Far East Journal of Mathematical Sciences (FJMS)
Volume 71, Number 1, 2012, Pages 121-131
Published Online: December 2012
Available online at http://pphmj.com/journals/fjms.htm Published by Pushpa Publishing House, Allahabad, INDIA

COEFFICIENT BOUNDS OF STARLIKE AND CONVEX FUNCTIONS OF COMPLEX ORDER INVOLVING GENERALIZED OPERATOR

Aisha Ahmed Amer and Maslina Darus*
School of Mathematical Sciences
Faculty of Science and Technology
Universiti Kebangsaan Malaysia
Bangi 43600 Selangor D. Ehsan, Malaysia
e-mail: maslina@ukm.my

Abstract

In this paper, we derive some coefficient bounds for functions in the subclasses $S C_{\alpha, \beta, l}^{q, s, m}\left(b, \lambda_{1}, \lambda_{2}, \gamma\right)$ and $T_{\alpha, \beta, l}^{q, s, m}\left(b, \lambda_{1}, \lambda_{2}, \gamma, \mu\right)$ of A which consists of functions $f \in A$. We also obtain a necessary and sufficient condition for functions to be in these subclasses.

1. Introduction

As usual, let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad(z \in \mathbb{U}), \tag{1.1}
\end{equation*}
$$

© 2012 Pushpa Publishing House
2010 Mathematics Subject Classification: 30C45.
Keywords and phrases: analytic function, convex function, starlike function, coefficient bounds, generalized operator.
*Corresponding author
Received July 2, 2012
which are analytic in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$ on the complex plane \mathbb{C}.

It is well known that for two functions f, given by (1.1) and

$$
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}, \quad(z \in \mathbb{U})
$$

the Hadamard product (convolution) of f and g, is defined by

$$
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k} .
$$

Let S stand for the well known subclass of A consisting of univalent functions.

The authors in [4] have, recently, introduced a new generalized operator $D_{l}^{m, \lambda_{1}, \lambda_{2}}\left(\alpha_{i}, \beta_{j}\right) f(z)$ as the following:

For complex parameters $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{s}, \quad\left(\beta_{j} \in \mathbb{C}-\right.$ $\left.\mathbb{Z}_{0}, \mathbb{Z}_{0}=\{0,-1,-2, \ldots\} ; j=1,2, \ldots, s\right)$.

Let the generalized hypergeometric function ${ }_{q} F_{s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}\right.$, $\left.\beta_{2}, \ldots, \beta_{s} ; z\right)$ be defined by

$$
{ }_{q} F_{s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right)=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k},\left(\alpha_{2}\right)_{k}, \ldots,\left(\alpha_{q}\right)_{k}}{\left(\beta_{1}\right)_{k},\left(\beta_{2}\right)_{k}, \ldots,\left(\beta_{s}\right)_{k}} \frac{z^{k}}{k!}
$$

where

$$
\left(q \leq s+1 ; q, s \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}, z \in \mathbb{U}\right)
$$

for \mathbb{N} denotes the set of all positive integers and $(x)_{k}$ is the Pochhammer symbol defined, in terms of the Γ function, by

$$
(x)_{k}= \begin{cases}1 & \text { for } k=0, \\ x(x+1)(x+2) \cdots(x+k-1) & \text { for } k \in \mathbb{N}=\{1,2,3, \ldots\} .\end{cases}
$$

Corresponding to a function $h_{q, s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right)$ defined by

$$
\begin{aligned}
& h_{q, s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right) \\
= & z_{q} F_{s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right) .
\end{aligned}
$$

Dziok-Srivastava [8] introduced a convolution operator on A such that

$$
H_{q, s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right): A \rightarrow A
$$

is defined by

$$
\begin{aligned}
& H\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right) \\
= & h\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right) * f(z) \\
= & z+\sum_{k=2}^{\infty} \Gamma_{k} a_{k} z^{k},
\end{aligned}
$$

where

$$
\Gamma_{k}\left(\alpha_{1}\right)=\frac{\left(\alpha_{1}\right)_{k-1},\left(\alpha_{2}\right)_{k-1}, \ldots,\left(\alpha_{q}\right)_{k-1}}{\left(\beta_{1}\right)_{k-1},\left(\beta_{2}\right)_{k-1}, \ldots,\left(\beta_{s}\right)_{k-1}(1)_{k-1}} .
$$

Definition 1.1. Let

$$
\varphi_{l}^{m, \lambda_{1}, \lambda_{2}}(z)\left(\alpha_{i}, \beta_{j} ; z\right)=\sum_{k=2}^{\infty} \Gamma_{k}\left(\alpha_{1}\right) \delta_{k} z^{k},
$$

where

$$
\begin{aligned}
& \delta_{k}=\frac{\left(1+\lambda_{1}(k-1)+l\right)^{m-1}}{(1+l)^{m-1}\left(1+\lambda_{2}(k-1)\right)^{m}} \\
& (i=\{1,2, \ldots, q\}, j=\{1,2, \ldots, s\}, z \in \mathbb{U}),
\end{aligned}
$$

and $\left(z \in \mathbb{U}, \lambda_{2} \geq \lambda_{1} \geq 0, l \geq 0, m \in \mathbb{Z}\right)$, also $(x)_{k}$ is the Pochhammer symbol.

We define a linear operator $D_{l}^{m, \lambda_{1}, \lambda_{2}}\left(\alpha_{i}, \beta_{j}\right): A \rightarrow A$ by the following Hadamard product:

$$
\begin{align*}
& D_{l}^{m, \lambda_{1}, \lambda_{2}}\left(\alpha_{i}, \beta_{j}\right) f(z):=\varphi_{l}^{m, \lambda_{1}, \lambda_{2}}(z)\left(\alpha_{i}, \beta_{j} ; z\right) * f(z) \\
& D_{l}^{m, \lambda_{1}, \lambda_{2}}\left(\alpha_{i}, \beta_{j}\right) f(z)=z+\sum_{k=2}^{\infty} \delta_{k} \Gamma_{k}\left(\alpha_{1}\right) a_{k} z^{k} . \tag{1.2}
\end{align*}
$$

This operator $D_{l}^{m, \lambda_{1}, \lambda_{2}}\left(\alpha_{i}, \beta_{j}\right) f(z)$ includes various other linear operators which were considered in earlier works in the literature.

For $m=1$ and $\lambda_{2}=0$, we obtain

$$
D_{0}^{1,0,0}\left(\alpha_{i}, \beta_{j}\right) f(z)=H_{q, s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right),
$$

which was given by Dziok-Srivastava [8].
For $\alpha_{i}=1$ and $\beta_{j}=1$, we obtain

$$
D_{l}^{m, \lambda_{1}, \lambda_{2}}(1,1) f(z)=I^{m}\left(\lambda_{1}, \lambda_{2}, l, n\right) f(z)
$$

as given in [3].
For $s=1$ and $q=2$, we obtain the linear operator:

$$
D_{0}^{1,0,0}\left(\alpha_{1}, \alpha_{2}, \beta_{1}\right) f(z)=F\left(\alpha_{1}, \alpha_{2}, \beta_{1}\right) f(z)
$$

which was introduced by Hohlov [9]. Moreover, putting $\alpha_{2}=1$, we obtain the Carlson-Shaffer operator [5]:

$$
D_{0}^{1,0,0}\left(\alpha_{1}, 1, \beta_{1}\right) f(z)=L\left(\alpha_{1}, \beta_{1}\right) f(z) .
$$

Ruscheweyh [19] introduced an operator

$$
D_{0}^{1,0,0}(\lambda+1,1,1) f(z)=D^{\lambda} f(z)
$$

Definition 1.2. Let the class S_{b}^{*} consisting of all analytic functions $f \in A$ satisfy the following inequality:

$$
\mathfrak{R}\left\{1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)\right\}>0, \quad\left(b \in \mathbb{C}^{*}=\mathbb{C}-\{0\}, z \in \mathbb{U}\right)
$$

The class C_{b} consists of all analytic functions $f \in A$ satisfying

$$
\mathfrak{R}\left\{1+\frac{1}{b} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>0, \quad\left(b \in \mathbb{C}^{*}=\mathbb{C}-\{0\}, z \in \mathbb{U}\right)
$$

The function classes S_{b}^{*} and C_{b} were considered earlier by Nasr and Aouf [16-18] and Wiatrowski [21], respectively.

Furthermore, a function $f(z) \in A$ is said to be in the class $\operatorname{SC}(b, \lambda, \gamma)$ if it satisfies the following inequality:

$$
\begin{align*}
& \mathfrak{R}\left\{1+\frac{1}{b}\left(\frac{z\left[\lambda z f^{\prime}(z)+(1-\lambda) f(z)\right]^{\prime}}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}-1\right)\right\}>\gamma, \\
& \left(b \in \mathbb{C}^{*}=\mathbb{C}-\{0\}, z \in \mathbb{U}\right), \tag{1.3}
\end{align*}
$$

where $(f(z) \in A, 0 \leq \lambda \leq 1,0 \leq \gamma<1)$.
The function class satisfying the inequality (1.3) was considered by [2].
Let $S C_{\alpha, \beta, l}^{q, s, m}\left(b, \lambda_{1}, \lambda_{2}, \gamma\right)$ denote the subclass of A consisting of functions $f(z)$ which satisfy the following condition:

$$
\begin{equation*}
\mathfrak{R}\left\{1+\frac{1}{b}\left(\frac{z\left[D_{l}^{m, \lambda_{1}, \lambda_{2}}\left(\alpha_{i}, \beta_{j}\right) f(z)\right]^{\prime}}{D_{l}^{m, \lambda_{1}, \lambda_{2}}\left(\alpha_{i}, \beta_{j}\right) f(z)}-1\right)\right\}>\gamma, \quad\left(b \in \mathbb{C}^{*}=\mathbb{C}-\{0\}\right), \tag{1.4}
\end{equation*}
$$

where $\left(z \in \mathbb{U}, \lambda_{2} \geq \lambda_{1} \geq 0, l \geq 0, m \in \mathbb{Z}\right)$ and $(f(z) \in A, 0 \leq \gamma<1, q \leq$ $\left.s+1, q, s \in \mathbb{N}_{0}, b \in \mathbb{C}^{*}=\mathbb{C}-\{0\}\right)$.

Note that for $q=2, s=1, \alpha_{1}=\beta_{1}, \alpha_{2}=1, m=1, \lambda_{2}=0, \gamma=0$, the class $S C_{\alpha, \beta}^{q, s}(b, \lambda, \gamma)$ coincides the class S_{b}^{*}. Furthermore, for $q=2$, $s=1, \quad \alpha_{1}=\beta_{1}, \quad \alpha_{2}=1, \quad l=0, \quad m=2, \quad \lambda_{2}=0, \quad \gamma=0$ and $\lambda_{1}=1$, we obtain the class C_{b}, and when $q=2, \quad s=1, \alpha_{1}=\beta_{1}, \alpha_{2}=1, l=0$, $m=2, \lambda_{2}=0$, we obtain the class of $\operatorname{SC}(b, \lambda, \gamma)$.

The main aim of the present investigation is to derive some coefficient bounds for functions in the subclass $T_{\alpha, \beta, l}^{q, s, m}\left(b, \lambda_{1}, \lambda_{2}, \gamma, \mu\right)$ of A which consists of functions $f(z) \in A$ satisfying the following nonhomogeneous Cauchy-Euler differential equation:

$$
\begin{equation*}
z^{2} \frac{d^{2} \omega}{d z^{2}}+2(1+\mu) z \frac{d \omega}{d z}+\mu(1+\mu) \omega=(1+\mu)(2+\mu) g(z) \tag{1.5}
\end{equation*}
$$

where $\left(\omega=f(z) \in A, g(z) \in S C_{\alpha, \beta}^{q, s}(b, \lambda, \gamma), \mu \in R \backslash(-\infty,-1]\right)$.

2. Main Results

Theorem 2.1. Let $f(z) \in A$ be defined by (1.1). If the function $f \in$ $S C_{\alpha, \beta, l}^{q, s, m}\left(b, \lambda_{1}, \lambda_{2}, \gamma\right)$, then

$$
\begin{equation*}
\left|a_{k}\right| \leq \frac{\prod_{j=0}^{k-2}[j+2|b|(1-\gamma)]}{\delta_{k} \Gamma_{k}\left(\alpha_{1}\right)}, \quad(k \in \mathbb{N} \backslash\{1\}=\{2,3,4, \ldots\}) \tag{2.1}
\end{equation*}
$$

Proof. Define the function $F(z)$ by

$$
F(z)=D_{l}^{m, \lambda_{1}, \lambda_{2}}\left(\alpha_{i}, \beta_{j}\right) f(z)=z+\sum_{k=2}^{\infty} A_{k} z^{k}
$$

where $A_{k}=\delta_{k} \Gamma_{k}\left(\alpha_{1}\right) a_{k}$.

Thus, by setting

$$
\frac{1+\frac{1}{b}\left(\frac{z F^{\prime}(z)}{F(z)}-1\right)-\gamma}{1-\gamma}=p(z)
$$

or, equivalently,

$$
\begin{equation*}
z F^{\prime}(z)=[1+b(1-\gamma)(p(z)-1)] F(z) \tag{2.2}
\end{equation*}
$$

we get

$$
\begin{equation*}
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots, \quad(z \in \mathbb{U}) \tag{2.3}
\end{equation*}
$$

Since

$$
\mathfrak{R}\{p(z)\}>0, \quad\left(0 \leq \gamma<1 ; b \in \mathbb{C}^{*}\right)
$$

we conclude that

$$
\left|p_{k}\right| \leq 2, \quad(k \in \mathbb{N})
$$

We also find from (2.2) and (2.3) that

$$
(k-1) A_{k}=b(1-\gamma)\left(p_{1} A_{k-1}+p_{2} A_{k-2}+\cdots+p_{k-1}\right) .
$$

In particular, for $k=2,3,4$, we have

$$
\begin{aligned}
& A_{2}=b(1-\gamma) p_{1} \text { implies }\left|A_{2}\right| \leq 2|b|(1-\gamma) \\
& 2 A_{3}=b(1-\gamma)\left(p_{1} A_{2}+p_{2}\right) \text { implies }\left|A_{3}\right| \leq \frac{2|b|(1-\gamma)[1+2|b|(1-\gamma)]}{2!}
\end{aligned}
$$

and

$$
3 A_{4}=b(1-\gamma)\left(p_{1} A_{3}+p_{2} A_{2}+p_{3}\right) \text { implies }
$$

$$
\left|A_{4}\right| \leq \frac{2|b|(1-\gamma)[1+2|b|(1-\gamma)][2+2|b|(1-\gamma)]}{3!},
$$

respectively. Using the principle of mathematical induction, we obtain

$$
\left|A_{k}\right| \leq \frac{\prod_{j=0}^{k-2}[j+2|b|(1-\gamma)]}{(k-1)!}, \quad(k \in \mathbb{N} \backslash\{1\}=\{2,3,4, \ldots\}) .
$$

Moreover, by the relationship between the functions $f(z)$ and $F(z)$, it is clear that

$$
\left|a_{k}\right| \leq \frac{\prod_{j=0}^{k-2}[j+2|b|(1-\gamma)]}{\delta_{k} \Gamma_{k}\left(\alpha_{1}\right)}, \quad(k \in \mathbb{N} \backslash\{1\}=\{2,3,4, \ldots\}) .
$$

By choosing suitable values of all the admissible parameters that we used in Theorem 2.1, we deduce the following corollaries.

Corollary 2.1 ([2]). Let $f(z) \in A$ be defined by (1.1). If the function $f \in S C(b, \lambda, \gamma)$, then

$$
\left|a_{k}\right| \leq \frac{\prod_{j=0}^{k-2}[j+2|b|(1-\gamma)]}{(k-1)![1+\lambda(k-1)]}, \quad(k \in \mathbb{N} \backslash\{1\}=\{2,3,4, \ldots\}) .
$$

Corollary 2.2 ([16]). Let $f(z) \in A$ be defined by (1.1). If the function $f \in S_{b}^{*}$, then

$$
\left|a_{k}\right| \leq \frac{\prod_{j=0}^{k-2}[j+2|b|]}{(k-1)!}, \quad(k \in \mathbb{N} \backslash\{1\}=\{2,3,4, \ldots\}) .
$$

Corollary 2.3 ([16]). Let $f(z) \in A$ be defined by (1.1). If the function $f \in C_{b}$, then

$$
\left|a_{k}\right| \leq \frac{\prod_{j=0}^{k-2}[j+2|b|]}{k!}, \quad(k \in \mathbb{N} \backslash\{1\}=\{2,3,4, \ldots\}) .
$$

Theorem 2.2. Let $f(z) \in A$ be defined by (1.1). If the function $f \in T_{\alpha, \beta, l}^{q, s, m}\left(b, \lambda_{1}, \lambda_{2}, \gamma, \mu\right)$, then

$$
\begin{align*}
& \left|a_{k}\right| \leq \frac{(1+\mu)(2+\mu) \prod_{j=0}^{k-2}[j+2|b|(1-\gamma)]}{\delta_{k} \Gamma_{k}\left(\alpha_{1}\right)(k+\mu)(k+1+\mu)}, \\
& (k \in \mathbb{N} \backslash\{1\}=\{2,3,4, \ldots\}) \tag{2.4}
\end{align*}
$$

Proof. Let $f(z) \in A$ be defined by (1.1). Also, let

$$
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \in S C_{\alpha, \beta, l}^{q, s, m}\left(b, \lambda_{1}, \lambda_{2}, \gamma\right),
$$

so

$$
a_{k} \leq \frac{(1+\mu)(2+\mu)}{(k+\mu)(k+1+\mu)} b_{k} \quad\left(k \in \mathbb{N}^{*}=\mathbb{N} /\{0\}, \mu \in R \backslash(-\infty,-1]\right) .
$$

Thus, by using Theorem 2.1, we readily obtain

$$
\begin{gathered}
\left|a_{k}\right| \leq \frac{(1+\mu)(2+\mu) \prod_{j=0}^{k-2}[j+2|b|(1-\gamma)]}{\delta_{k} \Gamma_{k}\left(\alpha_{1}\right)(k+\mu)(k+1+\mu)}, \\
(k \in \mathbb{N} \backslash\{1\}=\{2,3,4, \ldots\}),
\end{gathered}
$$

which is precisely the assertion (2.4) of Theorem 2.2.
Some other works related to other generalized derivative or integral operators can be found in ($[1,6,7,10-15,20]$).

Acknowledgement

The work presented here was partially supported by LRGS/TD/2011/ UKM/ICT/03/02.

References

[1] M. H. Al-Abbadi and M. Darus, Differential subordination defined by new generalised derivative operator for analytic functions, Int. J. Math. Math. Sci. 2010, Art. ID 369078, 15 pp.
[2] O. Altintas, H. Irmak, S. Owa and H. M. Srivastava, Coefficient bounds for some families of starlike and convex functions of complex order, Appl. Math. Lett. 20 (2007), 1218-1222.
[3] A. A. Amer and M. Darus, On some properties for new generalized derivative operator, Jordan J. Math. Stat. (JJMS) 4(2) (2011), 91-101.
[4] A. A. Amer and M. Darus, On a subclass of k-uniformly starlike functions associated with the generalized hypergeometric functions, Adv. Studies Theor. Phys. 6(6) (2012), 273-284.
[5] B. C. Carlson and D. B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J. Math. Anal. 15 (1984), 737-745.
[6] M. Darus and K. Al-Shaqsi, On subordinations for certain analytic functions associated with generalized integral operator, Lobachevskii J. Math. 29(2) (2008), 90-97.
[7] M. Darus and I. Faisal, Differential subordination for meromorphic multivalent quasi-convex functions, Facta Universitatis (NIS), Ser. Math. Inform. 26 (2011), 1-7.
[8] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput. 103 (1999), 1-13.
[9] Ju. E. Hohlov, Operators and operations on the class of univalent functions, Izv. Vyssh. Uchebn. Zaved. Mat. 10(197) (1978), 83-89.
[10] R. W. Ibrahim and M. Darus, Subordination and superordination for univalent solutions for fractional differential equations, J. Math. Anal. Appl. 345(2) (2008), 871-879.
[11] R. W. Ibrahim and M. Darus, On subordination theorems for new classes of normalize analytic functions, Appl. Math. Sci. 2 (2008), 2785-2794.
[12] R. W. Ibrahim and M. Darus, Differential subordination for meromorphic multivalent quasi-convex functions, Acta Math. Univ. Comenian. (N.S.) 79(1) (2010), 39-45.
[13] R. W. Ibrahim and M. Darus, Subordination for meromorphic functions defined by an operator, Int. J. Pure Appl. Math. 69(4) (2011), 413-419.
[14] A. Mohammed, M. Darus and D. Breaz, On subordination, starlikeness and convexity of certain integral operators, Mathematica, Tome 53 76(2) (2011), 165-170.
[15] M. H. Mohd and M. Darus, Differential subordination and superordination for Srivastava-Attiya operator, Int. J. Differ. Equ., 2011, Art. ID 902830, 19 pp.
[16] M. A. Nasr and M. K. Aouf, Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. Sect. A 12 (1983), 153-159.
[17] M. A. Nasr and M. K. Aouf, Bounded starlike functions of complex order, Proc. Indian Acad. Sci. Math. Sci. 92 (1983), 97-102.
[18] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math. 25 (1985), 1-12.
[19] St. Ruscheweyh, A subordination theorem for Φ-like functions, J. London Math. Soc. 13 (1976), 275-280.
[20] S. Sivasubramanian, A. Mohammed and M. Darus, Certain subordination properties for subclasses of analytic functions involving complex order, Abstr. Appl. Anal. 2011, Art. ID 375897, 8 pp.
[21] P. Wiatrowski, On the coefficients of some family of holomorphic functions, Zeszyty Nauk. Uniw. Łódz Nauki. Mat. Przyrod Ser. II 39 (1971), 75-85.

