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Abstract 

This paper concerns the modified Navier-Stokes equation with 

nonlinear coefficient in 2R  introducing the proof of existence and 
uniqueness of solution of the equations. We use Theorem 1.4 to get the 
existence of the attractors. In this paper, we will discuss the Navier-

Stokes equations that add a nonlinear term ( ),, 21 aau αβ=η  ,1a  2a  

are fixed, where .10 <α<  

1. Introduction and Preliminaries 

We consider the Navier-Stokes equations of viscous incompressible fluid 
and add a nonlinear term. We describe fluid motion under the following 
assumptions: constant density (ρ), constant viscosity (μ), continuity 
(incompressible flow), ,0=⋅∇ u  ( )....,,,, 321 nuuuuu =  The motion of an 

incompressible viscous fluid in ,nR  ,2≥n  is described by the Navier-
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Stokes equations: 

 ( ) ,fupuut
u +Δμ=∇+∇⋅+
∂
∂ρ  (1.1) 

,0=udiv  (1.2) 

where u is the velocity vector, and let ,1=ρ  p is the pressure that maintains 

the incompressibility of a fluid at ( ),, xt  f represents volume forces. 

Equation (1.2), i.e., ,0=udiv  is the incompressibility condition. As a 

nonlinear system of partial differential equations, u and p are regarded as 
unknown functions. The constant 0>μ  is the kinematic viscosity constant, 

∇⋅u  denotes the covariant derivative along the flow trajectories, that is, the 
directional derivative in the direction u, uΔ  is the usual Laplace on u, and 

uΔμ  represents the stress applied to the fluid. As usual, we use div=∇⋅  

denote the divergence operator. We will discuss .2=n  There are many 
results for the attractors of Navier-Stokes equation. For example, see [1, 3, 
11], but no papers study the attractor of this equation that adds a nonlinear 
term η. So we will study this problem. We will not change other conditions. 
Equation (1.1) can be written as: 

( ) ( ) ., 21 η++Δμ=β++Δμ=∇+∇⋅+
∂
∂ α fuaaufupuut
u  (1.3) 

We need the following preliminaries: 

Definition 1.1. An attractor is a set H⊂A  that enjoys the following 
properties: 

(1) A  is an invariant set ( )( ).0, ≥∀= ttS AA  

(2) A  possesses an open neighborhood U  such that for every 0u  in 

,U  ( ) 0utS  converges to A  as :∞→t  

( )( ) 0, 0 →utSdist A  as .∞→t  

The distance in (2) is understood to be the distance of a point to a set 
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( ) ( ),,inf, yxxd
y A

A
∈

=  

( )yxd ,  denoting the distance of x to y in H. If A  is an attractor, then the 

largest open set U  that satisfies (2) is called the basin of attraction of .A  

We now show how to prove the existence of an attractor when the 
existence of an absorbing set is known. Further assumptions on the 
semigroup ( )tS  are necessary at this point and we will make one of two 

following assumptions (1.4), (1.5): 

The operators ( )tS  are uniform for t large. By this, we mean that for 

every bounded set ,B  there exists 0t  which may depend on B  such that 

 ( )∪
0tt

tS
≥

B  (1.4) 

is relatively compact H. 

Alternatively, if H is a Banach space, then we may assume that ( )tS  is 

the perturbation of an operator satisfying (1.4) by a (nonnecessarily linear) 
operator which converges to 0 as .∞→t  We formulate this assumption 
more precisely: 

H is a Banach space and for every t, ( ) ( ) ( ),21 tStStS +=  where the 

operators ( )⋅1S  are uniformly compact for t large (i.e., satisfy (1.4)) and 

( )tS2  is a continuous mapping from H into itself such that the following 

holds: 

For every bounded set ,HC ⊂  

 ( ) 0sup 2 →ϕ=
∈ϕ

H
C

c tSr  as .∞→t  (1.5) 

Of course, if H is a Banach space, then any family of operators satisfying 
(1.4) also satisfies (1.5) with .02 =S  

Theorem 1.2. We assume that H is a metric space and that the operators 
( )tS  are given and satisfy 
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The evolution of the dynamical system is described by a family of 
operators ( ),tS  ,0≥t  that map H into itself and enjoy the usual semigroup 

properties: 

 
( ) ( ) ( )

( ) ( )⎩
⎨
⎧

=

≥∀=+

HIS

tssStSstS

Indentity0

,0,,
 (1.6) 

( ( )tS  is continuous (nonlinear) operator from H into )itself  and (1.4) or 

(1.5). We also assume that there exist an open set U  and a bounded set B  
of U  such that B  is absorbing in .U  

Then the ω-limit set of ,B  ( ),BA ω=  is a compact attractor which 

attracts the bounded sets of .U  It is the maximal bounded attractor in U  
(for the inclusion relation). 

Furthermore, if H is a Banach space, U is convex, and the mapping 
( ) 0utSt →  is continuous from +R  into H, for every in H; then A  is 

connected too. 

In equations (1.2), (1.3), we will add boundary condition. That is: 

The nonslip boundary condition. The boundary Γ is solid and at rest; 
thus 

 0=u  on Γ.1 (1.7) 

The space-periodic case. Here ( ) ( )21 ,0,0 LL ×=Ω  and 

 u, p and the first derivatives of u are Ω-periodic.2 (1.8) 

Remark 1. If Γ is solid but not at rest, then the nonslip boundary 
condition is ∅=u  on Γ, where ( )tx,ϕ=ϕ  is the given velocity of Γ. 

Remark 2. That is, u and p take the same values at corresponding points 
of Γ. 

Furthermore, we assume in this case that the average flow vanishes 

 ∫Ω = .0udx  (1.9) 
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u satisfies the initial condition 

 ( ) ( ) ,,0, 0 Ω∈= xxuxu  (1.10) 

where 0u  is given. For the mathematical setting of this problem, we consider 

a Hilbert space H which is a close subspace of ( ) ( ).here22 =Ω nL n  In the 

nonslip case, 

 { ( ) 0,0,2 =ν⋅=Ω∈= uudivLuH n  on }Γ  (1.11) 

ν being the unit outward normal on Γ and in the periodic case 

 { ( ) }....,,1,,0,2 niuuudivLuH nii ii
n ===Ω∈=

+Γ|Γ|
3 (1.12) 

We refer the reader to [7] for more details on these spaces and, in 

particular, a trace theorem showing that the trace of ν⋅u  on Γ exists and 

belongs to ( )Γ
− 2

1
H  when ( )nLu Ω∈ 2  and ( ).2 Ω∈ Ludiv  The space H is 

endowed with the scalar product and the norm of ( )nL Ω2  denoted by ( )⋅⋅,  

and .2L⋅  

Remark 3. iΓ  and ni+Γ  are the faces 0=ix  and ii Lx =  of Γ. The 

condition nii ii uu
+Γ|Γ| −=  expresses the periodicity of ;ν⋅u  ( )nL Ω2  is the 

space of ( )nLu Ω∈ 2  satisfying (1.9). 

Another useful space is V, a closed subspace of ( ) :1 nH Ω  

 { ( ) }0,1
0 =Ω∈= udivHuV n  (1.13) 

in the nonslip case and, in the space-periodic case, 

 { ( ) },0,1 =Ω∈= udivHuV n
per  (1.14) 
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where 1
perH  is defined in [6]. In both cases, v is endowed with the scalar 

product ( )( ) ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=
n

ji j
i

j
i

x
v

x
uvu

1,
,,  and the norm ( )( ) ., 2

1
uuu =  

We denoted by A the linear unbounded operator in H which is associated 
with V, H and the scalar product ( )( ) ( ),,, vAuvu =  ., Vvu ∈∀  The domain 

of A in H is denoted by ( );AD  A is self-adjoint positive operator in H. Also, 

A is an isomorphism from ( )AD  onto H. The space ( )AD  can be fully 

characterized by using the regularity theory of linear elliptic systems (see         
[7, 9]): 

( ) ( ) VHAD n ∩Ω= 2  

and 

( ) ( ) VHAD n
per ∩Ω= 2  

in the nonslip and periodic cases; furthermore, 2LAu  is on ( )AD  a norm 

equivalent to that induced by ( ) .2 nH Ω  

Let V ′  be the dual of V. Then H can be identified to a subspace of V ′  
(see [8]) and we have 

 ( ) ,VHVAD ′⊂⊂⊂  (1.15) 

where the inclusions are continuous and each space is dense in the following 
one. 

In the space-periodic case, we have ,uAu Δ−=  ( ),ADu ∈∀  while in 

the nonslip case, we have 

( ),, ADuuPAu ∈∀Δ−=  

where P is the orthogonal projector in ( )nL Ω2  on the space H. We can also 

say that ,fAu =  ( ),ADu ∈  ,Hf ∈  is equivalent to saying that there exists 

( )Ω∈ 1Hp  such that 
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⎪
⎪
⎩

⎪⎪
⎨

⎧

Ω∂=

Ω=

Ω=+Δ−

.on0

,in0

,in

u

udiv

fpgradu

 

The operator 1−A  is continuous from H into ( )AD  and since the 

embedding of ( )Ω1H  in ( )Ω2L  is compact, the embedding of V in H is 

compact. Thus, 1−A  is a self-adjoint continuous compact operator in H, and 

by the classical spectral theorems, there exist a sequence ,jλ  

∞→λλ≤λ< j...,,0 21  

and a family of elements jw  of ( )AD  which is orthonormal in H, and such 

that 

 ., jwAw jjj ∀λ=  (1.16) 

The weak form of the Navier-Stokes equations due to Leray [5] involves 
only u, as .0=α  It is obtained by multiplying (1.1) by a test function v in V 

and integrating over Ω. Using the Green formula (1.2) and the boundary 
conditions, we find that the term involving p disappears and there remains 

 ( ) ( ) ( ) ( ) ( ),,,,,,, vvfvuubvuvudt
d η+=+μ+  (1.17) 

where 

 ( ) ∑ ∫
= Ω ∂

∂
=

n

ji
j

j
i

i wx
vuwvub

1,
,,  (1.18) 

whenever the integrals make sense. Actually, the form b is trilinear 

continuous on ( )nH Ω1  ( )2=n  and, in particular, on V. We have the 

following inequalities giving various continuity properties of b: 
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( )wvub ,,  

( )

( )

( )

⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪

⎨

⎧

∈∀

∈∈∈∀

∈∈∈∀

∈∈∈∀

×≤

,,,,

,,,,

,,,,

,,,,

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

1

22

222

222

222

Vwvuwvwuu

ADwVvHuwvAwu

HwVvADuwvAuu

HwADvVuwAvvuu

c

LL

LLL

LLL

LLL

 (1.19) 

where 01 >c  is an appropriate constant. 

Proof. First, we will prove the first inequality: 

( ) ∫ ∑Ω =
∂
∂

=
n

ji
j

j
i

i dxwx
vuwvub

1,
,,  

∫ ∑ ∑Ω = =
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
≤ dxwvu

n

i

n

j
jixi j

1 1
 

∫ ∑Ω =
≤ dxuwDv

n

i
ii

1
 

∫ ∑Ω
=

≤
n

i
ii dxuDvw

1
 

2
1

22
1

22
1 ⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛≤ ∫∫ ΩΩ

dxudxwDvc  

2

2
1

2
1

22
1

2
1 LwDvdxudxuc

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛≤ ∫∫ ΩΩ

 

,2
1

2
1

2
1

2
1

1 222 LLL
Avvwuuc≤  
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where 

 .2
1

22
1

22
LL vDvDv ≤   

The proof of other inequality are same as this proof. So we will not give 
proof. 

An alternative form of (1.17) can be given using the operator A and 
bilinear operator B from VV ×  into V ′  defined by 

 ( )( ) ( ) .,,,,,,, VwvuwvubwvuB ∈∀=  (1.20) 

We also set 
( ) ( ) ,,, VuuBuuB ′∈∀=  

and we easily see that (1.17) is equivalent to the equation 

 ( ) η+=+μ+ fuBAudt
du  (1.21) 

while (1.10) can be rewritten as 

 ( ) .0 0uu =  (1.22) 

We assume that f is independent of t so that the dynamical system associated 
with (1.21) is autonomous 

 ( ) ., tHftf ∀∈=  (1.23) 

Existence and uniqueness results for (1.21), (1.22) are well known (see 
[2, 3]). The following theorem collects several classical results. 

Lemma 1.3 (The uniform Gronwall lemma). Let g, h, y be three positive 
locally integrable functions on ( )∞+,0t  such that y′  is locally integrable on 

( )∞+,0t  and which satisfy 

hgydt
dy +≤  for ,0tt ≥  

( ) ( ) ( )∫ ∫ ∫
+ + +

≤≤≤
rt

t

rt

t

rt

t
ddssyddsshddssg 321 ,,  for ,0tt ≥  
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where r, ,1d  ,2d  3d  are positive constants. Then 

( ) ( ) .,exp 012
3 ttddr

drty ≥∀⎟
⎠
⎞

⎜
⎝
⎛ +≤+  

Theorem 1.4. Under the above assumptions, for f and 0u  given in H, 

there exists a unique solution u of (1.20), (1.21) satisfying 

[ ]( ) ( ) .0,;,0;,0 2 >∀∈ TVtLHTu ∩C  

Furthermore, u is analytic in t with values in ( )AD  for ,0>t  and the 

mapping 

( )tuu0  

is continuous from H into ( ),AD  .0>∀t  

Finally, if ,0 Vu ∈  then 

[ ]( ) ( )( ) .0,;,0;,0 2 >∀∈ TADtLVTu ∩C  

Some indications for the proof of Theorem 1.4 will be given in Section 3. 
This theorem allows us to define the operators 

( ) ( ).: 0 tuutS  

These operators enjoy the semigroup properties (1.4) and they are continuous 
from H into itself and even from H into ( ).AD  

2. Existence of Absorbing Sets 

2.1. Existence of an absorbing set in H 

A first energy-type equality is obtained by taking the scalar product of 
(1.21) with u. Using the orthogonality property (see [6]), 

 ( ) ( ) .,,0,, 1 nHvVuvvub Ω∈∀∈∀= 4 (2.1) 

Remark 4. More generally, ( ) ,0,, =vvub  ( ) ,, 1 nHvu Ω∈∀  and 

0=udiv  in Ω, ν⋅u  or 0=v  on Ω. 
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Proof. 

( ) ( )[ ]∫Ω ⋅∇⋅= vdxvuvvub ,,  

( )∫Ω ∇= vdxvuT  

( )∫ ∑Ω
=

=
n

i
xi vdxvu i

1
 

( )∫ ∑Ω
=

=
n

i
xi dxvvu i

1
 

( )∫ ∑Ω
=

=
n

i
ix dxvuv i

1
 

( ) ( )∫ ∑ ∫ ∑Ω∂
=

Ω
=

⋅⋅−⋅=
n

i

n

i
xii dxvuvvuv
i

1 1
 

( )∫ ∑Ω
=

+⋅−=
n

i
xiix dxvuvuv ii

1
0  

( )∫ ∑ ∑Ω
= =

⋅+⋅−=
n

i

n

i
xiix dxvvuvvu ii

1 1
 

( )vvub ,,0 −=  

so we get ( ) .0,, =vvub   

We see that ( )( ) 0, =uuB  and there remains 

 ( ) ( ) .,,2
1

222
22

LLL
ufufuuudt

d ≤=η−μ+  (2.2) 

We know that 

,,2
1

12 Vuuu L ∈∀λ≤
−
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where 1λ  is the first eigenvalue of A. Hence, we can majorize the right-hand 

side of (2.2) by 

2
1

22
1

1 22
1

4 LL fuuf
μλ

+μ≤λ
−

 

at the same time, in this paper, let ( ) ,,max 21 aaa =  

( ) ( ( ) )uaauu ,,, 21
αβ=η  

∫Ω
αβ≤ udxua2  

∫Ω
α μλ+

μλ
β≤ 212
1

22

4
4 udxua  

212

1

22

2416
4

L
ucdxua μλ

+⎟
⎠
⎞

⎜
⎝
⎛ ′+μα

μλ
β≤ ∫Ω  

22
22

44 ucua μ++αβ≤  

and we obtain 

,22
2

2
1

2
22

2
22 cfuaudt

d
LL

+
μλ

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ αβ−μ+  (2.3) 

 .22
2

2

1

2
22

1
2

222 cfuaudt
d

LLL
+

μλ
≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ αβ−μλ+  (2.4) 

When 
2

22 αβ≥μ a  using the classical Gronwall lemma, we obtain 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ αβ−μλ−≤ tautu
LL 2exp

22
1

2
0

2
22  

.2exp122 22
1

1
2

2
1

2 2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ αβ−μλ−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
μλ

+
λμ

+ tacf
L

 (2.5) 
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Thus, 

 ( ) .22,suplim
1

2
2
1

200 22
μλ

+
λμ

=ρρ≤
∞→

cftu
LL

t
 (2.6) 

We infer from (2.5) that the balls ( )ρ,0HB  of H with 0ρ≥ρ  are 

positively invariants for semigroup ( ),tS  and these balls are absorbing for 

any .0ρ≥ρ  We choose 0ρ′  and denote by 0B  the ball ( ).,0 0ρ′HB  Any set 

bounded in H is include in a ball ( )RB ,0  of H. It is easy to deduce from 

(2.5) that ( ) 0BB ∈tS  for ( ),, 00 ρ′≥ Btt  where 

 .log

2

1
2
0

2
0

2

22
1

0
ρ−ρ′

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ αβ−μλ

= R
a

t  (2.7) 

We then infer from (2.3) after integration in t that 

 ( )∫
+

>∀++
μλ

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ αβ−μ
rt

t LL
rcrtufrdsua .0,22

2
22

1
2

22

22  (2.8) 

With the use of (2.6), we conclude that 

2

2
1

22
2

2

1
22

2
22

2

2

2

2suplim
L

rt

t Lt
f

a
f

a
rdsu

λ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ αβ−μμ
+

λ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ αβ−μμ
≤∫

+

∞→
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ αβ−μ
+

λ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ αβ−μμ
+

2

2

2

2
22

1
22 a

cr
a

c  (2.9) 

and if ( )RBu H ,00 ⊂∈B  and ( ),, 00 ρ′≥ Btt  then 

∫
+

λ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ αβ−μμ
≤

rt

t L
f

a
rdsu 2

1
22

2
2

2

2  

.

2

2

2

2
22

2
022 αβ−μ
+ρ′

αβ−μ
+

a
cr

a
 (2.10) 
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2.2. Existence of an absorbing set in V 

In order to make our equation satisfy Theorem 1.4, we continue and 
show the existence of an absorbing set in V. For that purpose, we obtain 
another energy-type equation by taking the scalar product of (1.21) with Au, 
since 

( ) ( )( ) ,2
1,, 2udt

duuuAu =′=′  

we find 

 ( )( ) ( ) ( ).,,,2
1 22

2 AufAuAuuBAuudt
d

L
=ω−+μ+  (2.11) 

We write 

( ) 22
2222

2
8,

LLLL fAuAufAuf
μ

+μ≤≤  

and using the second inequality (1.19), 

( )( ) 2
3

2
1

1 2,
L

AuuucAuuB ≤  

( inequalityYoungthewith≤ )5  

.2
8

42
3
12

22 uucAu
LL μ

′
+μ≤  

Remark 5. By the Young inequality, 

( ).1,1,,0,,,1 −=′∞<<∀>ε∀
ε′

+ε≤ ′
′ pppppbab

p
apab p

pp
p  

At the same time, we have 

( ) ( ( ) )AuaauAu ,,, 21
αβ=η  

∫Ω
αβ≤ Audxua2  
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∫Ω
α μ+

μ
β≤ 22

22

24
4

L
Audxua  

22
22

2416
4

L
Aucdxua μ+⎟

⎠
⎞

⎜
⎝
⎛ ′+μα

μ
β≤ ∫Ω  

.44
2

22
2

22 LL
uacAu βα++μ≤  

Hence 

 42
3
12

22
222

2222
422

4 uuccuafAuudt
d

LLLL μ

′
++βα+

μ
≤μ+  (2.12) 

and since 

 ( ),,22
1

1 ADA L ∈ϕ∀ϕλ≤ϕ
−

 (2.13) 

we also have 

.422
4 42

3
12

22
22

1
2

222 uuccuafuudt
d

LLL μ

′
++βα+

μ
≤μλ+  (2.14) 

A priori estimate of u in ( ),;,0 VTL∞  ,0>∀T  follows easily from (2.14) 

by the classical Gronwall lemma (Lemma 1.3), using the previous estimates 
on u. We are more interested in an estimate valid for large t. Assuming that 

0u  belongs to a bounded set B  of H and that ( ),, 00 ρ′≥ Btt  0t  as in (2.7), 

we apply the uniform Gronwall lemma to (2.14) with g, h, y replaced by 

.,22
4,4 22

22
222

3
1

222 ucuafuuc
LLL

+βα+
μμ

′
 

Thanks to (2.5) and (2.10), we estimate the quantities ,1d  ,2d  3d  in      

Lemma 1.3 by 
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and we obtain 

 ( ) ( )12
32 exp ddr

dtu ⎟
⎠
⎞

⎜
⎝
⎛ +≤  for ,0 rtt +≥  (2.16) 

0t  as in (2.7). 

Let us fix 0>r  and denote by 2
1ρ  the right-hand side of (2.16). We 

then conclude that the ball ( )1,0 ρVB  of V, denoted by ,1B  is an absorbing 

set in V for the semigroup ( ).tS  Furthermore, if B  is any bounded set of       

H, then ( ) 1BB ⊂tS  for ( ) ., 00 rtt +ρ′≥ B  This shows the existence of    

an absorbing set in V, namely ,1B  and also that the operators ( )tS  are 

uniformly compact, i.e., (1.5) is satisfied. 

3. Proof of Theorem 1.4 

We prove the existence and uniqueness of solution for (1.20), (1.21)   

that belongs to ( ) ( ),;,0;,0 2 VTLHTL ∩∞  ,0>∀T  is first obtained by      

the Faedo-Gakerkin method (see [8]). We implement this approximation 
procedure with the function jw  representing the eigenvalues of A (see 

(1.16)). For each m, we look for an approximate solution mu  of the form 

( ) ( )∑
=

=
m

i
iimm wtgtu

1
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satisfying 

( ) ( )jmmjmj
m wuubwuawdt

du ,,,, +μ+⎟
⎠
⎞

⎜
⎝
⎛  

( ) ( ) ,...,,1,,, mjwwf jmj =ω+=  (3.1) 

,0uPu mm =  (3.2) 

where mP  is projector in H (or V ) on the space spanned by ....,,1 mww  Since 

A and mP  commute, the relation (3.1) is also equivalent to 

 ( ) .mmmmmm
m PfPuBPAudt

du
ω+=+μ+  (3.3) 

The existence and uniqueness of mu  on some interval [ )mT,0  is elementary 

and then ,+∞=mT  because of the a priori estimate that we obtain for .mu  

An energy equality is obtained by multiplying (3.1) by jmg  and summing 

these relations for ....,,1 mj =  We obtain (2.2) exactly with u replaced by 

mu  and we deduce from this relation that 

 mu  remains bounded in ( ) ( ) .0,;,0;,0 2 >∀∞ TVTLHTL ∩  (3.4) 

Due to (2.1) and the last inequality (1.19), 

 ( ) .,21 VcB LV ⊂ϕ∀ϕϕ≤ϕ  (3.5) 

Therefore, ( )muB  and ( )mm uP  remain bounded in ( )VTL ′;,02  and by (3.3), 

 
dt

dum  remains bounded in ( ).;,02 VTL ′  (3.6) 

By weak compactness, it follows from (3.4) that there exists ⊂u  

( ) ( ),;,0;,0 2 VTLHTL ∩∞  ,0>∀T  and subsequence still denoted m such 

that 

uum →  in ( )VTL ;,02  weakly and in ( )HTL ;,0∞  weak-star, 

dt
du

dt
dum →  in ( )VTL ′;,02  weakly. (3.7) 
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Due to (3.6) and a classical compactness theorem (see, for instance, Temam 
[7]), we also have 

 uum →  in ( )HTL ;,02  strongly. (3.8) 

This is sufficient to pass to the limit in (3.1)-(3.3) and we find (1.20), (1.21) 
at the limit. For (1.21), we simply observe that (3.7) implies that 

( ) ( )tutum →  

weakly in V ′  or even in H, [ ]Tt ,0∈∀  (see [11]). 

By (1.20) (or (3.7)), dt
du  belongs to ( )VTL ′;,02  and by Lemma 3.2 of 

Chapter 2 (see [8]), u is in [ ]( ).;,0 HTC  The uniqueness and continuous 

dependence of ( )tu  on 0u  (in H) follows by standard method using Lemma 

3.2 of Chapter 2 (see [8]). 

The fact that ( ) ( )( ),;,0;,0 2 ADTLVTLu ∩∞⊂  ,0>∀T  is proved by 

deriving further a priori estimate on .mu  They are obtained by multiplying 

(3.1) by jmj gλ  and summing these relations for ....,,1 mj =  Using (1.16), 

we find a relation that is exactly (2.11) with u replaced by .mu  We deduce 
from this relation that 

mu  remains bounded in ( ) ( )( ) .0,;,0;,0 2 >∀∞ TADTLVTL ∩  (3.9) 

At the limit, we then find that u is in ( ) ( )( ).;,0;,0 2 ADTLVTL ∩∞  The 

fact that u is in [ ]( ),;,0 HTC  then follows from an appropriate application 

of Lemma 3.2 (see [8]). 

Finally, the fact that u is analytic in t with values in ( )AD  results from 

totally different methods, for which the reader is referred to [9] or [4]. 
However, this property was given for the sake of completeness and is never 
used here in an essential manner. 

4. Maximal Attractor 

Equation (1.3) is Navier-Stokes equation when ,0=β  some people had 
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proved the existence of absorbing sets and the existence of maximal attractor, 
the asymptotic attractor, the universal attractor, attractor in unbounded 
domain (see [4-6, 9]). In [10], some people prove the global attractor of N-S 
equation with linear dampness on the whole two-dimensional, that is, .0=α  
In this paper, from Section 2 and Section 3, we prove the existence of 
absorbing sets in bounded domain, at the same time, we give the proof of 
existence and uniqueness of solution of the equations. All the assumptions of 
Theorem 1.4 are satisfied and we deduce from this theorem the existence of a 
maximal attractor for modified Navier-Stokes equations.  
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