

Volume 71, Number 1, 2012, Page Published Online: December 2012

Available online at http://pphmj.com/journals/fjms.htm Published by Pushpa Publishing House, Allahabad, INDIA

COEFFICIENT BOUNDS OF STARLIKE AND CONVEX FUNCTIONS OF COMPLEX ORDER INVOLVING GENERALIZED OPERATOR

Aisha Ahmed Amer and Maslina Darus*

School of Mathematical Sciences Faculty of Science and Technology Universiti Kebangsaan Malaysia Bangi 43600 Selangor D. Ehsan, Malaysia

e-mail: maslina@ukm.my

Abstract

In this paper, we derive some coefficient bounds for functions in the subclasses $SC_{\alpha,\beta,l}^{q,s,m}(b,\lambda_1,\lambda_2,\gamma)$ and $T_{\alpha,\beta,l}^{q,s,m}(b,\lambda_1,\lambda_2,\gamma,\mu)$ of A which consists of functions $f \in A$. We also obtain a necessary and sufficient condition for functions to be in these subclasses.

1. Introduction

As usual, let A denote the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \quad (z \in \mathbb{U}), \tag{1.1}$$

© 2012 Pushpa Publishing House

2010 Mathematics Subject Classification: 30C45.

Keywords and phrases: analytic function, convex function, starlike function, coefficient bounds, generalized operator.

*Corresponding author

Received July 2, 2012

which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$ on the complex plane \mathbb{C} .

It is well known that for two functions f, given by (1.1) and

$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k, \quad (z \in \mathbb{U}),$$

the Hadamard product (convolution) of f and g, is defined by

$$(f * g)(z) = z + \sum_{k=2}^{\infty} a_k b_k z^k.$$

Let S stand for the well known subclass of A consisting of univalent functions.

The authors in [4] have, recently, introduced a new generalized operator $D_l^{m,\lambda_1,\lambda_2}(\alpha_i,\beta_j)f(z)$ as the following:

For complex parameters $\alpha_1, \, \alpha_2, \, ..., \, \alpha_q$ and $\beta_1, \, \beta_2, \, ..., \, \beta_s, \, (\beta_j \in \mathbb{C} - \mathbb{Z}_0, \, \mathbb{Z}_0 = \{0, \, -1, \, -2, \, ...\}; \, j = 1, \, 2, \, ..., \, s).$

Let the generalized hypergeometric function ${}_{q}F_{s}(\alpha_{1}, \alpha_{2}, ..., \alpha_{q}; \beta_{1}, \beta_{2}, ..., \beta_{s}; z)$ be defined by

$${}_{q}F_{s}(\alpha_{1}, \alpha_{2}, ..., \alpha_{q}; \beta_{1}, \beta_{2}, ..., \beta_{s}; z) = \sum_{k=0}^{\infty} \frac{(\alpha_{1})_{k}, (\alpha_{2})_{k}, ..., (\alpha_{q})_{k}}{(\beta_{1})_{k}, (\beta_{2})_{k}, ..., (\beta_{s})_{k}} \frac{z^{k}}{k!},$$

where

$$(q \le s + 1; q, s \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, z \in \mathbb{U}),$$

for \mathbb{N} denotes the set of all positive integers and $(x)_k$ is the Pochhammer symbol defined, in terms of the Γ function, by

$$(x)_k = \begin{cases} 1 & \text{for } k = 0, \\ x(x+1)(x+2)\cdots(x+k-1) & \text{for } k \in \mathbb{N} = \{1, 2, 3, ...\}. \end{cases}$$

Corresponding to a function $h_{q,s}(\alpha_1, \alpha_2, ..., \alpha_q; \beta_1, \beta_2, ..., \beta_s; z)$ defined by

$$h_{q,s}(\alpha_1, \alpha_2, ..., \alpha_q; \beta_1, \beta_2, ..., \beta_s; z)$$

=: $z_q F_s(\alpha_1, \alpha_2, ..., \alpha_q; \beta_1, \beta_2, ..., \beta_s; z)$.

Dziok-Srivastava [8] introduced a convolution operator on A such that

$$H_{q,s}(\alpha_1, \alpha_2, ..., \alpha_q; \beta_1, \beta_2, ..., \beta_s; z) : A \to A$$

is defined by

$$H(\alpha_{1}, \alpha_{2}, ..., \alpha_{q}; \beta_{1}, \beta_{2}, ..., \beta_{s}; z)$$

$$= h(\alpha_{1}, \alpha_{2}, ..., \alpha_{q}; \beta_{1}, \beta_{2}, ..., \beta_{s}; z) * f(z)$$

$$= z + \sum_{k=2}^{\infty} \Gamma_{k} a_{k} z^{k},$$

where

$$\Gamma_k(\alpha_1) = \frac{(\alpha_1)_{k-1}, \, (\alpha_2)_{k-1}, \, ..., \, (\alpha_q)_{k-1}}{(\beta_1)_{k-1}, \, (\beta_2)_{k-1}, \, ..., \, (\beta_s)_{k-1}(1)_{k-1}} \, .$$

Definition 1.1. Let

$$\varphi_l^{m,\lambda_1,\lambda_2}(z)(\alpha_i,\,\beta_j;\,z)=\sum_{k=2}^\infty\Gamma_k(\alpha_1)\delta_kz^k,$$

where

$$\delta_k = \frac{(1+\lambda_1(k-1)+l)^{m-1}}{(1+l)^{m-1}(1+\lambda_2(k-1))^m}$$

$$(i = \{1, 2, ..., q\}, j = \{1, 2, ..., s\}, z \in \mathbb{U}),$$

and $(z \in \mathbb{U}, \lambda_2 \ge \lambda_1 \ge 0, l \ge 0, m \in \mathbb{Z})$, also $(x)_k$ is the Pochhammer symbol.

We define a linear operator $D_l^{m,\lambda_1,\lambda_2}(\alpha_i,\beta_j):A\to A$ by the following Hadamard product:

$$D_l^{m,\lambda_1,\lambda_2}(\alpha_i,\beta_j)f(z) := \varphi_l^{m,\lambda_1,\lambda_2}(z)(\alpha_i,\beta_j;z) * f(z)$$

$$D_l^{m,\lambda_1,\lambda_2}(\alpha_i,\,\beta_j)f(z) = z + \sum_{k=2}^{\infty} \delta_k \Gamma_k(\alpha_1) a_k z^k. \tag{1.2}$$

This operator $D_l^{m,\lambda_1,\lambda_2}(\alpha_i,\beta_j)f(z)$ includes various other linear operators which were considered in earlier works in the literature.

For m = 1 and $\lambda_2 = 0$, we obtain

$$D_0^{1,0,0}(\alpha_i, \beta_j) f(z) = H_{q,s}(\alpha_1, \alpha_2, ..., \alpha_q; \beta_1, \beta_2, ..., \beta_s; z),$$

which was given by Dziok-Srivastava [8].

For $\alpha_i = 1$ and $\beta_j = 1$, we obtain

$$D_{l}^{m,\lambda_{1},\lambda_{2}}(1,1)f(z) = I^{m}(\lambda_{1},\lambda_{2},l,n)f(z)$$

as given in [3].

For s = 1 and q = 2, we obtain the linear operator:

$$D_0^{1,0,0}(\alpha_1, \alpha_2, \beta_1)f(z) = F(\alpha_1, \alpha_2, \beta_1)f(z)$$

which was introduced by Hohlov [9]. Moreover, putting $\alpha_2 = 1$, we obtain the Carlson-Shaffer operator [5]:

$$D_0^{1,0,0}(\alpha_1, 1, \beta_1) f(z) = L(\alpha_1, \beta_1) f(z).$$

Ruscheweyh [19] introduced an operator

$$D_0^{1,0,0}(\lambda+1,1,1)f(z) = D^{\lambda}f(z).$$

Definition 1.2. Let the class S_b^* consisting of all analytic functions $f \in A$ satisfy the following inequality:

$$\Re\left\{1+\frac{1}{b}\left(\frac{zf'(z)}{f(z)}-1\right)\right\}>0, \quad (b\in\mathbb{C}^*=\mathbb{C}-\{0\},\ z\in\mathbb{U}).$$

The class C_h consists of all analytic functions $f \in A$ satisfying

$$\Re\left\{1+\frac{1}{b}\frac{zf''(z)}{f'(z)}\right\}>0, \quad (b\in\mathbb{C}^*=\mathbb{C}-\{0\},\ z\in\mathbb{U}).$$

The function classes S_b^* and C_b were considered earlier by Nasr and Aouf [16-18] and Wiatrowski [21], respectively.

Furthermore, a function $f(z) \in A$ is said to be in the class $SC(b, \lambda, \gamma)$ if it satisfies the following inequality:

$$\Re\left\{1 + \frac{1}{b} \left(\frac{z[\lambda z f'(z) + (1-\lambda)f(z)]'}{\lambda z f'(z) + (1-\lambda)f(z)} - 1\right)\right\} > \gamma,$$

$$(b \in \mathbb{C}^* = \mathbb{C} - \{0\}, z \in \mathbb{U}),$$

$$(1.3)$$

where $(f(z) \in A, 0 \le \lambda \le 1, 0 \le \gamma < 1)$.

The function class satisfying the inequality (1.3) was considered by [2].

Let $SC_{\alpha,\beta,l}^{q,s,m}(b, \lambda_1, \lambda_2, \gamma)$ denote the subclass of A consisting of functions f(z) which satisfy the following condition:

$$\Re\left\{1 + \frac{1}{b} \left(\frac{z[D_l^{m,\lambda_1,\lambda_2}(\alpha_i,\beta_j)f(z)]'}{D_l^{m,\lambda_1,\lambda_2}(\alpha_i,\beta_j)f(z)} - 1 \right) \right\} > \gamma, \quad (b \in \mathbb{C}^* = \mathbb{C} - \{0\}), \quad (1.4)$$

where $(z \in \mathbb{U}, \lambda_2 \ge \lambda_1 \ge 0, l \ge 0, m \in \mathbb{Z})$ and $(f(z) \in A, 0 \le \gamma < 1, q \le s + 1, q, s \in \mathbb{N}_0, b \in \mathbb{C}^* = \mathbb{C} - \{0\}).$

Note that for q=2, s=1, $\alpha_1=\beta_1$, $\alpha_2=1$, m=1, $\lambda_2=0$, $\gamma=0$, the class $SC_{\alpha,\beta}^{q,s}(b,\lambda,\gamma)$ coincides the class S_b^* . Furthermore, for q=2, s=1, $\alpha_1=\beta_1$, $\alpha_2=1$, l=0, m=2, $\lambda_2=0$, $\gamma=0$ and $\lambda_1=1$, we obtain the class C_b , and when q=2, s=1, $\alpha_1=\beta_1$, $\alpha_2=1$, l=0, m=2, $\lambda_2=0$, we obtain the class of $SC(b,\lambda,\gamma)$.

The main aim of the present investigation is to derive some coefficient bounds for functions in the subclass $T_{\alpha,\beta,l}^{q,s,m}(b,\lambda_1,\lambda_2,\gamma,\mu)$ of A which consists of functions $f(z) \in A$ satisfying the following nonhomogeneous Cauchy-Euler differential equation:

$$z^{2} \frac{d^{2}\omega}{dz^{2}} + 2(1+\mu)z \frac{d\omega}{dz} + \mu(1+\mu)\omega = (1+\mu)(2+\mu)g(z), \tag{1.5}$$

where $(\omega = f(z) \in A, g(z) \in SC_{\alpha, \beta}^{q, s}(b, \lambda, \gamma), \mu \in R \setminus (-\infty, -1]).$

2. Main Results

Theorem 2.1. Let $f(z) \in A$ be defined by (1.1). If the function $f \in SC_{\alpha,\beta,l}^{q,s,m}(b, \lambda_1, \lambda_2, \gamma)$, then

$$|a_{k}| \leq \frac{\prod_{j=0}^{k-2} [j+2|b|(1-\gamma)]}{\delta_{k}\Gamma_{k}(\alpha_{1})}, \quad (k \in \mathbb{N}\setminus\{1\} = \{2, 3, 4, ...\}).$$
 (2.1)

Proof. Define the function F(z) by

$$F(z) = D_l^{m,\lambda_1,\lambda_2}(\alpha_i, \beta_j) f(z) = z + \sum_{k=2}^{\infty} A_k z^k,$$

where $A_k = \delta_k \Gamma_k(\alpha_1) a_k$.

Thus, by setting

$$\frac{1+\frac{1}{b}\left(\frac{zF'(z)}{F(z)}-1\right)-\gamma}{1-\gamma}=p(z),$$

or, equivalently,

$$zF'(z) = [1 + b(1 - \gamma)(p(z) - 1)]F(z), \tag{2.2}$$

we get

$$p(z) = 1 + p_1 z + p_2 z^2 + \cdots, \quad (z \in \mathbb{U}).$$
 (2.3)

Since

$$\Re\{p(z)\} > 0, \quad (0 \le \gamma < 1; b \in \mathbb{C}^*),$$

we conclude that

$$|p_k| \leq 2, \quad (k \in \mathbb{N}).$$

We also find from (2.2) and (2.3) that

$$(k-1)A_k = b(1-\gamma)(p_1A_{k-1} + p_2A_{k-2} + \dots + p_{k-1}).$$

In particular, for k = 2, 3, 4, we have

$$A_2 = b(1 - \gamma) p_1 \text{ implies } |A_2| \le 2|b|(1 - \gamma),$$

$$2A_3 = b(1-\gamma)(p_1A_2 + p_2)$$
 implies $|A_3| \le \frac{2|b|(1-\gamma)[1+2|b|(1-\gamma)]}{2!}$

and

$$3A_4 = b(1 - \gamma)(p_1A_3 + p_2A_2 + p_3)$$
 implies

$$|A_4| \le \frac{2|b|(1-\gamma)[1+2|b|(1-\gamma)][2+2|b|(1-\gamma)]}{3!},$$

respectively. Using the principle of mathematical induction, we obtain

$$|A_k| \le \frac{\prod_{j=0}^{k-2} [j+2|b|(1-\gamma)]}{(k-1)!}, \quad (k \in \mathbb{N} \setminus \{1\} = \{2, 3, 4, ...\}).$$

Moreover, by the relationship between the functions f(z) and F(z), it is clear that

$$|a_k| \le \frac{\prod_{j=0}^{k-2} [j+2|b|(1-\gamma)]}{\delta_k \Gamma_k(\alpha_1)}, \quad (k \in \mathbb{N} \setminus \{1\} = \{2, 3, 4, ...\}).$$

By choosing suitable values of all the admissible parameters that we used in Theorem 2.1, we deduce the following corollaries.

Corollary 2.1 ([2]). Let $f(z) \in A$ be defined by (1.1). If the function $f \in SC(b, \lambda, \gamma)$, then

$$|a_k| \le \frac{\prod_{j=0}^{k-2} [j+2|b|(1-\gamma)]}{(k-1)![1+\lambda(k-1)]}, \quad (k \in \mathbb{N}\setminus\{1\} = \{2, 3, 4, ...\}).$$

Corollary 2.2 ([16]). Let $f(z) \in A$ be defined by (1.1). If the function $f \in S_b^*$, then

$$|a_k| \le \frac{\prod_{j=0}^{k-2} [j+2|b|]}{(k-1)!}, \quad (k \in \mathbb{N} \setminus \{1\} = \{2, 3, 4, ...\}).$$

Corollary 2.3 ([16]). Let $f(z) \in A$ be defined by (1.1). If the function $f \in C_b$, then

$$|a_k| \le \frac{\prod_{j=0}^{k-2} [j+2|b|]}{k!}, \quad (k \in \mathbb{N} \setminus \{1\} = \{2, 3, 4, ...\}).$$

Theorem 2.2. Let $f(z) \in A$ be defined by (1.1). If the function $f \in T^{q,s,m}_{\alpha,\beta,l}(b, \lambda_1, \lambda_2, \gamma, \mu)$, then

$$|a_{k}| \leq \frac{(1+\mu)(2+\mu)\prod_{j=0}^{k-2}[j+2|b|(1-\gamma)]}{\delta_{k}\Gamma_{k}(\alpha_{1})(k+\mu)(k+1+\mu)},$$

$$(k \in \mathbb{N}\setminus\{1\} = \{2, 3, 4, ...\}). \tag{2.4}$$

Proof. Let $f(z) \in A$ be defined by (1.1). Also, let

$$g(z) = z + \sum_{k=2}^{\infty} b_k z^k \in SC_{\alpha,\beta,l}^{q,s,m}(b,\lambda_1,\lambda_2,\gamma),$$

SO

$$a_k \le \frac{(1+\mu)(2+\mu)}{(k+\mu)(k+1+\mu)} b_k \quad (k \in \mathbb{N}^* = \mathbb{N}/\{0\}, \ \mu \in R\setminus(-\infty, -1]).$$

Thus, by using Theorem 2.1, we readily obtain

$$|a_{k}| \leq \frac{(1+\mu)(2+\mu) \prod_{j=0}^{k-2} [j+2|b|(1-\gamma)]}{\delta_{k} \Gamma_{k}(\alpha_{1})(k+\mu)(k+1+\mu)},$$

$$(k \in \mathbb{N} \setminus \{1\} = \{2, 3, 4, ...\}),$$

which is precisely the assertion (2.4) of Theorem 2.2.

Some other works related to other generalized derivative or integral operators can be found in ([1, 6, 7, 10-15, 20]).

Acknowledgement

The work presented here was partially supported by LRGS/TD/2011/UKM/ICT/03/02.

References

 M. H. Al-Abbadi and M. Darus, Differential subordination defined by new generalised derivative operator for analytic functions, Int. J. Math. Math. Sci. 2010, Art. ID 369078, 15 pp.

- [2] O. Altintas, H. Irmak, S. Owa and H. M. Srivastava, Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Lett. 20 (2007), 1218-1222.
- [3] A. A. Amer and M. Darus, On some properties for new generalized derivative operator, Jordan J. Math. Stat. (JJMS) 4(2) (2011), 91-101.
- [4] A. A. Amer and M. Darus, On a subclass of *k*-uniformly starlike functions associated with the generalized hypergeometric functions, Adv. Studies Theor. Phys. 6(6) (2012), 273-284.
- [5] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745.
- [6] M. Darus and K. Al-Shaqsi, On subordinations for certain analytic functions associated with generalized integral operator, Lobachevskii J. Math. 29(2) (2008), 90-97.
- [7] M. Darus and I. Faisal, Differential subordination for meromorphic multivalent quasi-convex functions, Facta Universitatis (NIS), Ser. Math. Inform. 26 (2011), 1-7.
- [8] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13.
- [9] Ju. E. Hohlov, Operators and operations on the class of univalent functions, Izv. Vyssh. Uchebn. Zaved. Mat. 10(197) (1978), 83-89.
- [10] R. W. Ibrahim and M. Darus, Subordination and superordination for univalent solutions for fractional differential equations, J. Math. Anal. Appl. 345(2) (2008), 871-879.
- [11] R. W. Ibrahim and M. Darus, On subordination theorems for new classes of normalize analytic functions, Appl. Math. Sci. 2 (2008), 2785-2794.
- [12] R. W. Ibrahim and M. Darus, Differential subordination for meromorphic multivalent quasi-convex functions, Acta Math. Univ. Comenian. (N.S.) 79(1) (2010), 39-45.
- [13] R. W. Ibrahim and M. Darus, Subordination for meromorphic functions defined by an operator, Int. J. Pure Appl. Math. 69(4) (2011), 413-419.
- [14] A. Mohammed, M. Darus and D. Breaz, On subordination, starlikeness and convexity of certain integral operators, Mathematica, Tome 53 76(2) (2011), 165-170.
- [15] M. H. Mohd and M. Darus, Differential subordination and superordination for Srivastava-Attiya operator, Int. J. Differ. Equ., 2011, Art. ID 902830, 19 pp.

- [16] M. A. Nasr and M. K. Aouf, Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. Sect. A 12 (1983), 153-159.
- [17] M. A. Nasr and M. K. Aouf, Bounded starlike functions of complex order, Proc. Indian Acad. Sci. Math. Sci. 92 (1983), 97-102.
- [18] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25 (1985), 1-12.
- [19] St. Ruscheweyh, A subordination theorem for Φ-like functions, J. London Math. Soc. 13 (1976), 275-280.
- [20] S. Sivasubramanian, A. Mohammed and M. Darus, Certain subordination properties for subclasses of analytic functions involving complex order, Abstr. Appl. Anal. 2011, Art. ID 375897, 8 pp.
- [21] P. Wiatrowski, On the coefficients of some family of holomorphic functions, Zeszyty Nauk. Uniw. Łódz Nauki. Mat. Przyrod Ser. II 39 (1971), 75-85.