

PSEUDO k-FLAT SEMIMODULES IN SEMIRINGS

Xiuli Wang

Science College Civil Aviation University of China Tianjin 300300, P. R. China e-mail: xlwang@cauc.edu.cn

Abstract

In this paper, we principally introduce the concept of quasi-principally k-flat semimodules, on the basis of the theories of k-flat semimodules and quasi-principally modules, we get some good properties of quasi-principally k-flat semimodules, therefore generalize some properties of quasi-principally modules of rings and k-flat semimodules of semiring to quasi-principally k-flat semimodules of semirings.

1. Introduction

Throughout R will denote a semiring with identity 1; unless otherwise stated, all semimodules M will be left R-semimodules with $1 \cdot m = m$ for all $m \in M$, and all homomorphisms will be R-homomorphisms.

In this paper, we will use the following facts (cf. [1, 3, 9-12]:

(a) A semiring R is said to satisfy the *left cancellation law*, if and only © 2012 Pushpa Publishing House

2010 Mathematics Subject Classification: 16D40, 16E30, 16Y60.

Keywords and phrases: subtractive semimodules, *k*-regular homomorphism proper exact sequence, quasi-principally, *k*-flat semimodules, injective semimodules.

Foundation item: NSF of China (61179026) and Fundamental Research of the Central Universities of China Civil Aviation University of Science special (ZXH2012K003).

Received May 24, 2012

if for all $a, b, c \in R$, $a + b = a + c \Rightarrow b = c$. A semimodule M is said to satisfy the *left cancellation law*, if and only if for all $m, m', m'' \in R$, $m + m' = m + m'' \Rightarrow m' = m''$.

- (b) We say that a nonempty subset N of a left semimodule M is subtractive if and only if $m + m' \in N$ and $m \in N$ imply that $m' \in N$ for all $m, m' \in M$; a semiring R is called *completely subtractive* if R is a completely subtractive semimodule; and a left R-semimodule M is called *completely subtractive* if and only if for every subsemimodule N of M, N is subtractive.
- (c) A semimodule M is said to be *free R-semimodule* if M has a basis over R.
- (d) A semimodule M is said to be *semicogenerated* by C when there is a homomorphism $\varphi: M \to \prod_A C$ such that $\ker \varphi = 0$. A semimodule C is said to be *semicogenerator* when C semicogenerates every left R-semimodule M.
- (e) Let $\alpha: A \to B$ be a homomorphism of semimodules. Then we shall define the subsemimodule Im α of B as follows:

Im
$$\alpha = \{b \in B : b + \alpha(a) = \alpha(a') \text{ for some } a, a' \in A\},\$$

 α is said to be *i-regular* if $\alpha(A) = \operatorname{Im} \alpha$; to be *k-regular* if for $a, a' \in A$, $\alpha(a) = \alpha(a')$ implies a + k = a' + k' for some $k, k' \in Ker(\alpha)$; and to be *semimonomorphism* if $Ker(\alpha) = 0$, to be an *isomorphism* if it is injective and surjective, and to be *regular* if it is both *i*-regular and *k*-regular.

- (f) An *R*-semimodule *M* is said to be *k*-regular if there exist a free *R*-semimodule *F* and a surjective *R*-homomorphism $\alpha: F \to P$ such that α is *k*-regular.
- (g) The sequence $A \xrightarrow{\alpha} B \xrightarrow{\beta} C$ is called an *exact sequence* if $Ker(\beta) = Im(\alpha)$ and is *proper exact* if $Ker(\beta) = \alpha(B)$.

- (h) A proper exact sequence of the form $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ is said to be *left k-regular right regular* if α is k-regular, β is right regular.
 - (i) For any two R-semimodules N, M,

 $Hom_R(N, M) := \{\alpha : N \to M \mid \alpha \text{ is an } R\text{-homomorphism of semimodules} \}$ is a semigroup under addition. If N, M and U are R-semimodules and $\alpha : M \to N$ is homomorphism, then $Hom(\alpha, I_U) : Hom_R(N, U) \to Hom_R(M, U)$ is given by $Hom(\alpha, I_U)\gamma = \gamma\alpha$, where I_U is the identity on U.

(j) Let A be semimodule, given a symmetric subsemimodule R of $A \times A$, we often denote (a, b) in R by $\langle a, b \rangle$, we define a relation $\rho(R)$ on A as follows:

$$x\rho(R)y$$
 if and only if there exists $\langle a,b\rangle\in R$ such that $x+a=y+b$.

(k) If A is a right R-semimodule, B is a left R-semimodule, let N be the semiring of non-negative integers, N be a commutative semiring with $1 \neq 0$, and T be an N-semimodule, then a function $\theta: A \times B \to T$ is R-balanced if and only if for all $a, a' \in A$, for all $b, b' \in B$, and for all $r \in R$, we have

(1)
$$\theta(a + a', b) = \theta(a, b) + \theta(a', b)$$
,

(2)
$$\theta(a, b + b') = \theta(a, b) + \theta(a, b')$$
,

(3)
$$\theta(ar, b) = \theta(a, rb)$$
.

For a and a' in A, b and b' in B, and r in R, and where $\alpha[a, b]$ is the function from $A \times B$ to B which sends (a, b) to 1 and sends every other element of $A \times B$ to 0. Let $N[A \times B]$ be the free semimodule generated by the set $A \times B$, whose element is written as $\alpha = \sum n_i(a_i, b_i)$. We denote by $N[A \times B] \times N[A \times B]$ the product of semimodules, whose element is written as $\langle \alpha, \beta \rangle$, for some $\alpha, \beta \in N[A \times B]$ and whose addition is given by $(\alpha, \beta) + (\alpha', \beta') = (\alpha + \alpha', \beta + \beta')$. Define M as the subset of the semimodule

 $N[A \times B] \times N[A \times B]$ which consists of all elements of the following forms:

(1)
$$\langle (a+a',b), (a,b)+(a',b)\rangle$$
, (2) $\langle (a,b)+(a',b), (a+a',b)\rangle$,

(3)
$$\langle (a,b) + ((a,b')), (a,b+b') \rangle$$
, (4) $\langle (a,b+b'), (a,b) + (a,b') \rangle$,

(5)
$$\langle (a\lambda, b), (a, \lambda b) \rangle$$
, (6) $\langle (a, \lambda b), (a\lambda, b) \rangle$,

where $a, a' \in A, b, b' \in B$ and $\lambda \in R$.

Let N[M] be the subsemimodule of $N[A \times B] \times N[A \times B]$ generated by M, and $\rho(N(M))$ be a congruence on $N(A \times B)$ by [10]. The set $N(A \times B)/\rho(N(M))$ is a semimodule in 2.3 of [10] and define $A \otimes_R B = N(A \times B)/\rho(N(M))$. The semimodule $A \otimes_R B$ is called the *tensor product* of A and B over R.

- (1) A left *R*-semimodule *P* is said to be *projective semimodule* if and only if for each surjective *R*-homomorphism $\varphi: M \to N$, the induced homomorphism $\overline{\varphi}: Hom_R(P, M) \to Hom_R(P, N)$ is surjective. Similarly, *M* is a pseudo projective semimodule if and only if for each surjective *R*-homomorphism $\alpha: M \to N$, the induced homomorphism $\overline{\alpha}: Hom(M, M) \to Hom(M, N)$ is surjective. Especially, if *f* is *k*-regular, then *M* is called *pseudo k-projective semimodules*.
- (m) A semimodule V_R is flat relative to a semimodule R^M (or that V is M-flat) if and only if for every subsemimodule $K \leq M$, the sequence $0 \rightarrow V \otimes_R K \xrightarrow{I_Y \otimes_R i_k} V \otimes_R M$ is proper exact (i.e., $Ker(I_V \otimes_R i_k) = 0$), where $I_V \otimes_R i_k(v \otimes k) = v \otimes i_k(k)$. A semimodule V_R , that is, flat relative to every left R-semimodule is called a *flat right R-semimodule*.
- (n) A semimodule V_R is k-flat relative to a semimodule RM (or that V is Mk-flat) if and only if for every subsemimodule $K \leq M$, the sequence $0 \to V \otimes_R K \xrightarrow{I_Y \otimes_R i_k} V \otimes_R M$ is proper exact and $I_V \otimes_R i_k$ is k-regular (i.e., $I_V \otimes_R i_k$ is injective). A semimodule V_R , that is, k-flat relative

to every left R-semimodule is called a k-flat right R-semimodule. Thus, if V_R is k-flat relative to $_RM$, then V_R is flat relative to $_RM$.

2. Pseudo k-flat Semimodules

In this section, we discuss the structure of pseudo k-flat semimodules.

Definition 2.1. A semimodule V_R is pseudo k-flat relative to a semimodule $_RM$ (or that V is pseudo Mk-flat) if and only if for every semimodule M=M, the sequence $0 \to V \otimes_R M \xrightarrow{I_Y \otimes_R i_M} V \otimes_R M$ is proper exact (i.e., $I_V \otimes_R i_k$ is injective). A semimodule V_R , that is, pseudo k-flat relative to every left R-semimodule is called a pseudo k-flat right R-semimodule.

Our next result shows that the class of pseudo k-flat semimodules is closed under direct sums.

Proposition 2.2. Let $(V_{\alpha})_{\alpha \in A}$ be an indexed set of right R-semimodule. Then $\bigoplus_A V_{\alpha}$ is pseudo k-flat if and only if each V_{α} is pseudo k-flat.

Proof. Let M be a left R-semimodule. Consider the following commutative diagram:

where $\pi_{\alpha}: \oplus (V_{\alpha} \otimes M) \to V_{\alpha} \otimes M$ and $i_{\alpha}: V_{\alpha} \otimes M \to \oplus (V_{\alpha} \otimes M)$ are defined, respectively, by $\pi_{\alpha}: (v_{\alpha} \otimes m_{\alpha}) \to v_{\alpha} \otimes m_{\alpha}$ and $i_{\alpha}: v_{\alpha} \otimes m_{\alpha} \to (v_{\alpha} \otimes m_{\alpha})$, where $v_{i} \otimes m_{i} = 0$ if $i \neq \alpha$ and $v_{i} \otimes m_{i} = v_{\alpha} \otimes m_{\alpha}$ if $i = \alpha$; φ and φ' are the isomorphisms of [9, Proposition 5.4] given by $\varphi[(v_{\alpha}) \otimes m]$

= $(v_{\alpha} \otimes m)$ and $\varphi'(v_{\alpha} \otimes m) = (v_{\alpha} \otimes i(m))$. Now suppose that $\oplus V_{\alpha}$ is pseudo k-flat. If

$$I_{V_{\alpha}} \otimes i_m(v_{\alpha} \otimes m) = 0[I_{V_{\alpha}} \otimes i_m((v_{\alpha} \otimes m)) = I_{V_{\alpha}} \otimes i_m((v_{\alpha}' \otimes m'))],$$

then by the above diagram, we have

$$(v_{\alpha}) \otimes i_{M}(m) = 0[(v_{\alpha}) \otimes i(m) = (v_{\alpha}') \otimes i(m')].$$

Since $\oplus V_{\alpha}$ is pseudo k-flat, $(v_{\alpha}) \otimes m = 0[(v_{\alpha}) \otimes k = (v'_{\alpha}) \otimes k']$. Again, by (2.1), $(v_{\alpha}) \otimes i_{M}(m) = 0$ whence

$$v_{\alpha} \otimes m = 0[(v_{\alpha} \otimes k) = (v'_{\alpha} \otimes k'), \text{ whence } v_{\alpha} \otimes k = v'_{\alpha} \otimes k'].$$

Therefore, V_{α} is pseudo k-flat.

Conversely, suppose that V_{α} is pseudo k-flat for each $\alpha \in A$. If

$$I_{\bigoplus V_{\alpha}} \otimes i_{M}((v_{\alpha}) \otimes m)$$

$$=0[I_{\oplus V_\alpha}\otimes i_M((v_\alpha)\otimes m)=I_{\oplus V_\alpha}\otimes i_M((v'_\alpha)\otimes m')],$$

then by the above diagram, we have $v_{\alpha} \otimes i(m) = 0[v_{\alpha} \otimes i(m) = v'_{\alpha} \otimes i(m')]$ for each $\alpha \in A$. Since V_{α} is pseudo k-flat, $v_{\alpha} \otimes m = 0[v_{\alpha} \otimes m = v'_{\alpha} \otimes m']$ for each α . Therefore, $(v_{\alpha} \otimes m) = 0[(v_{\alpha} \otimes m) = (v'_{\alpha} \otimes m')]$. Again, by (2.1), $(v_{\alpha}) \otimes m = 0[(v_{\alpha}) \otimes m = (v'_{\alpha}) \otimes m']$. Thus, $\oplus V_{\alpha}$ is pseudo k-flat.

Proposition 2.3. Let M be a left R-semimodule. Then a right R-semimodule V is pseudo k-flat if and only if the functor $(V \otimes_R -)$ preserves the exactness of all left k-regular right regular short exact sequences with middle term M:

$$0 \to {}_{R}M \stackrel{\alpha}{\to} {}_{R}M \stackrel{\beta}{\to} {}_{R}N \to 0. \tag{2.2}$$

Proof. "If" part. Let $0 \to {}_R M \stackrel{\alpha}{\to} {}_R M \stackrel{\beta}{\to} {}_R N \to 0$ be a left k-regular right regular exact sequence. Since V_R is ${}_R M$ -pseudo k-flat, using [9,

Theorem 5.5(2)], the sequence

$$0 \to V \otimes_R M \xrightarrow{I_Y \otimes \alpha} V \otimes_R M \xrightarrow{I_Y \otimes \beta} V \otimes_R N \to 0 \quad (2.3)$$
 is exact.

"Only if" part. Let $_RM = _RM$. Consider the following exact sequence:

$$0 \to M \xrightarrow{i_K} M \xrightarrow{\pi i_K(M)} M/i_K(M) \to 0. \tag{2.4}$$

By hypothesis, $0 \to V \otimes_R M \xrightarrow{I_Y \otimes \alpha} V \otimes_R M$ is an exact sequence. Thus, V_R is RM-pseudo k-flat.

Our next result gives a necessary and sufficient condition for a projective semimodule to be pseudo k-flat relative to a cancellable semimodule M.

Proposition 2.4. Let V_R be pseudo projective and $_RM$ cancellable. Then V is pseudo k-flat if and only if the functor $(V \otimes_R -)$ preserves the exactness of all left k-regular right regular short exact sequences

$$0 \to {}_{R}M \stackrel{\alpha}{\to} {}_{R}M \stackrel{\beta}{\to} {}_{R}N \to 0. \tag{2.5}$$

Proof. "If" part. Let $0 \to {}_R M \stackrel{\alpha}{\to} {}_R M \stackrel{\beta}{\to} {}_R N \to 0$ be a left *k*-regular right regular exact sequence. Since V_R is ${}_R M$ -pseudo *k*-flat, V_R is ${}_R M$ -flat. By using Proposition 2.3, the sequence

$$0 \to V \otimes_R M \xrightarrow{I_Y \otimes \alpha} V \otimes_R M \xrightarrow{I_Y \otimes \beta} V \otimes_R N \to 0$$
 (2.6) is exact.

"Only if" part. Let $_RM = _RM$. Consider the following exact sequence:

$$0 \to M \xrightarrow{i_K} M \xrightarrow{\pi i_K(M)} M/i_K(M) \to 0. \tag{2.7}$$

Since V is pseudo projective and ${}_RM$ cancellable, by using [10, Proposition 1.16], $I_V \otimes i_k$ is k-regular. By hypothesis, $0 \to V \otimes {}_RM$ $\xrightarrow{I_Y \otimes \alpha} V \otimes {}_RM$ is an exact sequence. Thus, V is ${}_RM$ pseudo k-flat.

3. Flat via Injectivity

We will discuss the relation between the injectivity and flatness. By $(\cdot)^*$, we mean the functor $Hom_R(-, C)$, where C is a fixed injective semicogenerator cancellative N-semimodule.

Remark 3.1 [3]. If U is a right R-semimodule, then U^* is a left R-semimodule.

We state and prove the following lemma, analogous to the one on modules which is needed in the proof of Proposition 3.3.

Lemma 3.2 [3]. Let R be a semiring, M and M' be left R-semimodules, and U be a right R-semimodule. Let T be a cancellative N-semimodule. If $\alpha: M' \to M$ is an R-homomorphism, then there exist N-isomorphisms φ and φ' such that the following diagram commutes:

Proposition 3.3. *Let M be a left R-semimodule.*

- (1) If the right R-semimodule V is pseudo k-flat, then V^* is M-injective.
- (2) If V^* is M-injective, then V is pseudo k-flat.

Proof. (1) Let K be a subsemimodule of M. Since V is pseudo k-flat, the sequence $0 \to V \otimes K \xrightarrow{I_Y \otimes i_K} V \otimes M$ is proper exact, and $I_V \otimes i_K$ is k-regular. By Lemma 3.2, we have the following commutative diagram:

where φ and φ' are N-isomorphisms. It follows that the top row is proper

exact if and only if the bottom row is proper exact, whence by [8, Proposition 3.1], V^* is injective.

(2) If V^* is injective, then

$$Hom_R(M, V^*) \xrightarrow{Hom_R(i_K, I_{V^*})} Hom_R(K, V^*) \to 0$$
 (3.3)

is proper exact. Again by the above diagram,

$$(V \otimes M)^* \xrightarrow{Hom_R(I_V \otimes i_K, I_C)} (V \otimes K)^* \to 0$$
 (3.4)

is proper exact. Hence, the sequence is exact. Since C is a semicogenerator, by [11, Proposition 4.1], the sequence $0 \to V \otimes K \to V \otimes M$ is exact. Hence, V is pseudo k-flat.

4. Cancellable Semimodules

In this section, we deal with cancellable semimodules, we characterize pseudo k-flat semimodules by means of left ideals.

Proposition 4.1. The following statements about a cancellable right R-semimodule V are equivalent:

- (1) V is pseudo k-flat;
- (2) For each (finitely generated) left ideal $I \leq_R R$, the surjective N-homomorphism $\varphi: V \otimes_R I \to VI$ with $\varphi(v \otimes a) = va$ is a k-regular semimonomorphism.

Proof. (1) \Rightarrow (2) Since *V* is cancellable, by using [1, Proposition 14.16], $V \otimes_R R \cong V$. Consider the following commutative diagram:

$$V \otimes_{R} I \xrightarrow{I_{V} \otimes i_{I}} V \otimes_{R} R$$

$$\varphi' \downarrow \qquad \qquad \varphi \qquad \downarrow$$

$$VI \xrightarrow{I_{VI}} V \qquad (4.1)$$

where θ is the isomorphism of [1, Proposition 14.16]. Since $\psi: VI \to VI$

given by $\psi(v, i) = vi$ is an R-balanced function, by using [1, Proposition 14.14], there is an exact unique N-homomorphism $\varphi: V \otimes I \to VI$ satisfying the condition $\varphi(v \otimes i) = \psi(v, i)$. Since V is pseudo k-flat relative to ${}_R R$, $I_V \otimes {}_R i_I$ is injective. If $\varphi(\Sigma v_i \otimes a_i) = \varphi(\Sigma v_i' \otimes a_i')$, then

$$\theta(I_V \otimes_R i_I)(\Sigma v_i \otimes a_i) = \theta(I_V \otimes_R i_I)(\Sigma v_i' \otimes a_i').$$

Since θ and $I_V \otimes_R i_I$ are injective, $\Sigma(v_i \otimes a_i) = \Sigma(v_i' \otimes a_i')$.

(2) \Rightarrow (1) Again consider the above diagram. Let I be any left ideal of R and let $I_V \otimes_{R} i_I(\Sigma v_i \otimes a_i) = I_V \otimes_{R} i_I(\Sigma v_i' \otimes a_i')$, where $\Sigma(v_i \otimes a_i) = \Sigma(v_i' \otimes a_i') \in V \otimes_{R} I$. Let $K_1 = \Sigma R a_i$, $K_2 = \Sigma R a_i'$ and $K = K_1 + K_2$. Now

$$\theta(I_V \otimes_{R} i_I)(\Sigma v_i \otimes a_i) = \theta(I_V \otimes_{R} i_I)(\Sigma v_i' \otimes a_i'),$$

whence $\Sigma(v_i \otimes a_i) = \Sigma(v_i' \otimes a_i') \in V \otimes_R I$.

Now consider the following commutative diagram, where $i_K: K \to I$ is the inclusion map:

$$V \otimes K \xrightarrow{I_{V} \otimes i_{K}} V \otimes I$$

$$\varphi_{K} \downarrow \qquad \qquad \theta \qquad \downarrow$$

$$VK \xrightarrow{I_{VK}} V \qquad (4.2)$$

By hypothesis, φ_k is monic. Thus, $\Sigma_i v_i \otimes a_i = \Sigma_i v_i' \otimes a_i'$ as an element of $V \otimes K$. Hence, $I_V \otimes_R i_I (\Sigma v_i \otimes a_i) = I_V \otimes_R i_I (\Sigma v_i' \otimes a_i') \in V \otimes I$ and $\Sigma_i v_i \otimes a_i = \Sigma_i v_i' \otimes a_i'$ as an element of $V \otimes I$. Therefore, $I_V \otimes_R i_I$ is monic. Hence, V is pseudo k-flat relative to R.

Proposition 4.2. Let M be a cancellable left R-semimodule. Then R_R is pseudo k-flat.

Proof. Let $i_K: K \to M$ be the inclusion homomorphism. By [1, Proposition 14.16], $R \otimes_R K \cong K$ and $R \otimes_R M \cong M$. Consider the following commutative diagram:

$$R \otimes_{R} K \xrightarrow{I_{R} \otimes i} R \otimes_{R} M$$

$$\cong \bigvee_{K} \xrightarrow{i_{K}} M \tag{4.3}$$

Since i_K is injective, $I \otimes_R i_K$ is injective.

Corollary 4.3. Let M be a cancellable left R-semimodule. Then every free R-semimodule is pseudo k-flat.

Proof. The proof is immediate from Propositions 2.3 and 4.2.

In module theory, every projective module is flat. Now we see that this is true for certain special semimodules.

Proposition 4.4. Let M be a cancellable left R-semimodule, where R is a cancellative completely subtractive semiring. Then every k-regular projective R-semimodule P is pseudo k-flat.

Proof. By using [12, Proposition 19], P is isomorphic to a direct summand of a free semimodule F. By Corollary 4.3, F is pseudo k-flat. Hence, by using Proposition 2.3, P is pseudo k-flat.

Corollary 4.5. Let M be a k-regular left R-semimodule and R be a cancellative completely subtractive semiring. Then every k-regular projective R-semimodule P is pseudo k-flat.

Proof. We only need to show that M is cancellable. Since M is k-regular, there exists a free R-semimodule F such that $\varphi: F \to M$ is surjective. Let $m_1 + m = m_2 + m$, where $m_1, m_2, m \in M$. Since φ is surjective, $\varphi(a_1) + \varphi(a) = \varphi(a_2) + \varphi(a)$, where $\varphi(a_1) = m_1$, $\varphi(a) = m$ and $\varphi(a_2) = m_2$. Since φ is k-regular, $a_1 + a + k_1 = a_2 + a + k_2$, where $k_1, k_2 \in Ker\varphi$. Since F is cancellable, $a_1 + k_1 = a_2 + k_2$. Hence $\varphi(a_1) = \varphi(a_2)$.

Proposition 4.6. Let M be a cancellable left R-semimodule. If V is a free R-semimodule, then the following assertions hold:

- (a) V is pseudo k-flat;
- (b) V^* is M-injective.

Proof. By using Corollary 4.3, V is pseudo k-flat.

(a) \Rightarrow (b) The proof is immediate from Proposition 3.3.

References

- J. S. Golan, The theory of semirings with applications in mathematics and theoretical computer, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 54, Longman Science and Technical, Harlow, 1992.
- [2] Joseph J. Rotman, An Introduction to Homological Algebra, Academic Press, New York, San Francisco, London, 1979.
- [3] Huda Mohammed J. Al-Thani, Flat semimodules, Int. J. Math. Math. Sci. 17 (2004), 873-880.
- [4] Yefim Katsov, On flat semimodules over semirings, Algebra Universalis 51 (2004), 287-299.
- [5] T. S. Fofanova, Polygons over distributive lattices, Universal Algebra (Esztergom, 1977), Colloq. Math. Soc. János Bolyai, 29, North Holland, Amsterdam, 1982.
- [6] Yefim Katsov, Tensor product and injective envelopes of semimodules over additively regular semirings, Algebra Colloq. 4(2) (1997), 121-131.
- [7] Chen Peici and Zhou Yuanlan, Tensor product of semimodules, Acta Math. Sinica 45(1) (2002), 139-150.
- [8] Huda Mohammed and J. Althani, Injective semimodules, J. Inst. Math. Comput. Sci. 16(3) (2003), 150-162.
- [9] M. Takahashi, On the bordism categories, III, Functors Hom and ⊗ for semimodules, Math. Sem. Notes Kobe Univ. 10(1) (1982), 211-236.
- [10] M. Takahashi, Extensions of semimodules, II, Math. Sem. Notes Kobe Univ. 11(1) (1983), 83-118.
- [11] Huda Mohammed and J. Althani, The reject and the semicogenerators (to appear).
- [12] Huda Mohammed and J. Althani, *k*-projective semimodules, Kobe J. Math. 13(1) (1996), 49-59.