Internat. J. Functional Analysis, Operator Theory and Applications
Volume 4, Number 2, 2012, Pages 109-124
Published Online: November 2012
Available online at http://pphmj.com/journals/ijaota.htm Published by Pushpa Publishing House, Allahabad, INDIA

SPECTRAL PROPERTIES OF CLASS A_{k} AND ALGEBRAICALLY CLASS A_{k} OPERATORS

S. Panayappan, N. Jayanthi and D. Sumathi
Post Graduate and Research Department of Mathematics
Government Arts College (Autonomous)
Coimbatore 18, Tamilnadu, India
e-mail: jayanthipadmanaban@yahoo.in

Abstract

If T is class A_{k} operator for a positive integer k and $0 \neq \lambda \in$ iso $\sigma(T)$, then the Riesz-idempotent operator E_{λ} with respect to λ is self-adjoint and satisfies $E_{\lambda} H=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$. If T is algebraically class A_{k} operator, then Weyl's theorem holds for T and other Weyl type theorems are discussed.

1. Introduction and Preliminaries

Let $B(H)$ be the Banach algebra of all bounded linear operators on a non-zero complex Hilbert space H. By an operator T, we mean an element in $B(H)$. If T lies in $B(H)$, then T^{*} denotes the adjoint of T in $B(H)$. An operator T is said to be of class A, if $\left|T^{2}\right| \geq|T|^{2}$. An operator T is called © 2012 Pushpa Publishing House
2010 Mathematics Subject Classification: 47A10, 47A53.
Keywords and phrases: class A, class A_{k}, algebraically class A_{k}, Weyl's theorem, polaroid.
Communicated by U. N. Bassey; Editor: Universal Journal of Mathematics and Mathematical Sciences: Published by Pushpa Publishing House.

Received June 1, 2012
paranormal if $\left\|T^{2} x\right\| \geq\|T x\|^{2}$, for every unit vector x in H. An operator T is called k-paranormal for positive integer k, if $\left\|T^{k+1} x\right\| \geq\|T x\|^{k+1}$ for every unit vector x in H. An operator T is called quasinormal if $T\left(T^{*} T\right)=\left(T^{*} T\right) T$.

An operator T is called a Fredholm operator if the range of T denoted by $\operatorname{ran}(T)$ is closed and both $\operatorname{ker} T$ and $\operatorname{ker} T^{*}$ are finite dimensional and is denoted by $T \in \Phi(H)$. An operator T is called upper semi-Fredholm operator, $T \in \Phi_{+}(H)$, if $\operatorname{ran}(T)$ is closed and $\operatorname{ker} T$ is finite dimensional. An operator T is called lower semi-Fredholm operator, $T \in \Phi_{-}(H)$, if ker T^{*} is finite dimensional. The index of a semi-Fredholm operator T is an integer defined as $\operatorname{ind}(T)=\operatorname{dim} \operatorname{ker} T-\operatorname{dim} \operatorname{ker} T^{*}$. An upper semiFredholm operator with index less than or equal to 0 is called upper semiWeyl operator and is denoted by $T \in \Phi_{+}^{-}(H)$. A lower semi-Fredholm operator with index greater than or equal to 0 is called lower semi-Weyl operator and is denoted by $T \in \Phi_{-}^{+}(H)$. A Fredholm operator of index 0 is called Weyl operator. The set of all isolated eigenvalues of finite multiplicity of T is denoted by $\pi_{00}(T)$ and the set of all isolated eigenvalues of finite multiplicity of T in $\sigma_{a}(T)$ is denoted by $\pi_{00}^{a}(T)$.

The spectrum of T is denoted by $\sigma(T)$, where

$$
\sigma(T)=\{\lambda \in C: T-\lambda I \text { is not invertible }\}
$$

The approximate point spectrum of T is denoted by $\sigma_{a}(T)$, where

$$
\sigma_{a}(T)=\{\lambda \in C: T-\lambda I \text { is not bounded below }\}
$$

The essential spectrum of T is defined as

$$
\sigma_{e}(T)=\{\lambda \in C: T-\lambda I \text { is not Fredholm }\}
$$

The essential approximate point spectrum of T is defined as

$$
\sigma_{e a}(T)=\left\{\lambda \in C: T-\lambda I \notin \Phi_{+}^{-}(H)\right\} .
$$

The Weyl spectrum of T is defined as

$$
w(T)=\{\lambda \in C: T-\lambda I \text { is not Weyl }\} .
$$

When the space is infinite dimensional, $w(0)=\{0\}$ and $w(T)=\{0\}$ if T is compact. Weyl has shown that $\lambda \in \sigma(T+K)$ for every compact operator K if and only if λ is not an isolated eigenvalue of finite multiplicity in $\sigma(T)$ for a Hermitian operator. We say that Weyl's theorem holds for T [6] if T satisfies the equality $\sigma(T)-w(T)=\pi_{00}(T)$ and a-Weyl's theorem holds for T [18] if T satisfies the equality $\sigma_{a}(T)-\sigma_{e a}(T)=\pi_{00}^{a}(T)$.

The ascent of T denoted by $p(T)$, is the least nonnegative integer n such that $\operatorname{ker} T^{n}=\operatorname{ker} T^{n+1}$. The descent of T denoted by $q(T)$, is the least nonnegative integer n such that $\operatorname{ran}\left(T^{n}\right)=\operatorname{ran}\left(T^{n+1}\right) . T$ is said to be of finite ascent if $p(T-\lambda)<\infty$, for all $\lambda \in C$. If $p(T)$ and $q(T)$ are both finite, then $p(T)=q(T)$ (by [10, Proposition 38.3]). Moreover, $0<$ $p(\lambda I-T)=q(\lambda I-T)<\infty$ precisely when λ is a pole of the resolvent of T. An upper semi-Fredholm operator with finite ascent is called upper semiBrowder operator and is denoted by $T \in B_{+}(H)$ while a lower semiFredholm operator with finite descent is called lower semi-Browder operator and is denoted by $T \in B_{-}(H)$. A Fredholm operator with finite ascent and descent is called Browder operator. Clearly, the class of all Browder operators is contained in the class of all Weyl operators. Similarly, the class of all upper semi-Browder operators is contained in the class of all upper semi-Weyl operators and the class of all lower semi-Browder operators is contained in the class of all lower semi-Weyl operators.

The Browder spectrum of T is defined as

$$
\sigma_{b}(T)=\{\lambda \in C: T-\lambda I \text { is not Browder }\} .
$$

For an operator $T, p_{00}(T)$ is defined as

$$
p_{00}(T)=\sigma(T)-\sigma_{b}(T) .
$$

We say that T satisfies property (w) if

$$
\sigma_{a}(T)-\sigma_{e a}(T)=\pi_{00}(T)
$$

and T satisfies property (b) if

$$
\sigma_{a}(T)-\sigma_{e a}(T)=p_{00}(T)
$$

An operator T is said to have the single valued extension property (SVEP) at $\lambda_{0} \in C$, if for every open neighborhood U of λ_{0}, the only analytic function $f: U \rightarrow X$ which satisfies the equation $(\lambda I-T) f(\lambda)=0$ for all $\lambda \in U$, is the function $f \equiv 0$. An operator T is said to have SVEP, if T has SVEP at every point $\lambda \in C$.

An operator T is called polaroid if iso $\sigma(T) \subseteq \pi(T)$, where $\pi(T)$ is the set of poles of the resolvent of T and iso $\sigma(T)$ is the set of all isolated points of $\sigma(T)$. An operator T is said to be isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T. An operator T is said to be reguloid if for every isolated point λ of $\sigma(T), \quad \lambda I-T$ is relatively regular. An operator T is known as relatively regular if and only if ker T and $T(X)$ are complemented. Also, polaroid \Rightarrow reguloid \Rightarrow isoloid.

In [16], we showed that class A_{k} operators form a proper subclass of k-paranormal operators, class A_{k} operators have finite ascent and satisfy Weyl's theorem.

In this paper, we prove that if T is class A_{k} operator for a positive integer k and $0 \neq \lambda \in \operatorname{iso} \sigma(T)$, then the Riesz-idempotent operator E_{λ} with respect to λ is self-adjoint and satisfies $E_{\lambda} H=\operatorname{ker}(T-\lambda)=\operatorname{ker}(T-\lambda)^{*}$. If T is algebraically class A_{k} operator, then Weyl's theorem holds for T and $f(T)$,

Spectral Properties of Class A_{k} and Algebraically Class A_{k} Operators 113 for every $f \in \operatorname{Hol}(\sigma(T)), T$ is polaroid and other Weyl type theorems are discussed.

2. Spectral Properties of Class A_{k} Operators

Definition 2.1. An operator $T \in B(H)$ is defined to be of class A_{k}, if $\left|T^{k+1}\right| \frac{2}{k+1} \geq|T|^{2}$ for some positive integer k. If $k=1$, then class A_{k} coincides with class A operator.

Example 2.2. Let H be the direct sum of a denumerable number of copies of two dimensional Hilbert space $R \times R$. Let A and B be two positive operators on $R \times R$. For any fixed positive integer n, define an operator $T=T_{A, B, n}$ on H as follows:

$$
T\left(\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right)=\left(0, A\left(x_{1}\right), A\left(x_{2}\right), \ldots, A\left(x_{n}\right), B\left(x_{n+1}\right), \ldots\right) .
$$

Its adjoint T^{*} is given by

$$
T^{*}\left(\left(x_{1}, x_{2}, x_{3}, \ldots\right)\right)=\left(A\left(x_{2}\right), A\left(x_{3}\right), \ldots, A\left(x_{n}\right), B\left(x_{n+1}\right), \ldots\right) .
$$

For $n \geq k, T_{A, B, n}$ is of class A_{k} if and only if A and B satisfy

$$
\left(A^{k-i+1} B^{2 i} A^{k-i+1}\right) \frac{1}{k+1} \geq A^{2}, \quad i=1,2, \ldots, k .
$$

If $A=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$, then $T=T_{A, B, n}$ is of class A_{2}.
Kubrusly and Duggal [13] have shown that k-paranormal operators are hereditarily normaloid. Since class A_{k} operators are k-paranormal, it follows that class A_{k} operators are hereditarily normaloid.

Theorem 2.3. If T is class A_{k} operator for a positive integer k and for $\lambda \in C, \sigma(T)=\lambda$, then $T=\lambda$.

Proof. If $\lambda=0$, then since class A_{k} operator is normaloid, $T=0$. Assume that $\lambda \neq 0$. Then T is an invertible normaloid operator with $\sigma(T)=\lambda . \quad T_{1}=\frac{1}{\lambda} T$ is an invertible normaloid operator with $\sigma\left(T_{1}\right)=\{1\}$. Hence T_{1} is similar to an invertible isometry B (on an equivalent normed linear space) with $\sigma(B)=1$ (by Theorem 2, [12]) T_{1} and B being similar, 1 is an eigenvalue of $T_{1}=\frac{1}{\lambda} T$ (by Theorem 5, [12]). Therefore, by Theorem 1.5.14 of [14], $T_{1}=I$. Hence $T=\lambda$.

Theorem 2.4. If T is class A_{k} operator for a positive integer k and M is an invariant subspace of T, then the restriction $T_{\mid M}$ is also class A_{k}.

Proof. Let $P=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$ be the orthogonal projection of H onto M and $T_{1}=T_{\mid M}$. Then $T P=P T P$ and $T_{1}=(P T P)_{\mid M}$.

Since T is of class A_{k} operator, $P\left(\left|T^{1+k}\right| \frac{2}{1+k}-|T|^{2}\right) P \geq 0$. By Hansen's inequality [9],

$$
\begin{aligned}
P\left(\left|T^{1+k}\right| \frac{2}{1+k}\right) P & =P\left(T^{* 1+k} T^{1+k}\right) \frac{1}{1+k} P \leq\left(P T^{* 1+k} T^{1+k} P\right) \frac{1}{1+k} \\
& =\left(\begin{array}{cc}
\mid T_{1}^{1+k} & \left.\right|^{2} \\
0 & 0
\end{array}\right)^{\frac{1}{1+k}}=\left(\begin{array}{cc}
\left|T_{1}^{1+k}\right| \frac{2}{1+k} & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

Hence $\left(\begin{array}{cc}\left|T_{1}^{1+k}\right| \frac{2}{1+k} & 0 \\ 0 & 0\end{array}\right) \geq P\left(\left|T^{1+k}\right| \frac{2}{\mid 1+k}\right) P \geq P|T|^{2} P=\left(\begin{array}{cc}\left|T_{1}\right|^{2} & 0 \\ 0 & 0\end{array}\right)$. Hence
T_{1} is also class A_{k} operator on M.

Theorem 2.5. If T is class A_{k} operator for a positive integer k, $0 \neq \lambda \in \sigma_{p}(T)$ and T is of the form $T=\left(\begin{array}{ll}\lambda & T_{2} \\ 0 & T_{3}\end{array}\right)$ on $\operatorname{ker}(T-\lambda) \oplus$ $\operatorname{ran}(T-\lambda)^{*}$, then

1. $T_{2}=0$ and
2. T_{3} is class A_{k}.

Proof. Let P be the orthogonal projection of H onto $\operatorname{ker}(T-\lambda)$.
Since T is class A_{k}, T satisfies

$$
\left|T^{k+1}\right| \frac{2}{k+1}-|T|^{2} \geq 0
$$

where k is a positive integer. Hence

$$
P\left(\left|T^{k+1}\right| \frac{2}{k+1}-|T|^{2}\right) P \geq 0
$$

where $P|T|^{2} P=\left(\begin{array}{cc}|\lambda|^{2} & 0 \\ 0 & 0\end{array}\right)$ and $\left(P\left|T^{k+1}\right|^{2} P\right)=\left(\begin{array}{cc}|\lambda|^{2(k+1)} & 0 \\ 0 & 0\end{array}\right)$.
Therefore,
$\left(\begin{array}{cc}|\lambda|^{2} & 0 \\ 0 & 0\end{array}\right)=\left(P\left|T^{k+1}\right|^{2} P\right) \frac{1}{k+1} \geq P\left|T^{k+1}\right| \frac{2}{k+1} P \geq P|T|^{2} P=\left(\begin{array}{cc}|\lambda|^{2} & 0 \\ 0 & 0\end{array}\right)$.
Therefore,

$$
P\left|T^{k+1}\right| \frac{2}{k+1} P=\left(\begin{array}{cc}
|\lambda|^{2} & 0 \\
0 & 0
\end{array}\right)=P|T|^{2} P .
$$

Hence $\left|T^{k+1}\right| \frac{2}{k+1}$ is of the form $\left|T^{k+1}\right| \frac{2}{k+1}=\left(\begin{array}{cc}|\lambda|^{2} & A \\ A^{*} & B\end{array}\right)$ for some linear operators $A: \operatorname{ran}(T-\lambda)^{*} \rightarrow \operatorname{ker}(T-\lambda)$ and $B: \operatorname{ran}(T-\lambda)^{*} \rightarrow \operatorname{ran}(T-\lambda)^{*}$.

Since $\left(\begin{array}{cc}|\lambda|^{2(k+1)} & 0 \\ 0 & 0\end{array}\right)=P\left(\left|T^{k+1}\right|^{2}\right) P=P\left(\left|T^{k+1}\right| \frac{2}{k+1}\right)^{k+1} P$, we can easily show that $A=0$. Therefore, $\left|T^{k+1}\right| \frac{2}{\mid k+1}=\left(\begin{array}{cc}|\lambda|^{2} & 0 \\ 0 & B\end{array}\right)$ and hence $\left|T^{k+1}\right|^{2}=\left(\begin{array}{cc}|\lambda|^{2(k+1)} & 0 \\ 0 & B^{(k+1)}\end{array}\right)$.

This implies that $\lambda^{k} T_{2}+\lambda^{k-1} T_{2} T_{3}+\cdots+T_{2} T_{3}^{k}=0$ and $B=\left|T_{3}^{k+1}\right| \frac{2}{k+1}$. Therefore,

$$
0 \leq\left|T^{k+1}\right| \frac{2}{\mid k+1}-|T|^{2}=\left(\begin{array}{cc}
X & Y \\
Y^{*} & Z
\end{array}\right)
$$

where $X=0, Y=-\bar{\lambda} T_{2}$ and $Z=\left|T_{3}^{k+1}\right| \frac{2}{k+1}-\left|T_{2}\right|^{2}-\left|T_{3}\right|^{2}$.
A matrix of the form $\left(\begin{array}{cc}X & Y \\ Y^{*} & Z\end{array}\right) \geq 0$ if and only if $X \geq 0, Z \geq 0$ and $Y=$ $X^{1 / 2} W Z^{1 / 2}$, for some contraction W. Hence $T_{2}=0$ and T_{3} is class A_{k}.

Corollary 2.6. If T is class A_{k} operator for a positive integer k and $(T-\lambda) x=0$ for $\lambda \neq 0$ and $x \in H$, then $(T-\lambda)^{*} x=0$.

Corollary 2.7. If T is class A_{k} operator for a positive integer $k, 0 \neq \lambda \in$ $\sigma_{p}(T)$, then T is of the form $T=\left(\begin{array}{rr}\lambda & 0 \\ 0 & T_{3}\end{array}\right)$ on $\operatorname{ker}(T-\lambda) \oplus \overline{\operatorname{ran}(T-\lambda)^{*}}$, where T_{3} is class A_{k} and $\operatorname{ker}\left(T_{3}-\lambda\right)=\{0\}$.

If $\lambda \in$ iso $\sigma(T)$, then the spectral projection (or Riesz idempotent) E_{λ} of T with respect to λ is defined by $E_{\lambda}=\frac{1}{2 \pi i} \int_{\partial D}(z-T)^{-1} d z$, where D is a closed disk with centre at λ and radius small enough such that
$D \cap \sigma(T)=\{\lambda\}$. Then $E_{\lambda}^{2}=E_{\lambda}, \quad E_{\lambda} T=T E_{\lambda}, \quad \sigma\left(T_{\mid E_{\lambda} H}\right)=\{\lambda\} \quad$ and $\operatorname{ker}(T-\lambda) \subset E_{\lambda} H$.

Theorem 2.8. If T is a class A_{k} operator for a positive integer k and $\lambda \in \sigma(T)$ is an isolated point, then the Riesz idempotent operator E_{λ} with respect to λ satisfies $E_{\lambda} H=\operatorname{ker}(T-\lambda)$. Hence λ is an eigenvalue of T.

Proof. Since $\operatorname{ker}(T-\lambda) \subseteq E_{\lambda} H$, it is enough to prove that $E_{\lambda} H \subseteq$ $\operatorname{ker}(T-\lambda)$. Now $\sigma\left(T_{\mid E_{\lambda} H}\right)=\{\lambda\}$ and $T_{\mid E_{\lambda} H}$ is class A_{k}. Therefore, by Theorem 2.3, $T_{\mid E_{\lambda} H}=\lambda$. Hence $E_{\lambda} H=\operatorname{ker}(T-\lambda)$.

Theorem 2.9 [11]. If T is a class A_{k} operator for a positive integer k, then T has SVEP and $p\left(\lambda I_{T}\right) \leq 1$ for all $\lambda \in C$. Furthermore, both T and T^{*} are reguloid.

Corollary 2.10. If T is a class A_{k} operator for a positive integer k, then T is isoloid.

Theorem 2.11. Let T be a class A_{k} operator for a positive integer k and $\lambda \neq 0$ be an isolated point in $\sigma(T)$. Then the Riesz idempotent operator E_{λ} with respect to λ is self-adjoint and satisfies $E_{\lambda} H=\operatorname{ker}(T-\lambda)$ $=\operatorname{ker}(T-\lambda)^{*}$.

Proof. Without loss of generality, we assume that $\lambda=1$. Let $T=\left(\begin{array}{ll}1 & T_{2} \\ 0 & T_{3}\end{array}\right)$ on $\operatorname{ker}(T-\lambda) \oplus \overline{\operatorname{ran}(T-\lambda)^{*}}$. By Theorem 2.5, $T_{2}=0$ and T_{3} is class A_{k}. Since $1 \in$ iso $\sigma(T)$, either $1 \in$ iso $\sigma\left(T_{3}\right)$ or $1 \notin \sigma\left(T_{3}\right)$. If $1 \in$ iso $\sigma\left(T_{3}\right)$, since T_{3} is isoloid, $1 \in \sigma_{p}\left(T_{3}\right)$ which contradicts $\operatorname{ker}\left(T_{3}-\lambda\right)$ $=\{0\}$ (by Corollary 2.7). Therefore, $1 \notin \sigma\left(T_{3}\right)$ and hence $T_{3}-1$ is invertible. Therefore, $T-1=0 \oplus\left(T_{3}-1\right)$ is invertible on H and $\operatorname{ker}(T-1)$ $=\operatorname{ker}(T-1)^{*}$. Also,

$$
E_{\lambda}=\frac{1}{2 \pi i} \int_{\partial D}(z I-T)^{-1} d z=\frac{1}{2 \pi i} \int_{\partial D}\left(\begin{array}{cc}
(z-1)^{-1} & 0 \\
0 & \left(z-T_{3}\right)^{-1}
\end{array}\right) d z=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

Therefore, E_{λ} is the orthogonal projection onto $\operatorname{ker}(T-\lambda)$ and hence E_{λ} is self-adjoint.

Theorem 2.12. If T is a partial isometry and class A_{k} operator, then T is quasinormal.

Proof. Since T is a partial isometry, $T=T T^{*} T$ [8]. This together with the definition of class A_{k} operator gives $T^{* k+1} T^{k+1} \geq\left(T^{*} T\right)^{k} \geq\left(T^{*} T\right)^{k-1}$ $\geq \cdots \geq T^{*} T$.

Therefore,

$$
\begin{aligned}
\|T x\|^{2} & \left.=\left\langle T^{*} T x, x\right\rangle \leq\left.\langle | T^{k+1}\right|^{2} x, x\right\rangle \leq\left\|T^{k+1} x\right\|^{2} \\
& \leq\left\|T^{k} x\right\|^{2} \leq \cdots\left\|T^{2} x\right\|^{2} \leq\|T x\|^{2} .
\end{aligned}
$$

Hence $\left\|T^{2} x\right\|=\|T x\|$.

$$
\begin{aligned}
\left\|T^{*} T^{2} x-T x\right\|^{2} & =\left\langle T^{*} T^{2} x, T^{*} T^{2} x\right\rangle-\left\langle T^{*} T^{2} x, T x\right\rangle-\left\langle T x, T^{*} T^{2} x\right\rangle+\langle T x, T x\rangle \\
& =\left\langle T^{2} x, T^{2} x\right\rangle-\left\langle T^{2} x, T^{2} x\right\rangle-\left\langle T^{2} x, T^{2} x\right\rangle+\langle T x, T x\rangle \\
& =\|T x\|^{2}-\left\|T^{2} x\right\|^{2}=0 .
\end{aligned}
$$

Hence $T^{*} T T=T=T T^{*} T$, i.e., T is quasinormal.

3. Weyl Type Theorems for Algebraically Class A_{k} Operators

Definition 3.1. An operator T is defined to be of algebraically class A_{k} for a positive integer k, if there exists a non-constant complex polynomial $p(t)$ such that $p(T)$ is of class A_{k}.

Theorem 3.2. If T is algebraically class A_{k} operator for some positive integer k and $\sigma(T)=\mu_{0}$, then $T-\mu_{0}$ is nilpotent.

Proof. Since T is algebraically class A_{k}, there is a non-constant polynomial $p(t)$ such that $p(T)$ is class A_{k} for some positive integer k, then applying Theorem 2.3,

$$
\sigma(p(T))=p(\sigma(T))=\left\{p\left(\mu_{0}\right)\right\} \text { implies } p(T)=p\left(\mu_{0}\right)
$$

Let $p(z)-p\left(\mu_{0}\right)=a\left(z-\mu_{0}\right)^{k_{0}}\left(z-\mu_{1}\right)^{k_{1}} \cdots\left(z-\mu_{t}\right)^{k_{t}}$, where $\mu_{j} \neq \mu_{s}$ for $j \neq s$. Then $0=p(T)-p\left(\mu_{0}\right)=a\left(T-\mu_{0}\right)^{k_{0}}\left(T-\mu_{1}\right)^{k_{1}} \cdots\left(T-\mu_{t}\right)^{k_{t}}$. Since $T-\mu_{1}, T-\mu_{2}, \ldots, T-\mu_{t}$ are invertible, $\left(T-\mu_{0}\right)^{k_{0}}=0$. Hence $T-\mu_{0}$ is nilpotent.

If T is algebraically class A_{k} operator for some positive integer k, then there exists a non-constant polynomial $p(t)$ such that $p(T)$ is class A_{k}. By Theorem 4.3 [16], $p(T)$ is of finite ascent. Therefore, $(p(T))$ and hence T has SVEP ([14, Theorem 3.3.6]).

Theorem 3.3. If T is algebraically class A_{k} operator for some positive integer k, then Weyl's theorem holds for T.

Proof. Assume that $\lambda \in \sigma(T)-w(T)$. Then $T-\lambda$ is Weyl and not invertible.

Claim. $\lambda \in \partial \sigma(T)$. Assume on the contrary that λ is an interior point of $\sigma(T)$. Then there exists a neighborhood U of λ such that $\operatorname{dim} N(T-\mu)>0$ for all μ in U. Hence by ([7, Theorem 10]), T does not have SVEP which is a contradiction. Hence $\lambda \in \partial \sigma(T)-w(T)$. Therefore, by punctured neighborhood theorem, $\lambda \in \pi_{00}(T)$.

Conversely, suppose that $\lambda \in \pi_{00}(T)$. Using the Riesz idempotent E_{λ} with respect to λ, we can represent T as the direct sum $T=\left(\begin{array}{cc}T_{1} & 0 \\ 0 & T_{2}\end{array}\right)$, where $\sigma\left(T_{1}\right)=\{\lambda\}$ and $\sigma\left(T_{2}\right)=\sigma(T)-\{\lambda\}$. Then by Theorem 3.2, $T_{1}-\lambda$ is nilpotent. Since $\lambda \in \pi_{00}(T), T_{1}-\lambda$ is a finite dimensional operator, so $T_{1}-\lambda$ is Weyl. But since $T_{2}-\lambda$ is invertible, $T-\lambda$ is Weyl. Hence $\lambda \in \sigma(T)-w(T)$. Therefore, $\sigma(T)-w(T)=\pi_{00}(T)$.

By ([3, Theorem 2.16]), we get the following result.
Corollary 3.4. If T is algebraically class A_{k} for some positive integer k, and T^{*} has SVEP, then a-Weyl's theorem and property (w) hold for T.

Theorem 3.5. If T is algebraically class A_{k} operator for some positive integer k, then $w(f(T))=f(w(T))$ for every $f \in \operatorname{Hol}(\sigma(T))$.

Proof. Suppose that T is algebraically class A_{k} for some positive integer k. Then T has SVEP. Hence by [10, Proposition 38.5], ind $(T-\lambda) \leq 0$ for all complex numbers λ. Now to prove the result, it is sufficient to show that $f(w(T)) \subseteq w(f(T))$. Let $\lambda \in f(w(T))$. Suppose if $\lambda \notin w(f(T))$, then $f(T)-\lambda I$ is Weyl and hence $\operatorname{ind}(f(T)-\lambda)=0$. Let $f(z)-\lambda=$ $\left(z-\lambda_{1}\right)\left(z-\lambda_{2}\right) \ldots\left(z-\lambda_{n}\right) g(z)$. Then $f(T)-\lambda=\left(T-\lambda_{1}\right)\left(T-\lambda_{2}\right) \cdots$ $\left(T-\lambda_{n}\right) g(T) \quad$ and $\quad \operatorname{ind}(f(T)-\lambda)=0=\operatorname{ind}\left(T-\lambda_{1}\right)+\operatorname{ind}\left(T-\lambda_{2}\right)+\cdots$ $+\operatorname{ind}\left(T-\lambda_{n}\right)+\operatorname{indg}(T)$. Since each of $\operatorname{ind}\left(T-\lambda_{i}\right) \leq 0$, we get that $\operatorname{ind}\left(T-\lambda_{i}\right)=0$, for all $i=1,2, \ldots, n$. Therefore, $T-\lambda_{i}$ is Weyl for each $i=1,2, \ldots, n$. Hence $\lambda_{i} \notin w(T)$ and hence $\lambda \notin f(w(T))$, which is a contradiction. Hence the theorem.

Theorem 3.6. If T is algebraically class A_{k} operator for some positive integer k, then Weyl's theorem holds for $f(T)$, for every $f \in \operatorname{Hol}(\sigma(T))$.

Proof. For every $f \in \operatorname{Hol}(\sigma(T))$,

$$
\begin{aligned}
\sigma(f(T))-\pi_{00}(f(T)) & \left.\left.=f\left(\sigma(T)-\pi_{00}(T)\right) \text { by ([15, Lemma }\right]\right) \\
& =f(w(T)) \text { by Theorem } 3.3 \\
& =w(f(T)) \text { by Theorem 3.5. }
\end{aligned}
$$

Hence Weyl's theorem holds for $f(T)$, for every $f \in \operatorname{Hol}(\sigma(T))$.
Theorem 3.7. If T or T^{*} is algebraically class A_{k} operator for some positive integer k, then $\sigma_{e a}(f(T))=f\left(\sigma_{e a}(T)\right)$.

Proof. For $T \in B(H)$, by [17], the inclusion $\sigma_{e a}(f(T)) \subseteq f\left(\sigma_{e a}(T)\right)$ holds for every $f \in \operatorname{Hol}(\sigma(T))$ with no restrictions on T. Therefore, it is enough to prove that $f\left(\sigma_{e a}(T)\right) \subseteq \sigma_{e a}(f(T))$.

Suppose if $\lambda \notin \sigma_{e a}(f(T))$, then $f(T)-\lambda \in \Phi_{+}^{-}(H)$, that is, $f(T)-\lambda$ is upper semi-Fredholm operator with index less than or equal to zero. Also, $f(T)-\lambda=c\left(T-\alpha_{1}\right)\left(T-\alpha_{2}\right) \ldots\left(T-\alpha_{n}\right) g(T)$, where $g(T)$ is invertible and $\alpha_{1} \alpha_{2}, \ldots \alpha_{n} \in C$.

If T is algebraically class A_{k} for some positive integer k, then there exists a non-constant polynomial $p(t)$ such that $p(T)$ is class A_{k}. Then $p(T)$ has SVEP and hence T has SVEP. Therefore, $\operatorname{ind}\left(T-\alpha_{i}\right) \leq 0$ and hence $T-\alpha_{i} \in \Phi_{+}^{-}(H)$ for each $i=1,2, \ldots, n$. Therefore, $\lambda=f\left(\alpha_{i}\right) \notin$ $f\left(\sigma_{e a}(T)\right)$. Hence $\sigma_{e a}(f(T))=g\left(\sigma_{e a}(T)\right)$.

If T^{*} is algebraically class A_{k} for some positive integer k, then there exists a non-constant polynomial $p(t)$ such that $p\left(T^{*}\right)$ is class A_{k}. Then $p\left(T^{*}\right)$ has SVEP and hence T^{*} has SVEP. Therefore, $\operatorname{ind}\left(T-\alpha_{i}\right) \geq 0$ for each $i=1,2, \ldots, n$. Therefore, $0 \leq \sum_{i=1}^{n} \operatorname{ind}\left(T-\alpha_{i}\right)=\operatorname{ind}(f(T)-\lambda) \leq 0$. Therefore, $\operatorname{ind}\left(T-\alpha_{i}\right)=0$ for each $i=1,2, \ldots, n$. Therefore, $T-\alpha_{i}$ is Weyl for each $i=1,2, \ldots, n . \quad\left(T-\alpha_{i}\right) \in \Phi_{+}^{-}(H)$ and hence $\alpha_{i} \notin \sigma_{e a}(T)$. Therefore, $\lambda=f\left(\alpha_{i}\right) \notin f\left(\sigma_{e a}(T)\right)$. Hence $\sigma_{e a}(f(T))=f\left(\sigma_{e a}(T)\right)$.

Theorem 3.8. If T is algebraically class A_{k} operator for some positive integer k, then T is polaroid.

Proof. If $\lambda \in$ iso $\sigma(T)$ using the spectral projection of T with respect to λ, we can write $T=T_{1} \oplus T_{2}$, where $\sigma\left(T_{1}\right)=\{\lambda\}$ and $\sigma\left(T_{2}\right)=\sigma(T)-\{\lambda\}$. Since T_{1} is algebraically class A_{k} operator and $\sigma\left(T_{1}\right)=\{\lambda\}$, by Theorem 3.2, $T_{1}-\lambda I$ is nilpotent. Since $\lambda \notin \sigma\left(T_{2}\right), T_{2}-\lambda I$ is invertible. Hence
both $T_{1}-\lambda I$ and $T_{2}-\lambda I$ and hence $T-\lambda I$ have finite ascent and descent. Hence λ is a pole of the resolvent of T. Hence T is polaroid.

Corollary 3.9. If T is algebraically class A_{k} operator for some positive integer k, then T is reguloid.

Corollary 3.10. If T is algebraically class A_{k} operator for some positive integer k, then T is isoloid.

If T^{*} has SVEP, then by ([1, Lemma 2.15]), $\sigma_{e a}(T)=\sigma(T)$ and by ([2, Corollary 2.45]) $\sigma(T)=\sigma_{a}(T)$. Hence we get the following result.

Corollary 3.11. If T is algebraically class A_{k} for some positive integer k and if in addition T^{*} has SVEP, then a-Weyl's theorem holds for $f(T)$ for every $f \in H(\sigma(T))$.

Corollary 3.12. If T^{*} is algebraically class A_{k} for some positive integer k, then $w(f(T))=f(w(T))$.

By ([1, Theorem 2.17]), we get the following results.
Corollary 3.13. If T is algebraically class A_{k} for some positive integer k, and T^{*} has SVEP, then property (b) holds for T.

Corollary 3.14. If T is algebraically class A_{k} for some positive integer k, Weyl's theorem, a-Weyl's theorem, then property (w) and property (b) hold for T^{*}.

4. Generalized Weyl's Theorem

For an operator T and a nonnegative integer n, define $T_{[n]}$ to be the restriction of T to $R\left(T^{n}\right)$ viewed as a map from $R\left(T^{n}\right)$ into $R\left(T^{n}\right)$. In particular, $T_{[0]}=T$. If for some integer $n, R\left(T^{n}\right)$ is closed and $T_{[n]}$ is an upper (resp. a lower) semi-Fredholm operator, then T is called an upper (resp. lower) semi-B-Fredhom operator. Moreover, if $T_{[n]}$ is a Fredholm
operator, then T is called a B-Fredholm operator. A semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm operator. The index of a semi-B-Fredholm operator T is the index of semi-Fredholm operator $T_{[d]}$, where d is the degree of the stable iteration of T and defined as $d=$ $\inf \left\{n \in N\right.$; for all $\left.m \in N, m \geq n \Rightarrow\left(R\left(T^{n}\right) \cap N(T)\right) \subset\left(R\left(T^{m}\right) \cap N(T)\right)\right\}$. T is called a B-Weyl operator if it is B-Fredholm of index 0 . The B-Weyl spectrum $\sigma_{B W}(T)$ of T is defined by $\sigma_{B W}(T)=\{\lambda \in C: T-\lambda I$ is not a B-Weyl operator\}. We say that T satisfies generalized Weyl's theorem [4] if $\sigma(T)-\sigma_{B W}(T)=E(T)$, where $E(T)$ denotes the isolated eigenvalues of T with no restriction on multiplicity. An operator T is Drazin invertible, if it has finite ascent and descent.

Theorem 4.1. If T is algebraically class A_{k} operator for some positive integer k, then generalized Weyl's theorem holds for T.

Proof. Assume that $\lambda \in \sigma(T)-\sigma_{B W}(T)$. Then $T-\lambda$ is B-Weyl and not invertible. Then as in the necessary part of the proof of Theorem 3.3, we get $\lambda \in E(T)$.

Conversely, suppose that $\lambda \in E(T)$. Then λ is isolated in $\sigma(T)$. Using the Riesz idempotent E_{λ} with respect to λ, we can represent T as the direct sum $T=\left(\begin{array}{cc}T_{1} & 0 \\ 0 & T_{2}\end{array}\right)$, where $\sigma\left(T_{1}\right)=\{\lambda\}$ and $\sigma\left(T_{2}\right)=\sigma(T)-\{\lambda\}$. Then by Theorem 3.2, $T_{1}-\lambda$ is nilpotent. Since $\lambda \notin \sigma\left(T_{2}\right), T_{2}-\lambda$ is invertible. Hence both $T_{1}-\lambda$ and $T_{2}-\lambda$ have both finite ascent and descent. Hence $T-\lambda$ has both finite ascent and descent. Hence $T-\lambda$ is Drazin invertible. Therefore, by [5, Lemma 4.1], $T-\lambda$ is B-Fredholm of index 0 . Hence $\lambda \in \sigma(T)-\sigma_{B W}(T)$. Therefore, $\sigma(T)-\sigma_{B W}(T)=E(T)$.

References

[1] P. Aiena, Fredholm and Local Spectral Theory with Application to Multipliers, Kluwer Acad. Publishers, 2004.
[2] P. Aiena, Weyl type theorems for polaroid operators, 3GIUGNO, 2009.
[3] P. Aiena and P. Pena, Variations on Weyl's theorem, J. Math. Anal. Appl. 324 (2006), 566-579.
[4] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), 1717-1723.
[5] M. Berkani, Index of B-Fredholm operators and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), 596-603.
[6] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
[7] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.
[8] P. R. Halmos, Hilbert Space Problem Book, Springer-Verlag, New York, 1974.
[9] F. Hansen, An operator inequality, Math. Ann. 246 (1980), 249-250.
[10] H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982.
[11] N. Jayanthi and D. Sumathi, Class A_{k} operators, Paper Presented at the UGC National Seminar for Staff on Recent Advancements in Pure and Applied Mathematics at Sri Sarada College for Women (Autonomous), Salem, Tamilnadu, 2012.
[12] D. Koehler and P. Rosenthal, On isometries of normed linear spaces, Studia Math. 35 (1970), 213-216.
[13] C. S. Kubrusly and B. P. Duggal, A note on k-paranormal operators, Operators and Matrices 4(2) (2010), 213-223.
[14] K. B. Laursen and M. M. Neumann, An introduction to local spectral theory, London Mathematical Society Monographs New Series 20, Clarendon Press, Oxford, 2000.
[15] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38(1) (1996), 61-64.
[16] S. Panayappan, N. Jayanthi and D. Sumathi, Weyl's theorem and tensor product for class A_{k} operators, Pure Mathematical Sciences 1(1) (2012), 13-23.
[17] V. Rakocevic, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198.
[18] V. Rakocevic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34(10) (1989), 915-919.

