Z} .

Picozza [7, Corollary 4.13] showed the following: Let D be a local domain, i.e., D has only one maximal ideal. Then every semistar operation on D is spectral if and only if D is a discrete valuation domain. In [5, Theorem 1.1], we proved the following: Let D be a finite dimensional domain. Then every semistar operation on D is spectral if and only if D is a discrete valuation domain.

The paper consists of three sections. Section 2 contains lemmas. Section 3 contains the proof for Theorem.

2. Lemmas

Let D be a domain with quotient field K. A star operation on D is a mapping $\star : F(D) \to F(D)$, $E \mapsto E^*$, such that for every $x \in K \setminus \{0\}$ and for every E, $F \in F(D)$, the following conditions hold: $D^* = D$; $(xE)^* = xE^*$; $E \subseteq F$ implies $E^* \subseteq F^*$; $E \subseteq E^*$, and $(E^*)^* = E^*$.

For a Prüfer domain D, call two maximal ideals M and N of D dependent if $M \cap N$ contains a non-zero prime ideal of D. This defines an equivalence relation on the set of maximal ideals of D, and we denote by $\{A_{\lambda} \mid \lambda \in \Lambda\}$ the corresponding partition. For every $\lambda \in \Lambda$, denote by P_{λ} the largest prime ideal of D contained in $\bigcap_{M \in A_{\lambda}} M$, and let $S_{\lambda} = \bigcap_{M \in A_{\lambda}} D_{M}$. Recently, Houston proved the following:

Theorem 1 [2]. An integrally closed domain D admits only finitely many star operations if and only if D is a Prüfer domain which satisfies the following conditions: (1) Every non-zero element of D is contained in only finitely many maximal ideals, (2) $|A_{\lambda}| = 1$ for almost all $\lambda \in \Lambda$, (3)

 $\left|\operatorname{Spec}\left(\frac{D}{P_{\lambda}}\right)\right| < \infty$ for every $\lambda \in \Lambda$, and (4) D has only finitely many non-invertible maximal ideals.

Moreover, under these conditions, if we denote by $\operatorname{Star}(D)$ the set of star operations on D, then $|\operatorname{Star}(D)| = \prod_{\lambda \in \Lambda} |\operatorname{Star}(S_{\lambda})|$.

For semistar operations, we have the following:

Theorem 2 [4, Section 5, (5.2), Theorem]. An integrally closed domain D admits only finitely many semistar operations if and only if D is a finite dimensional Prüfer domain which has only finitely many maximal ideals.

Throughout the rest of the section, let D be a Prüfer domain with exactly two maximal ideals M and N. Set $V = D_M$ and set $W = D_N$.

Lemma 1. Assume that M and N are independent. Then we have $V \notin F(D)$ and $W \notin F(D)$.

Proof. Suppose that $V \in F(D)$. Then $aV \subseteq D$ for some $a \in D \setminus \{0\}$, hence $aVW \subseteq W$. It follows that K = W; a contradiction.

Lemma 2. (1) Set $\Delta = \{M, N\}$, and set $\star = \star_{\Delta}$. Then $I^{\star} = I$ for every $I \in F(D)$.

(2) Let P and Q be incomparable prime ideals of D. Set $\Delta = \{P, Q\}$, and set $\star = \star_{\Delta}$. If we set $T = D_P \cap D_Q$, then $I^* = IT$ for every $I \in F(D)$.

Proof. (1) Let $x \in I^*$. Since $x \in ID_M \cap ID_N$, we have $x = \frac{e_1}{s} = \frac{e_2}{t}$, where $e_1, e_2 \in I$, $s \in D \setminus M$ and $t \in D \setminus N$. Then (s, t) = D, hence $1 = sd_1$

 $+td_2$ with $d_1, d_2 \in D$. Then $x = sxd_1 + txd_2 = e_1d_1 + e_2d_2 \in I$, hence $I^* = I$.

(2) We may assume that $P \subseteq M$ and $Q \subseteq N$. Set $T = D_P \cap D_Q$, set $M_1 = PD_P \cap T$, and set $N_1 = QD_Q \cap T$. T is a Prüfer domain with exactly two maximal ideals M_1 and N_1 . Moreover, $T_{M_1} = D_P$ and $T_{N_1} = D_Q$. Let J be a non-zero ideal of T. By (1), we have $J = JT_{M_1} \cap JT_{N_1}$, hence $J = JD_P \cap JD_Q$. Therefore, if I is a non-zero ideal of D, then $IT = (IT)D_P \cap (IT)D_Q$, hence $IT = ID_P \cap ID_Q$, i.e., $IT = I^*$.

Lemma 3. Let $\Delta = \{P_{\lambda} \mid \lambda \in \Lambda\}$ be a subset of Spec(D) with every $P_{\lambda} \subseteq M$, let $\star = \star_{\Delta}$, and set $P = \bigcup_{\lambda} P_{\lambda}$.

- (1) We have $D^* = \bigcap_{\lambda} D_{P_{\lambda}} = D_P$.
- (2) Assume that M = P. Then, for every prime ideal Q of D with $Q \subsetneq M$, we have $Q \subseteq P_{\lambda}$ for some λ .

Proof. (1) Let $x \notin D_P$, and set $m = \frac{1}{x}$. Since D_P is a valuation domain, we have $m \in PD_P$, and $sm \in P$ for some $s \in D \setminus P$. Then $sm \in P_\lambda$ for some λ . Since $1 = mx = sm\frac{x}{s} \in P_\lambda \frac{x}{s}$, we have $\frac{x}{s} \notin D_{P_\lambda}$, hence $x \notin D_{P_\lambda}$. Therefore $\bigcap_\lambda D_{P_\lambda} = D_P$.

(2) Take an element $d \in M \setminus Q$. Then we have $\frac{d}{1} \in P_{\lambda}D_{M}$ for some λ and $\frac{d}{1} \notin QD_{M}$. Hence $P_{\lambda}D_{M} \supseteq QD_{M}$, hence $P_{\lambda} \supseteq Q$.

Lemma 4. Let $\Delta_1 = \{P_{\lambda} \mid \lambda \in \Lambda\}$ be a subset of Spec(D) with every $P_{\lambda} \subseteq M$, let $\Delta_2 = \{Q_{\sigma} \mid \sigma \in \Sigma\}$ be a subset of Spec(D) with every $Q_{\sigma} \subseteq N$, set $\Delta = \Delta_1 \cup \Delta_2$, and let $\star = \star_{\Delta}$. Set $P = \bigcup_{\lambda} P_{\lambda}$, and set

 $Q = \bigcup_{\sigma} Q_{\sigma}$. Assume that P and Q are incomparable.

(1) We have
$$D^* = \bigcap_{\lambda} D_{P_{\lambda}} \cap_{\sigma} D_{Q_{\sigma}} = D_P \cap D_Q$$
.

(2)
$$D^* = D$$
 if and only if $P = M$ and $Q = N$.

Proof. (1) follows from Lemma 3(1).

(2) $T := D_P \cap D_Q$ is a Prüfer domain with maximal ideals $PD_P \cap T$ and $QD_Q \cap T$. Assume that $D^* = D$. Then T = D by (1). Hence $PD_P \cap D$ = M and $QD_Q \cap D = N$. Therefore P = M and Q = N.

Lemma 5. Let $\Delta' = \{P_a \mid a \in A\}$ be the set of prime ideals P of D with $P \subsetneq M$, and let $\Delta'' = \{Q_b \mid b \in B\}$ be the set of prime ideals Q of D with $Q \subsetneq N$. Let \star be a spectral semistar operation on D with $D^* = D$. Then one of the following four conditions holds:

- (1) \star is defined by $\{M, N\}$.
- (2) \star is defined by $\Delta' \cup \{N\}$ with $M = \bigcup_a P_a$.
- (3) \star is defined by $\{M\} \bigcup \Delta''$ with $N = \bigcup_h Q_h$.
- (4) \star is defined by $\Delta' \cup \Delta''$ with $M = \bigcup_a P_a$ and $N = \bigcup_b Q_b$.

Proof. We confer Lemmas 2, 3 and 4. Let $\star = \star_{\Delta}$. By Lemma 3(1), we have $\Delta = \Delta_1 \cup \Delta_2$, $\Delta_1 = \{P_{\lambda} \mid \lambda \in \Lambda\}$ with every $P_{\lambda} \subseteq M$ and $\Delta_2 = \{Q_{\sigma} \mid \sigma \in \Sigma\}$ with every $Q_{\sigma} \subseteq N$. Set $P = \bigcup_{\lambda} P_{\lambda}$ and $Q = \bigcup_{\sigma} Q_{\sigma}$. Then P and Q are not comparable. By Lemma 4, we have P = M and Q = N. The following four cases may occur: (1) $\Delta_1 \ni M$ and $\Delta_2 \ni N$, (2) $\Delta_1 \not\ni M$ and $\Delta_2 \ni N$, (3) $\Delta_1 \ni M$ and $\Delta_2 \not\ni N$, (4) $\Delta_1 \not\ni M$ and $\Delta_2 \not\ni N$.

The case (1): $I^* = I$ for every $I \in F(D)$.

The case (2): We may assume that $\Delta_1 = \Delta'$. We have $M^* = D$ and $N^* = N$.

The case (3): We may assume that $\Delta_2 = \Delta''$. We have $M^* = M$ and $N^* = D$.

The case (4): We may assume that $\Delta_1 = \Delta'$ and $\Delta_2 = \Delta''$. We have $M^* = D$ and $N^* = D$.

The semistar operation in (1) (resp., (2), (3), (4)) of Lemma 5 is denoted by \star_1 (resp., \star_2 , \star_3 , \star_4). Easily, we have $(D_M)^{\star_i} = D_M$ for every $1 \le i \le 4$.

3. Proof of Theorem

By [7] and [5], it is sufficient to prove the necessity. Thus, throughout the section, we assume that D is an infinite dimensional, non-local Prüfer domain with quotient field K. Let M be a maximal ideal of D with $\operatorname{ht}(M) = \infty$, and let N be another maximal ideal of D. Then $T := D_M \cap D_N$ is an infinite dimensional Prüfer domain with exactly two maximal ideals.

Therefore, we may assume that D is an infinite dimensional Prüfer domain with exactly two maximal ideals M and N. We may assume that $\operatorname{ht}(M) = \infty$. Set $V = D_M$, and set $W = D_N$.

Proposition 1. Assume that M and N are independent. Then there is a non-spectral semistar operation \star on D with $D^{\star} = D$.

Proof. Set $I^* = I$ for every $I \in F(D)$, and set $J^* = K$ for every $J \in \overline{F}(D)\backslash F(D)$. Then \star is a semistar operation on D with $D^* = D$. By Lemma 1, we have $V^* = K$. Suppose that \star is spectral. By Lemma 5, we have $\star = \star_i$ for some $1 \le i \le 4$. By the definition of \star_i , we have $V^{\star_i} = V$; a contradiction.

Proposition 2. Assume that M and N are dependent, and assume that $\left|\operatorname{Spec}\left(\frac{D}{P_0}\right)\right| < \infty$, where P_0 is the largest prime ideal of D contained in $M \cap N$. Then there is a non-spectral semistar operation \star on D with $D^{\star} = D$.

Proof. Let $\star := v$ be the v-semistar operation on D, i.e., $J^v = D :_K (D :_K J)$ for every $J \in \overline{F}(D)$. By Heinzer [1, Theorem 5.1], the restriction of \star to F(D) differs from the identity mapping. Suppose that \star is spectral, and let $\star = \star_\Delta$. We confer Lemma 5. Since $\left| \operatorname{Spec} \left(\frac{D}{P_0} \right) \right| < \infty$, almost all $P_a \subseteq P_0$, and almost all $Q_b \subseteq P_0$. Hence, neither (2) nor (3) nor (4) of Lemma 5 occurs. It follows that \star is defined by $\{M, N\}$; hence the restriction of \star to F(D) is the identity mapping; a contradiction.

Proposition 3. Assume that M and N are dependent, and assume that $\left| \operatorname{Spec} \left(\frac{D}{P_0} \right) \right| = \infty$, where P_0 is the largest prime ideal of D contained in $M \cap N$. Then D has an infinite number of non-spectral semistar operations $M \cap M$ with $D^* = D$.

Proof. By Lemma 5, the number of spectral semistar operations on D with $D^* = D$ is less than or equal to 4. On the other hand, since $\left| \operatorname{Spec} \left(\frac{D}{P_0} \right) \right| = \infty$, D has an infinite number of star operations by Theorem 1. Every member $\star \in \operatorname{Star}(D)$ can be uniquely extended to a semistar operation \star' on D ([3, Lemma 2]). Since $D^{\star'} = D$, the proof is complete.

Propositions 1, 2 and 3 complete the proof of our Theorem.

References

[1] W. Heinzer, Integrally closed domains in which each non-zero ideal is divisorial, Mathematika 15 (1968), 164-170.

- [2] E. Houston, Integrally closed domains which admit only finitely many star operations, The Booklet of Abstracts of The Conference "Commutative Rings and their Modules, 2012," Italy.
- [3] R. Matsuda, Note on the number of semistar operations, VIII, Math. J. Ibaraki Univ. 37 (2005), 53-79.
- [4] R. Matsuda, Commutative Semigroup Rings, 2nd ed., Kaisei Publishing, Tokyo, 2006.
- [5] R. Matsuda, Note on spectral semistar operations, Bull. Allahabad Math. Soc. 25 (2010), 149-156.
- [6] R. Matsuda, Note on spectral semistar operations, II, Math. J. Ibaraki Univ. (submitted).
- [7] G. Picozza, Star operations on overrings and semistar operations, Comm. Alg. 33 (2005), 2051-2073.