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Abstract

We prove that an integral domain D admits only spectral semistar
operations if and only if D is a discrete valuation domain.

1. Introduction

This is a continuation of [6]. Let D be an integral domain with quotient
field K. Let F(D) be the set of non-zero D-submodules of K, let F(D) be the

set of non-zero fractional ideals of D, i.e., E € F(D) if E € F(D) and there
is an element d € D\{0} such that dE < D. A semistar operation on D is a
mapping = : F(D) - F(D), E — E*, such that for every x e K\{0} and
for every E, F € F(D), the following conditions hold: (XE)* = XE*;
EcF implies EX cF*; EcE™, and (E*)* = E*. For every A c
Spec(D), the mapping E + Npa EDp is a semistar operation on D, and is
denoted by x,. A semistar operation = on D is called spectral if there is a

subset A < Spec(D) such that x = x,. Picozza [7] posed the following
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guestion: When are all semistar operations on an integral domain spectral?
We study the question, and prove the following:

Theorem. D admits only spectral semistar operations if and only if D is
a discrete valuation domain.

A valuation domain with value group T is called discrete if, for every
pair Hy, H, of adjacent convex subgroups of I' (say, H; ; H,), the ordered

factor group % is order isomorphic with Z.
1

Picozza [7, Corollary 4.13] showed the following: Let D be a local
domain, i.e., D has only one maximal ideal. Then every semistar operation on
D is spectral if and only if D is a discrete valuation domain. In [5, Theorem
1.1], we proved the following: Let D be a finite dimensional domain. Then
every semistar operation on D is spectral if and only if D is a discrete
valuation domain.

The paper consists of three sections. Section 2 contains lemmas. Section
3 contains the proof for Theorem.

2. Lemmas

Let D be a domain with quotient field K. A star operation on D is a
mapping * : F(D) — F(D), E — E*, such that for every x e K\{0} and
for every E, F € F(D), the following conditions hold: D* = D; (XxE)* =
XE*; E < F implies E* c F*; Ec E*, and (E*)" = E*.

For a Prufer domain D, call two maximal ideals M and N of D dependent
if M I N contains a non-zero prime ideal of D. This defines an equivalence

relation on the set of maximal ideals of D, and we denote by {A |A € A} the
corresponding partition. For every A € A, denote by P, the largest prime

ideal of D contained in My eca M, and let S; =(lycp Dy Recently,

Houston proved the following:
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Theorem 1 [2]. An integrally closed domain D admits only finitely many
star operations if and only if D is a Prifer domain which satisfies the
following conditions: (1) Every non-zero element of D is contained in only
finitely many maximal ideals, (2) | A, |=1 for almost all A e A, (3)

D
\SPGC(PT)

invertible maximal ideals.

<o for every X € A, and (4) D has only finitely many non-

Moreover, under these conditions, if we denote by Star(D) the set of star

operations on D, then | Star(D)| = [ [, _, | Star(Sy)|.

For semistar operations, we have the following:

Theorem 2 [4, Section 5, (5.2), Theorem]. An integrally closed domain
D admits only finitely many semistar operations if and only if D is a finite
dimensional Priifer domain which has only finitely many maximal ideals.

Throughout the rest of the section, let D be a Prifer domain with exactly
two maximal ideals M and N. Set V = Dy, and set W = Dy.

Lemma 1. Assume that M and N are independent. Then we have
V ¢ F(D) and W ¢ F(D).

Proof. Suppose that V € F(D). Then aV < D for some a e D\{0},
hence aVW < W. It follows that K = W a contradiction.

Lemma 2. (1) Set A ={M, N}, and set x = x,. Then 1* =1 for
every | € F(D).

(2) Let P and Q be incomparable prime ideals of D. Set A = {P, Q}, and

set x = x,. Ifweset T = Dp N Dg, then 1™ = IT forevery | € F(D).

Proof. (1) Let x e I*. Since x IDy N IDy, we have x = % = et—z,

where e, e, € I, s € D\M and t € D\N. Then (s, t) = D, hence 1 = sd;
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+td, with dy, d) € D. Then Xx = sxd; +txd, =ed; +e,d, € I, hence
I* =1.

(2) We may assume that P = M and Q = N. Set T = Dp (1 Dg, set
My =PDp (T, and set Ny = QDg (1 T. T is a Prifer domain with exactly
two maximal ideals M; and N;. Moreover, Ty, = Dp and Ty, = Dg. Let
J be a non-zero ideal of T. By (1), we have J = ITw, N Iy hence
J =JDp N JDq. Therefore, if | is a non-zero ideal of D, then IT = (IT)Dp

N(IT)Dq, hence IT = IDp N IDg, ie., IT = I *.

Lemma 3. Let A = {P |A € A} be a subset of Spec(D) with every
P, < M, let x = x,, andset P =U; P,.

(1) We have D* =1, Dp, = Dp.

(2) Assume that M = P. Then, for every prime ideal Q of D with
Q & M, we have Q c P, for some A.

Proof. (1) Let x ¢ Dp, and set m = % Since Dp is a valuation domain,
we have m € PDp, and sm € P for some s € D\P. Then sm e P, for
some A. Since 1 = mx = sm5 e Pxi, we have X & Dpk, hence x ¢ Dpx.

s S s

Therefore (1, Dp, = Dp.

(2) Take an element d € M\Q. Then we have % e P,Dy, for some A

and % ¢ QD). Hence P,.Dyy © QDy, hence B, © Q.
Lemma 4. Let Ay = {P,|A € A} be a subset of Spec(D) with every

P.cM, let Ay ={Qs|ceX} be a subset of Spec(D) with every
Qs = N, set A=A UA,, and let x =x,. Set P=U, P, and set
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Q = UsQy- Assume that P and Q are incomparable.
(1) We have D* = nk DP}» ﬂc DQG = Dp ﬂ DQ

(2) D* =D ifandonlyif P =M and Q = N.

Proof. (1) follows from Lemma 3(1).

(2) T :=Dp N Dq is a Priifer domain with maximal ideals PDp (T
and QDqg N T. Assume that D* = D. Then T = D by (1). Hence PDp N D
=M and QDg (1 D = N. Therefore P = M and Q = N.

Lemma 5. Let A" = {P,|a € A} be the set of prime ideals P of D with
P S M, and let A" ={Qy|b € B} be the set of prime ideals Q of D with

Q ; N. Let x be a spectral semistar operation on D with D* = D. Then

one of the following four conditions holds:
(1) * is defined by {M, N}.
(2) % isdefinedby A"U {N} with M = U,P,.
(3) * isdefined by {M}U A" with N = UpQp.
(4) x isdefined by A"U A" with M =UzP; and N = UpQp.

Proof. We confer Lemmas 2, 3 and 4. Let x = x,. By Lemma 3(1), we
have A=AiUA,, A ={P |xe A} with every P, ¢ M and A, =
{Qs|o € £} with every Q; < N. Set P =, P, and Q = U;Q,. Then P
and Q are not comparable. By Lemma 4, we have P = M and Q = N. The
following four cases may occur: (1) Ay > M and A, 5 N, (2) A; M and
A 5N, 3) Ay >M and Ay 2 N, (4) Ay 2 M and A,  N.

The case (1): 1™ =1 forevery | € F(D).
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The case (2): We may assume that A; = A. We have M* = D and
N* = N.

The case (3): We may assume that A, = A". We have M* = M and
N* = D.

The case (4): We may assume that A; = A" and A, = A". We have
M* =D and N* = D.

The semistar operation in (1) (resp., (2), (3), (4)) of Lemma 5 is denoted

*i_

by *q (resp., x5, x3, x4). Easily, we have (Dyy)™ = Dy, for every 1<
i <4

3. Proof of Theorem

By [7] and [5], it is sufficient to prove the necessity. Thus, throughout
the section, we assume that D is an infinite dimensional, non-local Prifer
domain with quotient field K. Let M be a maximal ideal of D with ht(M)

= oo, and let N be another maximal ideal of D. Then T := Dy, (] Dy is an
infinite dimensional Prifer domain with exactly two maximal ideals.

Therefore, we may assume that D is an infinite dimensional Prifer
domain with exactly two maximal ideals M and N. We may assume that
ht(M) = oo. Set V = Dy, and set W = Dy.

Proposition 1. Assume that M and N are independent. Then there is a
non-spectral semistar operation « on D with D* = D.

Proof. Set 1* =1 forevery | € F(D), and set J* = K forevery J
F(D)\F(D). Then * is a semistar operation on D with D* = D. By Lemma
1, we have V* = K. Suppose that % is spectral. By Lemma 5, we have

x = x; for some 1< i < 4. By the definition of x;, we have V*I =V; a

contradiction.
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Proposition 2. Assume that M and N are dependent, and assume that

D
(3
M N N. Then there is a non-spectral semistar operation x on D with

D* = D.

< oo, where By is the largest prime ideal of D contained in

Proof. Let x:=v be the v-semistar operation on D, ie., JV =
D:x (D:k J) for every J e F(D). By Heinzer [1, Theorem 5.1], the
restriction of x to F(D) differs from the identity mapping. Suppose that x

D
Spec(P—O)

almost all P, < R, and almost all Q, < Ry. Hence, neither (2) nor (3) nor

is spectral, and let x = x,. We confer Lemma 5. Since < o0,

(4) of Lemma 5 occurs. It follows that « is defined by {M, N}; hence the

restriction of x to F(D) is the identity mapping; a contradiction.
Proposition 3. Assume that M and N are dependent, and assume that
D
3
M N N. Then D has an infinite number of non-spectral semistar operations

* with D* = D.

= oo, where B, is the largest prime ideal of D contained in

Proof. By Lemma 5, the number of spectral semistar operations on D

with D* =D is less than or equal to 4. On the other hand, since

‘Spec(PBj ‘ = oo, D has an infinite number of star operations by Theorem 1.
0

Every member x € Star(D) can be uniquely extended to a semistar operation

x=" on D ([3, Lemma 2]). Since D* = D, the proof is complete.

Propositions 1, 2 and 3 complete the proof of our Theorem.
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