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Abstract 

We give a procedure to determine equations for the modular curves 
( )NX0  which are bielliptic and equations for the 30 values of N such 

that ( )NX0  is bielliptic and nonhyperelliptic are presented. 

1. Introduction 

A curve X (smooth and projective) of genus 1>g  defined over a 

number field K is said to be hyperelliptic, resp. bielliptic, over K, if there is 
an involution w defined over K such that the quotient curve wXY =  has 

genus zero, resp. genus one, and ( ) .∅≠KY  The last condition amounts to 

saying that Y admits a hyperelliptic model over K or the genus one quotient is 
an elliptic curve over K. 

According to Abramovich and Harris (cf. [1]), we know that for a curve 
KX  of genus ,1>  the set of the points ( )KXP ∈  lying in a quadratic 
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extension of K contains infinitely many points if and only if X is hyperelliptic 
over K or X is bielliptic over K and the corresponding elliptic quotient curve 
has rank .1≥  

When we restrict to the modular curves ( ) ,0 QNX  the cusp ∈∞  

( ) ( )QNX0  and, thus, ( )NX0  is hyperelliptic or bielliptic over Q  if there 

exists an involution w defined over Q  whose quotient curve has genus .1≤  

In [8], Ogg determined the 19 values of N for which ( )NX0  is hyperelliptic 

over .Q  Later in [3], Bars determined the 41 values of N for which ( )NX0  is 

bielliptic over .Q  Next, we display the unique 30 values of N of all them for 

which ( )NX0  is non-hyperelliptic: 

 
.131,119,102,95,94,92,89,83,81,79,75,72,69,65,64

,63,62,61,60,56,55,54,53,51,45,44,43,42,38,34
 (1) 

In [9], equations for the 19 hyperelliptic modular curves are presented. 
The goal of this article is to determine equations for these 30 bielliptic 
modular curves. In this way, for each modular curve ( )NX0  of genus ,1>  

we could determine almost all points lying in a quadratic field. 

2. General Facts on the Modular Curve ( )NX0  

From now on, ( )NX0  denotes the algebraic curve over Q  attached to 

the modular group ( )N0Γ  and such that ( )( )NX0Q  is the subfield of 

( )( )NX0C  which consists of the functions with rational q-expansion at the 

cusp ∞, where .2 izeq π=  Next, we summarize some well-known facts which 

shall be used in the next section. 

2.1. The group ( )( )NXAut 0  

The group ( ) { }12 ±RSL  is the group of the automorphisms of the 

complex upper half-plane. Let us denote by ( )N∗Γ0  the normalizer of ( )N0Γ  
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in ( ) { }.12 ±RSL  The group ( ) ( ) ( )NNNB 00 ΓΓ= ∗  provides a subgroup of 

( )( )NXAut 0  described by Bars in [4] and, later, revised by Atkin and 

Lehner in [2]. 

Let 2e  and 3e  be the greatest exponents such that 32 32 ee ⋅  divides N. 

Set ⎣ ⎦( )2,3min2 22 e=ν  and ⎣ ⎦( ).3 2,1min3 3e=ν  For every positive divisor       

d of 2ν  or ,3ν  the matrix ( )N
d ∗Γ∈⎟
⎠
⎞

⎜
⎝
⎛

010
11

 and, thus, provides an 

automorphism of ( )NX0  which will be denoted by .dS  

For any positive divisor d of N coprime to ,dN  the matrix 

⎟
⎠
⎞

⎜
⎝
⎛

⋅⋅
⋅

dDCN
BdA

d
1  with determinant 1 and Z∈DCBA ,,,  lies in ( )∗Γ N0  

and provides an involution dw  on ( )NX0  independent on A, B, C and D, 

called the Atkin-Lehner involution attached to d. We denote by ( )NW  the set 

of the Atkin-Lehner involutions, which is a commutative group since 

( ) .2
212121 ,gcd dddddd www

⋅
=⋅  The group ( )NB  is generated by the group 

( ),NW  2νS  and .3νS  In [7], Kenku and Momose proved that when the 

genus of ( ) 10 >NX  and ,63,37≠N  one has that ( )( ) ( ).0 NBNXAut =  

Lemma 2.1. The field of definition of any Atkin-Lehner involution and 

2S  is Q  and for ,2>d  the field of definition of dS  is ( ),dζQ  where dζ  is 

a primitive dth root of unity. 

Proof. For an Atkin-Lehner involution ,dw  one has that ( )( )( )NXwd 0Q∗  

( )( )NX0Q=  and, thus, dw  is defined over .Q  Indeed, the function field 

( )( )NX0Q  is generated by the functions ( ),zj  ( )zNj  and dw  sends these 

functions to the functions ( ),dzj  ( ),dzNj  which lie in ( )( ).0 NXQ  It is 

immediate to check that for ,dS  the number field ( )dζQ  is the smallest 

number field K such that ( )( )NXK 0Q⊗  contains ( )( )( ).0 NXSd Q∗  ~ 



Josep González 48 

2.2. Cusp forms of weight two 

We recall that we can identify the C -vector space of weight two cusp 

forms on ( ),0 NΓ  i.e., ( )( ),02 NS Γ  with ( )
1

0 CNXΩ  via the map ( ) 6qf  

( ) .q
dqqf  Moreover, via this map, ( )

1
0 QNXΩ  is in bijective correspondence 

to the set of weight two cusp forms with rational q-expansion. 

Let M be a positive divisor of N. For any positive divisor d of ,MN     

the map on the complex upper half-plane given by dzz 6  provides a 
nonconstant morphism ( ) ( )MXNXBd 00: →  which acts on the cusp forms 

of weight two by sending ( ) ( )( )MSqf 02 Γ∈  to ( ) ( )( ).02 NSqf d Γ∈  The 

vector space ( )( )old
02 NS Γ  is defined as the sum of the images of such maps 

for all NM |  and .MNd |  The vector space ( )( )NS 02 Γ  has a hermitian 

inner product called the Peterson inner product and the vector space 

( )( )new
02 NS Γ  is defined as the orthogonal complement to ( )( ) .old

02 NS Γ  

We denote by NNew  the set of normalized cusp forms in ( )( )new
02 NS Γ  

which are eigenvectors of all Hecke operators and Atkin-Lehner involutions. 
By a normalized cusp form, we mean a cusp form whose first non-zero 
Fourier coefficient is equal to 1. It is well known that NNew  is a basis of 

( )( ) .new
02 NS Γ  

In Table 5 of [6], it can be found the dimensions of the vector spaces 

( )( )GNS 02 Γ  and ( ( )( ) )GnewNS 02 Γ  for any subgroup G of the group of the 

Atkin-Lehner involutions ( )NW  for .300≤N  The following result will be 

useful in order to determine weight two cusp forms invariants under an 
Atkin-Lehner involution. 

Lemma 2.2. Let M and N be positive integers such that .NM |  Let 1M  

be a positive divisor of M such that and ( ) 1,gcd 1 =MMM  and let A  be a 

positive divisor of MN  such that ( ( )) .1,gcd 11 =AA MNM  If ∈f  
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( )( )MS 02 Γ  is a normalized eigenvector of the Atkin-Lehner involution 1Mw  

with eigenvalue ( )fε  and { },1,1−∈ε  then ( ) ( ) ( )( )NSqfqf 02 Γ∈ε+ A  is 

a normalized eigenvector of the Atkin-Lehner involution A1Mw  with 

eigenvalue ( ) .ε⋅ε f  

Proof. An automorphism u on ( )NX0  whose action on the upper half-

plane is given by a matrix ( ),2 RSL
DC
BA

∈⎟
⎠
⎞

⎜
⎝
⎛=γ  sends a weight two cusp 

forms h to ( )( )
( )

.1
2DCz

zh
+

γ  The statement follows from the fact that 

A1Mw  sends f to ( ) ( ).Aqffε  ~ 

2.3. Modular parametrizations of elliptic curves 

Since Shimura-Taniyama-Weil’s conjecture was proved, we know that 
for an elliptic curve ,QE  there exist a positive integer N and a nonconstant 

morphism ( ) ENX →π 0:  defined over .Q  Such a morphism π will be 

called a modular parametrization of E and level N. The following conditions 
are equivalent: 

  (i) The conductor of E is N. 

 (ii) There exists a modular parametrization π of E and level N such that 

( ) ( )( ) .02
1

q
dqNS new

E Γ⊂Ωπ∗  

(iii) There exist NNewf ∈  and a modular parametrization π of E and 

level N such that ( ) ( ) .1
q

dqqfE ⋅=Ωπ∗ QQ  

Such a parametrization will be called new of level N and the newform f 
in part (iii) is unique and determines the Q -isogeny class of E. 

For a non-new modular parametrization π of E and level N, the conductor 
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M of E divides N and ( )1
QEΩπ∗  is an one dimensional Q -vector subspace 

of 

( ) ( )( ) ,old
02, NSq

dqqfH d

MNd
NE Γ⊂=

|
⊕ Q  

where f is the normalized newform of level M attached to E. In fact, for any 
nonzero cusp form ,, NEHh ∈  there exists a modular parametrization π of E 

and level N such that ( ) ( ) .1
q

dqqhE ⋅=Ωπ∗ QQ  

A modular parametrization π of E and level N is called optimal if the 
morphism induced on their Jacobians ( )( ) ENXJac →π∗ 0:  has connected 

kernel. If ( ) ( ) q
dqqhE ⋅=Ωπ∗ QQ

1  for some ( )( ),02 NSh Γ∈  then the 

condition to be π optimal amounts to saying that the elliptic curve attached to 
the lattice 

 ( ) ( )( )
⎭
⎬
⎫

⎩
⎨
⎧ ∈γ=Λ ∫γ Z,: 00 NXHq

dqqh  (2) 

is Q -isomorphic to E, i.e., ( ) ( )Ecc 444 α=Λ  and ( ) ( )Ecc 666 α=Λ  for some 

nonzero .Q∈α  For another modular parametrization 1π  of an elliptic curve 

Q1E  and level N such that ( ) ( ),1
1

1
1 QQ EE Ωπ=Ωπ ∗∗  if π is optimal, then 

there is an isogeny 1: EE →μ  defined over Q  such that πμ=π D1  and, 

in particular, .degdeg 1π|π  

We will denote the Q -isomorphism class of an elliptic curve QE  by 

giving its conductor N and Cremona’s label, i.e., a letter X and a positive 
integer. For instance, the elliptic curve 15A8 stands for the elliptic curve of 
conductor 15 with Cremona’s label A8. The conductor N and the letter X, for 
instance 15A, denote the Q -isogeny class of E and NXf  will denote the 

attached newform to E. The optimal quotient in the Q -isogeny class of E, 
called the strong Weil curve, is always labeled with the number 1. 
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We point out that Manin’s conjecture has been checked for all strong 
Weil elliptic curves, i.e., optimal new modular parametrizations, in 

Cremona’s tables. That is, if 64
2

2
3

31
2 axaxaxyaxyay +++=++  is a 

minimal model over Z  of a strong Weil elliptic curve E of conductor N, then 
there exists a new nodular parametrization π of level N for E such that 

( ) ,2 31 q
dqqfaxay

dx ±=⎟
⎠
⎞

⎜
⎝
⎛

++
π∗  

where NNewf ∈  is the corresponding normalized newform attached to the 

Q -isogeny class of E. In other words, if ( )∞π  is taken to be the infinity 

point of E, then the q-expansions of the modular functions x, y are of the 
form: 

∑ ∑
−≥ −≥

+=+=
1 2

32
1,1

n n

n
n

n
n qb

q
yqa

q
x ∓   and  ., Q∈nn ba  

Equivalently, when we replace h with f in (2), the lattice Λ  obtained and 
the minimal model of E have the same invariants 4c  and .6c  

3. Procedure to Determine Equations 

From now on, N is a value in the list (1). Let w be a bielliptic involution 
defined over ,Q  let ( ) ( ) wNXNX 00: →π  be the natural projection and 

let us denote by E the elliptic curve ( ) ( )( ).,0 ∞πwNX  Since ,2=πdeg  

the parametrization π is optimal. Now we split in three steps the procedure to 
find an equation for ( ):0 NX  

Step 1. Determination of E, w and the normalized cusp form h such that 

( ) ( ) .1 qdqqhE =Ωπ∗  Since ( )NX0  can have several bielliptic involutions 

defined over ,Q  first we will determine for which values of N, we can take  

w  such that π is new. Clearly, ( )NX0  is bielliptic with a new modular 

parametrization for an elliptic quotient E if and only if there exists an elliptic 
curve of conductor N with modular degree equal to 2. 
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By checking in Table 22 of [5] among the elliptic curves E with 
conductor N as in (1), we obtain that this fact occurs exactly for 22 values of 
N. For each of these values of N, we fix this elliptic curve E as the 
corresponding bielliptic quotient and we determine the involution ∈w  

( )( )NXAut 0Q  such that ( ) ,hNew w
N =  where h is the newform attached 

to E (see Table 1). 

For the remaining 8 values of N, i.e., { },119,95,81,75,72,63,60,42∈N  

we fix a bielliptic involution w defined over Q  among the given in Theorem 
3.15 of [3]. More precisely, for ,72≠N  we choose w to be an Atkin-Lehner 

involution and for ,72=N  we take 2Sw =  (see Table 2). In order to find   

a normalized cusp form h such that ( )( ) ,02 hNS w =Γ  we proceed as 

follows: For ,72≠N  by applying Lemma 2.2, we can easily determine        

a newform MNewf ∈  with NM |  and integer q-expansion such that 

( )( ) ( ) .02 hq
dqqfNS

w
d

MNd
w QQ =⎟

⎠
⎞⎜

⎝
⎛=Γ |⊕  The newform f only 

determines the Q -isogeny class of E. In order to determine its                          
Q -isomorphism class, we compute the corresponding lattice Λ  attached to 
h. This fact allows us to identify E in Cremona’s tables (cf. Table 2). In all 
cases, Λ  turns out to be the lattice corresponding to a minimal model of the 

elliptic curve E. For ,72=N  the normalized cusp form h is ( ),2qf  where f 

is the normalized newform of level 36 attached to the isogeny class 36A and 
E is the elliptic curve 36A1. 

Step 2. Determination of the q-expansions of the functions ( )., Eyx Q∈  

Let ( ) ( ) [ ]yxaxaxaxyaxyayyxFN ,, 64
2

2
3

31
2 Z∈+++−++=  be the 

polynomial such that ( ) 0, =yxF  is the minimal model given in Cremona’s 

tables for E. For each ,72≠N  the lattice obtained from the normalized cusp 

form h in ( ) ( )( )NSE 02
1 Γ⊂Ωπ∗ Q  corresponds to the minimal model 

( ) .0, =yxFN  Therefore, we can take y such that the coefficients of the 
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Fourier expansion of x and y are of the form 

∑ ∑
−≥ −≥

+=+=
1 2

32 .1,1

n n

n
n

n
n qb

q
yqa

q
x  

The Fourier coefficients of these modular functions can be determined 
recursively by means of the equalities 

231 ⎟
⎠
⎞

⎜
⎝
⎛ ++−= axah

dqqdhy   and  ( ) .0, =yxF  

For ,72=N  by proceeding similarly for the elliptic curve 36A1 with 

respect to its attached normalized newform ,36Newf ∈  we obtain the              

q-expansions of x and y as functions on ( ).360X  It is clear that the functions 

for our case are ( )2qx  and ( ).2qy  

Step 3. Determination of a suitable generator of the extension 
( )( ) ( ).0 ENX QQ  Let NG  be the multiplicative group of the modular 

functions on ( )NX0  which are equal to ( )∏ |≤ ηNd
rddz1  for some integers 

dr  and where ( )zη  is the Dedekind function. The group NG  is the 

multiplicative subgroup of ( )( )NX0Q  which consists of the normalized 

functions whose zeros and poles are cusps (for a detailed description of this 
group, see 2.2 of [9]). In our case, due to the fact that w left stable the set of 
cusps and ( )( ),0 NXAutw Q∈  the involution w induces an involution ∗w  on 

.NG⊗Q  By Proposition 2 of [9], there exists a function Nu G∈  satisfying: 

 (i) The polar part of u is a multiple of the divisor ( )∞  or ( ) ( )( ).∞+∞ w  

(ii) ( ) .udivuwdiv ≠∗  

Once such a function u is chosen, the divisor of ( )uw∗  is determined and 

we can find a function Nv G∈  having the same divisor as ( ),uw∗  i.e., 

( ) avuw =∗  for some nonzero rational number a. By using the q-expansions 
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of u, v, x and y, we can determine a because avu +  must be equal to a 
polynomial with rational coefficients in the functions x and y. In fact, if w is 
an Atkin-Lehner involution ( ),72,64≠N  then Proposition 3 of [9] allows 

us to determine a without using q-expansions. In any case, with our choice, 
the rational number a turns out to be always integer. Finally, we take the 

function avut −=:  which satisfies ( ) .ttw −=∗  Therefore, ( )( ) =NX 0Q  

( ) ( )tEQ  and, moreover, the function 2t  lies in ( )EQ  and has a unique pole 

in ( ).∞π  Hence, 

( )yxPt ,2 =  

for some polynomial P with integers coefficients, which provides an equation 
for ( )NX0  related with the chosen equation for E, for which its Mordell-

Weil group is described in Cremona’s tables. The polynomial ( )yxP ,  is 

taken as a polynomial of the form ( ) ( ) ,21 yxPxP +  where ( ) ( ) ., 21 Z∈xPxP  

Since the degree of ( )xP1  agrees with uord∞−  and ( ) ( )xPxP 12 degdeg ≤  

,2−  u is chosen to be uord∞−  minimal. In Tables 3 and 4 of the appendix, 

the corresponding functions t are exhibited for the new and non-new cases, 
respectively, while in Tables 5 and 6, the polynomials ( )yxP ,  are presented 

for the new and non-new cases, respectively. 
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4. Appendix 

4.1. Tables for E, w and h 

Table 1 (New case) 

 

Table 2 (Non-new case) 
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4.2. Tables for t 

Table 3 (New case) 
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Table 4 (Non-new case) 
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4.3. Tables for ( )yxP ,  

Table 5 (New case) 
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Table 6 (Non-new case) 
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