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Abstract 

Pekeris, Accad and Shkollar (PAS) dynamo (Pekeris et al. [7]) is one 
of the earliest successful kinematic dynamos. PAS dynamo has 
convergent solution at relatively low magnetic Reynolds number. 
Bachtiar, Ivers and James (BIJ) (Bachtiar et al. [2]) tried to planarized 
the PAS flow in order to produce a planar velocity dynamo. BIJ claim 
that it is impossible to planarize PAS flow using their formula. In this 
paper, we discuss why PAS flow cannot be planarized in detail. We 
also propose a modified PAS flow so that it can be planarized and still 
have a similar structure. We believe that our results are important for 
future works. 

I. Introduction 

It is believed that the Earth’s Magnetic Field (EMF) can be explained       
by self excited dynamo process that take place in the interior of the               
Earth. Considering the Earth’s interior and the properties of EMF, 
magnetohydrodynamic (MHD) is assumed as the best model to represent the 
Earth’s dynamo. 
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In MHD, there are six equations need to be solved simultaneously.  
Many scholars think that it is not easy to solve MHD. The fundamental sub- 
problem of MHD is the kinematic dynamo problem. In kinematic dynamo, 
we only consider one equation, the magnetic induction equation, where the 
velocity field is specified. This equation is the essential part of MHD. It 
describes the interaction between magnetic field and the velocity field in 
order to produce self excited dynamo. 

Pekeris, Accad and Shkollar (PAS) flow is one of the earliest successful 
flows that can maintain magnetic field. PAS flow is also an example of 
Beltrami flow. It has a strong helicity that is believed as an important factor 
to produce a dynamo process. Dudley and James [4] revisited this flow using 
their formula and got the same result as PAS. The advantage of PAS model is 
that the convergent of the solution is easy to get at relatively low truncation 
level. In other words, we can get the solution using a relatively small 
computer capacity. 

On the other hand, some scholars found conditions that the dynamo 
process cannot be happened. This condition is called by anti-dynamo 
theorem. They usually provide the proof of the theorem for general situation. 
These results help many scholars in finding new kinematic dynamo models. 

Planar velocity theorem (PVT) is an example of anti-dynamo theorem. It 
was proposed by Zel’dovich in 1957. PVT precludes the existence of 
dynamo process when the conductor is planar or parallel to plane. However, 
the proof of this theorem assumed that the conducting fluid occupies all 
space. Moffat [6] mentioned that the proof of PVT using finite volume is 
easy to construct. Unfortunately, he did not provide the proof. 

In 2006, Bachtiar, Ivers and James (BIJ) claimed that it is impossible to 
prove PVT for finite volume analytically. Following their claim, BIJ 
evaluated 32 models for planar velocity dynamos with single harmonic flow 
numerically. They found one flow that might possible to maintain magnetic 
field. However, their result has convergent problem. Although it is an early 
indication, their result proposed that PVT theorem is now a conjecture. 



Fully Planarized of Pekeris, Accad and Shkollar Flow 107 

To provide an additional proof, BIJ tried to planarize several well known 
flows that can maintain magnetic field. One of them is the PAS flow. Using 
their formula, they found that it is impossible to planarize PAS entirely. So, 
they only planarized part of PAS flow and found that the new flow can 
maintain magnetic field. Moreover, the solution of the new flow can be 
achieved at lower Reynolds number compare to the original PAS. 

II. Mathematical Background 

In kinematic dynamo problem, we consider the induction equation: 

 ( ) ,2BBuB ∇+××∇=
∂
∂ Rt  (1) 

where: 

B is the magnetic field, 

u is the velocity field, 

( )η= ULR  is the magnetic Reynolds number. 

The equation describes the magnetic field changes due to the interaction 
between velocity field and magnetic field. This interaction must be dominant 
compare to the second term, the diffusivity of the magnetic field. 

Bullard and Gellman [3] introduced a solving method for the induction 
equation. They decompose the fields into toroidal and poloidal components 
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And expand the component using spherical harmonics expansion: 
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nY  is the spherical harmonic function which involves the associated 

Legendre function .m
nP  We use the Schmidt’s normalization for the 

Legendre function. 

Using the above expansion, equation (1) will be transformed into the 
spectral form: 
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are the interaction terms. The details can be found in Bachtiar [1]. In solving 
the spectral form, we need to satisfy the rigid boundary condition: 

.0at0 == rsn  
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III. Planar Velocity 

The first planar velocity formula was probably introduced by Bachtiar        
et al. [2]. In their work, they defined planar flow as a flow without 
z-component. Using BIJ formula, it is known that a planar flow must consist 
of the following combination: 
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If we start with a single harmonic function ,m
nf  then we can get a planar 

flow using equations (3)-(5). Another way to construct planar flow is by 
transforming a given flow into planar flow. Bachtiar et al. [2] called this 
process as planarization process. 

For example, if the given flow consists of ,2
2

2
2 ts +  then the poloidal part 

will be planarized by adding .2
3t  Meanwhile, the toroidal part will be 

planarized by adding 2
3s  and .2

4t  These addition poloidal-toroidal parts are 

defined according to equations (3)-(5). 
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Bachtiar et al. [2] also showed that the toroidal part of the planar flow 
have to satisfy the following integral: 

 .0
1

0
2∫ =+ drtr n

n  (6) 

The integral indicates that the flow needs to satisfy the differentiability at the 
origin and rigid boundary. 

IV. Numerical Methods 

Although kinematic dynamo is a subset of MHD, the solution is not easy 
to find. For the derivatives with respect to the radial direction, we divide the 
radial direction into J intervals and use the central difference scheme. We 
assume that the velocity field is time independent and the magnetic field can 

be expanded into ∑λ
λ

λ= .teBB  

Using the above assumptions, the problem is reduced into ordinary 
eigenvalue problem: .xx λ=A  To make the system finite, we need to 
determine the value of n in equation (2). If we arrange the form of magnetic 
field, then the matrix A can be formed into a sparse-banded matrix. Such 
arrangement will help us to optimize the use of computer’s memory. 

A successful dynamo will have a positive real part of eigenvalue which 
indicates that the magnetic field will grow and the self excited dynamo is 
established. The convergence of solution is indicated by the convergence of 
eigenvalues using different values of J and n. To maintain the sparse-banded 
form, we use the inverse iteration method in our routine.  

V. PAS Planarization 

As we mentioned above, PAS dynamo is one of the earliest successful 
kinematic dynamos. The solution is easy to converge at relatively low 
magnetic Reynolds number. PAS flow is defined as follows: 
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where 

( ) ,, 2
2

2
22

2
2 strjks Λ=ΛΛ=  

( )rj2  is the spherical Bessel function order two and Λ is one of the positive 

roots of ( ).2 rj  

Using different numerical approach, Dudley and James [4] reproduced 
similar result as PAS. Another characteristic of PAS flow is that this flow is a 
Beltrami flow, i.e., 

.vv ×∇= k  

It means that PAS flow has a strong helicity. Strong helicity is believed to be 
an important aspect in producing dynamo process (Bachtiar [1]). 

In 2006, Bachtiar et al. [2] tried to planarize PAS flow in order to get a 
planar velocity dynamo. They found that, using their formula, it is impossible 
to planarize the toroidal part of PAS. As a result, they introduced a new flow 
which is PAS flow with planarized poloidal part. They called this flow as 
partly-planarized PAS flow. They reported that this flow can produce a 
dynamo process. The following is the formula for partly-planarized PAS 
flow: 
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The problem with planarizing PAS is when we want to planarize the 
toroidal part. If we try to planarize the toroidal part, then we start with 

equation (4) to define .2
3f  Then, we use equations (3) and (4) to define 2

3s  
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and .2
4t  The form of 2

3f  is the following: 

( ) ( ) .73 3
2

3 Crjkrf +ΛΛ=Λ  

If we impose the boundary condition to get the integral constant in 
equation, then the flow will fail the differentiability condition at the origin. It 
means that the flow will be undefined near the origin. This will give us a 
serious numerical problem. 

On the other hand, if we impose the differentiability condition to get the 

integral constant, then the flow will fail the boundary condition. The 2
3f  

becomes: 

( ) ( ),73 2
2

3 rjkrf ΛΛ=Λ  

where ( )rj3  is the spherical Bessel function order three. Meanwhile, 2
3s  and 

2
4t  are now defined as follows: 
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From the above equations, we can conclude that the problem arises for the 
2
3s  component. At 2

3,1 sr =  does not vanish. 

VI. Discussion 

Violating boundary condition, a model will be irrelevant to the Earth’s 
dynamo because our Earth has solid mantle. Therefore, in this work, we 
propose an alternative way to avoid the above problem. Our new flows will 
preserve the Beltrami’s structure but not entirely planar. 

The main idea of our method is by replacing 2
3f  with polynomial near 

the boundary for 2
3s  component. We choose polynomials because they are 
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easy to handle. Moreover, we also need to choose the appropriate polynomial 
so that the radial function of our flow will be continuous until its third 
derivative. Otherwise, we will offend the requirement of the central 
difference scheme. 

Our polynomials are defined as follows: 

 ( ) ( ) ( ) ( ) ( ) .1111 4
0

3
0

2
00 rdrcrbrarP −+−+−+−=  (7) 

The values of a, b, c and d depend on the point ( ),0r  in the radial direction, 

where we substitute 2
3f  with ( )rP  so that the radial function of our flow is 

continuous until its third derivative. First, we have to choose our .0r  Then, 

we solve the following equations simultaneously to get the corresponding 
coefficient of ( ):rP  
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Table 1. Coefficients of ( )rP  polynomial 

0r  0a  0b  0c  0d   

0.9 –2.28 3.81 –2.84 0.79 510×  

0.91 –2.28 3.81 –2.84 0.79 510×  

0.92 –0.63 1.02 –0.74 0.20 610×  

0.93 –1.12 1.82 –1.30 0.35 610×  
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0.94 –2.18 3.48 –2.47 0.65 610×  

0.95 –4.7 7.42 –5.20 1.37 610×  

0.96 –1.18 1.85 –1.28 0.33 710×  

0.97 –3.87 5.99 –4.12 1.06 710×  

0.98 –2.02 3.10 –2.10 0.53 810×  

0.99 –3.34 5.06 –3.40 0.86 910×  

Therefore, our new flows are defined as follows: 
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( ) .10 ≤<= rrrP  

These flows are continuous until the third derivative as we can see in the 

following figures. Because of space limitation, we only present ( )∗2
3f  and 

( )−2
3F  with .99.0,98.0,97.0,96.00 =r  
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Figure 1. Plot of 2
3f  and 2

3F  with .96.00 =r  

 

 

Figure 2. Plot of 2
3f  and 2

3F  with .97.00 =r  

 

 

Figure 3. Plot of 2
3f  and 2

3F  with .98.00 =r  
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Figure 4. Plot of 2
3f  and 2

3F  with .99.00 =r  

 

 

Figure 5. Plot of the first derivative of 2
3f  and 2

3F  with .9.00 =r  

 

 

Figure 6. Plot of the second derivative of 2
3f  and 2

3F  with .9.00 =r  
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As an alternative, we can also use the following polynomial: 

( ) ( ) ( ) ( )12
9

11
9

10
9 111 rcrbrarA −+−+−=  

( ) ( )14
9

13
9 11 rerd −+−+  

to substitute ( ).rP  So, our flow will be similar to the first one, except that: 

,6
2
3

2
3 Gis =  

where 

0
2

3
2
3 0 rrfG ≤≤=  

( ) .10 ≤<= rrrA  

Table 2 consists of coefficients of ( ),rA  the graph of ( )rA  is similar to 

the previous one. But, 2
3G  is continuous until its fourth derivative. This 

requirement is needed when we are going to use second derivative in central 
difference scheme. 

Table 2. Coefficients of ( )rA  

0r  9a  9b  9c  9d  9e   

0.9 0.34 –1.39 2.13 –1.45 0.37 610×  

0.91 0.58 –2.32 3.52 –2.38 0.60 610×  

0.92 1.06 –4.21 6.30 –4.22 1.06 610×  

0.93 0.21 –0.83 1.23 –0.81 0.20 710×  

0.94 0.47 –1.82 2.67 –1.74 0.43 710×  

0.95 1.20 –4.62 6.69 –4.33 1.05 710×  

0.96 0.37 –1.43 2.05 –1.31 0.31 810×  

0.97 1.63 –6.14 8.71 –5.52 1.32 810×  

0.98 1.27 –4.74 6.65 –4.17 0.98 910×  

0.99 0.41 –1.54 2.14 –1.33 0.31 1110×  
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Figure 7. Plot of 2
3f  and 2

3G  with .9.00 =r  

 

Figure 8. Plot of the first derivative of 2
3f  and 2

3G  with .96.00 =r  

 

Figure 9. Plot of the second derivative of 2
3f  and 2

3G  with .9.00 =r  
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Figure 10. Plot of the third derivative of 2
3f  and 2

3G  with .9.00 =r  

 

Figure 11. Plot of the fourth derivative of 2
3f  and 2

3G  with .9.00 =r  

These flows preserve the Beltrami’s structure and more than 90% of 
these flows are planar flows. 

V. Conclusions 

By using our method, PAS flow can be transformed into a planar flow. 
Although it is not entirely planar, our new flows still preserve the Beltrami 
structure in some fashion, so these flows might have a strong helicity. As a 
result, we would expect that these flows can produce dynamo process. 

Our future work will try to do computer simulation using our dynamo 
program in order to support the above conjecture. However, the simulation 
will probably be a tedious and complicated project. 
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