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Abstract

In this paper, we derive some coefficient bounds for functions in the
subclasses SC&:E"T(b, M, Ao, v) and T(?”S,'P(b, M, Ao, 7, 1) of A

which consists of functions f € A. We also obtain a necessary and

sufficient condition for functions to be in these subclasses.
1. Introduction

As usual, let A denote the class of functions of the form

f(z)=z+ iakzk, (z e U), (1.2)

k=2
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which are analytic in the open unit disk U={zeC:|z|<1} on the
complex plane C.

It is well known that for two functions f, given by (1.1) and

[e0]
glz)=z+ Zbkzk, (z e U),
k=2

the Hadamard product (convolution) of f'and g, is defined by
o0
(f*2)(2)=z+ ) ayby".
k=2

Let § stand for the well known subclass of 4 consisting of univalent

functions.
The authors in [4] have, recently, introduced a new generalized operator

Dl’”’MJL2 (0, Bj)f(z) as the following:

For complex parameters oy, o, ..., &, and By, B, ..., By, (Bj e C-
Zo, ZO = {0, —1, —2, }, ] = 1, 2, ceey S).
Let the generalized hypergeometric function qFS(al, 0, ws g3 Pis

By, ..., By; z) be defined by

0

((11)k, (Otz)k, e (aq)k K

qFS(al’ Q25 -es Qg Bi, B2, - B Z) = ;) (Bl)k= (BZ)ka - (Bs)k R

where

(g<s+1q,seNy=NU{0}, zeU),
for N denotes the set of all positive integers and (x), is the Pochhammer
symbol defined, in terms of the I" function, by

L for k = 0,
(X)k_{x(x+1)(x+2)---(x+k—l) for ke N={1,2,3, .}
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Corresponding to a function hqys(ocl, 0, vy O Brs Bos woos Bys z) defined

by
hq’s(al, 0, s Ogs By By s Bys z)
= 2, F (0, 0, oy 05 By Bos ooy By 2)-

Dziok-Srivastava [8] introduced a convolution operator on A such that

Hy (0, 0, ooy 05 By By s Bys 2) 1 4 — 4

is defined by
H(oy, 0, ey 05 Brs Bas s Bys 2)
= h(ala Q25 -y Oy Bla BZ’ e Bs; Z)* f(Z)
o0
=z+ ZFkakzk,
k=2
where

(al)k_la (Oﬂz)k_l’ e (aq)k—l

Filo) = (B)g-1s B)g—ps s By Wiy

Definition 1.1. Let

SALA ) . k
(p;n ! 2(2)(ai’ Bj’ Z) = Zrk(al)SkZ >
k=2

where

1+ 0k =1)+ 1)t

% = A+ 11+ ay(k = 1))

i=1{,2,.,q},j=1{2,..,5s}zel),

and (zeU, Ay 221 20,120, meZ), also (x), is the Pochhammer

symbol.
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We define a linear operator D;"’M’}“z(oci, Bj):A4—> A4 by the

following Hadamard product:

D M2 (ay, B) £(2) = 0 M2 (2) (o, B s 2) * £(2)
D2 (ay, By) f(2) = 2+ ) Sillon)ar " 42
k=2

This operator D;" Moo (o, B;) f(2) includes various other linear operators

which were considered in earlier works in the literature.

For m =1 and A, = 0, we obtain

1,0,0 . .
DO (ai’ Bj)f(z) = Hq,s(a]a (12, eeesy aq: Bla ﬁZa weey BS’ Z)a

which was given by Dziok-Srivastava [8].

For o; =1 and B; =1, we obtain
AL A
Dlm’ b 2(1: l)f(Z) = [mo\‘la }“2’ [ I’l)f(Z)

as given in [3].

For s =1 and ¢ = 2, we obtain the linear operator:

D5 (o, 0z B1) /() = Fla, 0. By) /()

which was introduced by Hohlov [9]. Moreover, putting o, =1, we obtain

the Carlson-Shaffer operator [5]:

1,0,0
Dy (ay, 1, By) f(2) = L(oy, Br) £(2).
Ruscheweyh [19] introduced an operator

D% +1,1,1) f(2) = D" f(2).
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Definition 1.2. Let the class SZ consisting of all analytic functions

f € A satisfy the following inequality:

SR{I +%(Zj:((zz)) = 1)} >0, (beC"=C-{0},zel).

The class C}, consists of all analytic functions f € 4 satisfying

127z > eC*=C- ze
ER{1+ : f,(z)} 0, (heC" =C—{0}, zeU)

The function classes S, and Cj, were considered earlier by Nasr and

Aouf [16-18] and Wiatrowski [21], respectively.

Furthermore, a function f(z) € A4 is said to be in the class SC(b, A, y)

if it satisfies the following inequality:

1 2D '(2) + (1= 0) £(2)]
9‘{“3( sz’(z): -2 f(2) ‘1} s

(beC"=C-{0}, z e U), (1.3)
where (f(z) e 4,0<A<1,0<y<]1).
The function class satisfying the inequality (1.3) was considered by [2].

Let SCZ:E’,T(b’ M, Ay, ¥) denote the subclass of 4 consisting of

functions f(z) which satisfy the following condition:

m{l . l{z[D;"Mz (0. B/

1>y, (beC"=C-{0}), (14)

where (zeU, Ay 24 20,/>0,meZ) and (f(z)e 4,0<y<1,¢q<
s+1,¢,5 €Ny, beC"=C-{0}).
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Note that for g =2, s=1, a1 =y, ap =1, m=1, A, =0, y=0,
the class SCg:E(b, M, y) coincides the class S,. Furthermore, for ¢ = 2,
S=1, OLIZBI, 0(221, ZZO, m=2, 7\.220, ’}/ZO and 7\.1 =1, we
obtain the class Cj, and when g =2, s=1, o=, a, =1 /=0,
m =2, A, =0, we obtain the class of SC(b, A, y).

The main aim of the present investigation is to derive some coefficient

bounds for functions in the subclass T O‘Z,’Ef:;"(b, Ms Mg, ¥, 1) of A4 which

consists of functions f(z) € 4 satisfying the following nonhomogeneous

Cauchy-Euler differential equation:

2 d*w

2EL Wz ul W =+ )20, (1)

y4

where (0 = f(z) € 4, g(z) € SCg’E(b, A7), 1€ R\(~o0, —1]).

2. Main Results

Theorem 2.1. Let f(z) € A be defined by (1.1). If the function f €

SC&ZE’,T(’% M, Xy, ¥), then

[T, L+2la-v)]

8T (o) , (ke N1} =12,3,4,..)). (@1

lay | <

Proof. Define the function F(z) by

F(z) = D72 (0, B)) f(2) = 2+ ) 42",
k=2

where A; = 8, T (o) ay.
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Thus, by setting

A
1

= = p(2),
or, equivalently,
zF'(z) = [1+ b1 - v) (p(2) - D]F (2), 2.2)
we get
p(2) =1+ pz+ pyz* +-, (ze). (2.3)
Since

Rip(z)} >0, (0<y<lL;beC),
we conclude that
|pr| <2, (keN).
We also find from (2.2) and (2.3) that
(k =1) 4 = b(1=v)(prdg—1 + ppAk—2 + -+ Pr-1)-
In particular, for k£ = 2, 3, 4, we have
Ay = b(1-y)p, implies | 4, | <2|b|(1-7),

2b|(1=y)[1+25](1-y)]

245 = b(1=7) (P14 + py) implies | 43 | < 3

and

34y = b(1 - y)(p143 + ppd; + p3) implies

J2b[A-y[I+2[b][(1-y)][2+2[b](1-7)]
| 44| < 3 ,
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respectively. Using the principle of mathematical induction, we obtain

[T L2l

[ | < 1) :

(k e N\{1} = {2, 3, 4, ...}).

Moreover, by the relationship between the functions f(z) and F(z), it is

clear that

[T, U+2si0-v)
Ok (o) ’

By choosing suitable values of all the admissible parameters that we used in

lay | < (ke N\I} = {2, 3, 4, ..}).

Theorem 2.1, we deduce the following corollaries.

Corollary 2.1 ([2]). Let f(z) € A be defined by (1.1). If the function
f e SC(b, A, y), then

[T L2l

G-Dpeag—n] > keNili=1234.)).

lag | <

Corollary 2.2 ([16]). Let f(z) € A be defined by (1.1). If the function
f €Sy, then

[T +2el

G KeNili={2.3.4.0).

lag | <

Corollary 2.3 ([16]). Let f(z) € A be defined by (1.1). If the function
f e Cy, then

[T +2el

lay | < ] ,

(k e N\{1} = {2, 3, 4, ...)).

Theorem 2.2. Let f(z)e A be defined by (1.1). If the function

fe Té’,’ﬁ,’?(b, M. Ao, ¥, 1), then
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(+w@+ W[ U+ 2sla-1)]
Splye (o ) (k + ) (k + 1+ p) ’

(ke N\1} = {2, 3, 4, ..}).

lag | <

Proof. Let f(z) € A be defined by (1.1). Also, let

g(z)=z+ Y 2" e SCEET (b, My, 1oy ),
k=2

SO

UHWCHW) ) (ke N* = NJJO}, e R\(—e0, —1]).

Wk TR
Thus, by using Theorem 2.1, we readily obtain

(+we+w[ [ l+2sla-1)]

Sx g (o) (k + ) (k + 1+ p) ’

lay | <

(ke N\{I} = 2, 3, 4, ..),

which is precisely the assertion (2.4) of Theorem 2.2.

129

(2.4)

Some other works related to other generalized derivative or integral

operators can be found in ([1, 6, 7, 10-15, 20]).
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