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Abstract 

In this paper, we derive some coefficient bounds for functions in the 

subclasses ( )γλλβα ,,, 21
,,
,, bSC msq
l  and ( )μγλλβα ,,,, 21

,,
,, bT msq
l  of A 

which consists of functions .Af ∈  We also obtain a necessary and 

sufficient condition for functions to be in these subclasses. 

1. Introduction 

As usual, let A denote the class of functions of the form 

( ) ( )∑
∞

=

∈+=
2

,,
k

k
k zzazzf U  (1.1) 
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which are analytic in the open unit disk { }1: <∈= zz CU  on the 

complex plane .C  

It is well known that for two functions f, given by (1.1) and 

( ) ( )∑
∞

=

∈+=
2

,,
k

k
k zzbzzg U  

the Hadamard product (convolution) of f and g, is defined by 

( ) ( ) ∑
∞

=

+=∗
2

.
k

k
kk zbazzgf  

Let S stand for the well known subclass of A consisting of univalent 
functions. 

The authors in [4] have, recently, introduced a new generalized operator 

( ) ( )zfD ji
m
l βαλλ ,21,,  as the following: 

For complex parameters qααα ...,,, 21  and ,...,,, 21 sβββ  ( −∈β Cj  

{ } )....,,2,1;...,2,1,0, 00 sj =−−=ZZ  

Let the generalized hypergeometric function ( ,;...,,, 121 βααα qsq F  

)zs ;...,,2 ββ  be defined by 

( )
( ) ( ) ( )
( ) ( ) ( )∑

∞

=
βββ
ααα

=βββααα
0 21

21
2121 ,!...,,,

...,,,
;...,,,;...,,,

k

k

kskk

kqkk
sqsq k

zzF  

where 

( { } ),,0,;1 0 UNN ∈=∈+≤ zsqsq ∪  

for N  denotes the set of all positive integers and ( )kx  is the Pochhammer 

symbol defined, in terms of the Γ function, by 

( )
( ) ( ) ( ) { }




=∈−+++

=
=

....,3,2,1for121

,0for1

Nkkxxxx

k
x k  
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Corresponding to a function ( )zh sqsq ;...,,,;...,,, 2121, βββααα  defined 

by 

( )zh sqsq ;...,,,;...,,, 2121, βββααα  

( ).;...,,,;...,,,: 2121 zFz sqsq βββααα=  

Dziok-Srivastava [8] introduced a convolution operator on A such that 

( ) AAzH sqsq →βββααα :;...,,,;...,,, 2121,  

is defined by 

( )zH sq ;...,,,;...,,, 2121 βββααα  

( ) ( )zfzh sq ∗βββααα= ;...,,,;...,,, 2121  

∑
∞

=

Γ+=
2

,
k

k
kk zaz  

where 

( )
( ) ( ) ( )

( ) ( ) ( ) ( ) .1...,,,
...,,,

111211
11211

1
−−−−

−−−
βββ

ααα
=αΓ

kkskk

kqkk
k  

Definition 1.1. Let 

( ) ( ) ( )∑
∞

=

λλ δαΓ=βαϕ
2

1
,, ,;,21

k

k
kkji

m
l zzz  

where 

( )( )
( ) ( )( )mm

m
k

kl
lk

111
11

2
1

1
1

−λ++

+−λ+
=δ −

−
 

{ } { }( ),,...,,2,1,...,,2,1 U∈== zsjqi  

and ( ),,0,0, 12 ZU ∈≥≥λ≥λ∈ mlz  also ( )kx  is the Pochhammer 

symbol. 
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We define a linear operator ( ) AAD ji
m
l →βαλλ :,21,,  by the 

following Hadamard product: 

( ) ( ) ( ) ( ) ( )zfzzzfD ji
m
lji

m
l ∗βαϕ=βα λλλλ ;,:, 2121 ,,,,  

( ) ( ) ( )∑
∞

=

λλ αΓδ+=βα
2

1
,, .,21

k

k
kkkji

m
l zazzfD  (1.2) 

This operator ( ) ( )zfD ji
m
l βαλλ ,21,,  includes various other linear operators 

which were considered in earlier works in the literature. 

For 1=m  and ,02 =λ  we obtain 

( ) ( ) ( ),;...,,,;...,,,, 2121,
0,0,1

0 zHzfD sqsqji βββααα=βα  

which was given by Dziok-Srivastava [8]. 

For 1=αi  and ,1=β j  we obtain 

( ) ( ) ( ) ( )zfnlIzfD mm
l ,,,1,1 21

,, 21 λλ=λλ  

as given in [3]. 

For 1=s  and ,2=q  we obtain the linear operator: 

( ) ( ) ( ) ( )zfFzfD 121121
0,0,1

0 ,,,, βαα=βαα  

which was introduced by Hohlov [9]. Moreover, putting ,12 =α  we obtain 

the Carlson-Shaffer operator [5]: 

( ) ( ) ( ) ( ).,,1, 1111
0,0,1

0 zfLzfD βα=βα  

Ruscheweyh [19] introduced an operator 

( ) ( ) ( ).1,1,10,0,1
0 zfDzfD λ=+λ  
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Definition 1.2. Let the class ∗
bS  consisting of all analytic functions 

Af ∈  satisfy the following inequality: 

( )
( ) ( { } ).,0,0111 UCC ∈−=∈>





 





 −

′
+ℜ ∗ zbzf

zfz
b  

The class bC  consists of all analytic functions Af ∈  satisfying 

( )
( ) ( { } ).,0,011 UCC ∈−=∈>







′
′′

+ℜ ∗ zbzf
zfz

b  

The function classes ∗
bS  and bC  were considered earlier by Nasr and 

Aouf [16-18] and Wiatrowski [21], respectively. 

Furthermore, a function ( ) Azf ∈  is said to be in the class ( )γλ,,bSC  

if it satisfies the following inequality: 

( ) ( ) ( )[ ]
( ) ( ) ( ) ,11

111 γ>






















−

λ−+′λ

′λ−+′λ+ℜ zfzfz
zfzfzz

b  

( { } ),,0 UCC ∈−=∈ ∗ zb  (1.3) 

where ( )( ).10,10, <γ≤≤λ≤∈ Azf  

The function class satisfying the inequality (1.3) was considered by [2]. 

Let ( )γλλβα ,,, 21
,,
,, bSC msq
l  denote the subclass of A consisting of 

functions ( )zf  which satisfy the following condition: 

[ ( ) ( )]
( ) ( )

( { }),0,1
,

,11
21

21

,,

,,
−=∈γ>


























−

βα

′βα
+ℜ ∗

λλ

λλ

CCb
zfD

zfDz
b

ji
m
l

ji
m
l  (1.4) 

where ( )ZU ∈≥≥λ≥λ∈ mlz ,0,0, 12  and ( ( ) ≤<γ≤∈ qAzf ,10,  

{ }).0,,,1 0 −=∈∈+ ∗ CCN bsqs  



Aisha Ahmed Amer and Maslina Darus 126 

Note that for ,2=q  ,1=s  ,11 β=α  ,12 =α  ,1=m  ,02 =λ  ,0=γ  

the class ( )γλβα ,,,
, bSC sq  coincides the class .∗bS  Furthermore, for ,2=q  

,1=s  ,11 β=α  ,12 =α  ,0=l  ,2=m  ,02 =λ  0=γ  and ,11 =λ  we 

obtain the class ,bC  and when ,2=q  ,1=s  ,11 β=α  ,12 =α  ,0=l  

,2=m  ,02 =λ  we obtain the class of ( ).,, γλbSC  

The main aim of the present investigation is to derive some coefficient 

bounds for functions in the subclass ( )µγλλβα ,,,, 21
,,
,, bT msq
l  of A which 

consists of functions ( ) Azf ∈  satisfying the following nonhomogeneous 

Cauchy-Euler differential equation: 

( ) ( ) ( ) ( ) ( ),211122

2
2 zgdz

dz
dz
dz µ+µ+=ωµ+µ+

ω
µ++

ω  (1.5) 

where ( ( ) ( ) ( ) ( ]).1,\,,,, ,
, −∞−∈µγλ∈∈=ω βα RbSCzgAzf sq  

2. Main Results 

Theorem 2.1. Let ( ) Azf ∈  be defined by (1.1). If the function ∈f  

( ),,,, 21
,,
,, γλλβα bSC msq
l  then 

 
( )[ ]

( ) { } { }( )....,4,3,21\,
12

1

2
0 =∈

αΓδ

γ−+
≤
∏ −

= Nk
bj

a
kk

k
j

k  (2.1) 

Proof. Define the function ( )zF  by 

( ) ( ) ( ) ∑
∞

=

λλ +=βα=
2

,, ,,21

k

k
kji

m
l zAzzfDzF  

where ( ) .1 kkkk aA αΓδ=  
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Thus, by setting 

( )
( ) ( ),1

111
zpzF

zFz
b

=
γ−

γ−





 −

′
+

 

or, equivalently, 

( ) ( ) ( )( )[ ] ( ),111 zFzpbzFz −γ−+=′  (2.2) 

we get 

( ) ( ).,1 2
21 U∈+++= zzpzpzp  (2.3) 

Since 

( ){ } ( ),;10,0 ∗∈<γ≤>ℜ Cbzp  

we conclude that 

( ).,2 N∈≤ kpk  

We also find from (2.2) and (2.3) that 

( ) ( ) ( ).11 12211 −−− +++γ−=− kkkk pApApbAk  

In particular, for ,4,3,2=k  we have 

( ) 12 1 pbA γ−=  implies ( ),122 γ−≤ bA  

( ) ( )2213 12 pApbA +γ−=  implies ( ) ( )[ ]
!2

12112
3

γ−+γ−
≤

bbA  

and 

( ) ( )322314 13 pApApbA ++γ−=  implies 

( ) ( )[ ] ( )[ ] ,!3
12212112

4
γ−+γ−+γ−

≤
bbbA  
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respectively. Using the principle of mathematical induction, we obtain 

( )[ ]
( ) { } { }( )....,4,3,21\,!1

12
2
0 =∈

−

γ−+
≤
∏ −

= Nkk

bj
A

k
j

k  

Moreover, by the relationship between the functions ( )zf  and ( ),zF  it is 

clear that 

( )[ ]
( ) { } { }( )....,4,3,21\,

12

1

2
0 =∈

αΓδ

γ−+
≤
∏ −

= Nk
bj

a
kk

k
j

k  

By choosing suitable values of all the admissible parameters that we used in 
Theorem 2.1, we deduce the following corollaries. 

Corollary 2.1 ([2]). Let ( ) Azf ∈  be defined by (1.1). If the function 

( ),,, γλ∈ bSCf  then 

( )[ ]
( ) ( )[ ] { } { }( )....,4,3,21\,11!1

12
2
0 =∈

−λ+−

γ−+
≤
∏ −

= Nkkk

bj
a

k
j

k  

Corollary 2.2 ([16]). Let ( ) Azf ∈  be defined by (1.1). If the function 

,∗∈ bSf  then 

[ ]
( ) { } { }( )....,4,3,21\,!1

2
2
0 =∈
−

+
≤
∏ −

= Nkk

bj
a

k
j

k  

Corollary 2.3 ([16]). Let ( ) Azf ∈  be defined by (1.1). If the function 

,bCf ∈  then 

[ ]
{ } { }( )....,4,3,21\,!

2
2
0 =∈

+
≤
∏ −

= Nkk

bj
a

k
j

k  

Theorem 2.2. Let ( ) Azf ∈  be defined by (1.1). If the function 

( ),,,,, 21
,,
,, µγλλ∈ βα bTf msq
l  then 
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( ) ( ) ( )[ ]
( ) ( ) ( ) ,1

1221

1

2
0

µ++µ+αΓδ

γ−+µ+µ+
≤

∏ −

=
kk

bj
a

kk

k
j

k  

{ } { }( )....,4,3,21\ =∈ Nk  (2.4)  

Proof. Let ( ) Azf ∈  be defined by (1.1). Also, let 

( ) ( )∑
∞

=
βα γλλ∈+=

2
21

,,
,, ,,,,

k

msq
l

k
k bSCzbzzg  

so 

( ) ( )
( ) ( ) ( { } ( ]).1,\,01

21 −∞−∈µ=∈
µ++µ+

µ+µ+≤ ∗ Rkbkka kk NN  

Thus, by using Theorem 2.1, we readily obtain 

( ) ( ) ( )[ ]
( ) ( ) ( ) ,1

1221

1

2
0

µ++µ+αΓδ

γ−+µ+µ+
≤

∏ −

=
kk

bj
a

kk

k
j

k  

{ } { }( ),...,4,3,21\ =∈ Nk  

which is precisely the assertion (2.4) of Theorem 2.2. 

Some other works related to other generalized derivative or integral 
operators can be found in ([1, 6, 7, 10-15, 20]). 
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