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Abstract 

If T is class kA  operator for a positive integer k and ∈λ≠0  

( ) ,Tisoσ  then the Riesz-idempotent operator λE  with respect to λ is 

self-adjoint and satisfies ( ) ( ) .kerker ∗
λ λ−=λ−= TTHE  If T is 

algebraically class kA  operator, then Weyl’s theorem holds for T and 

other Weyl type theorems are discussed. 

1. Introduction and Preliminaries 

Let ( )HB  be the Banach algebra of all bounded linear operators on a 

non-zero complex Hilbert space H. By an operator T, we mean an element in 

( ).HB  If T lies in ( ),HB  then ∗T  denotes the adjoint of T in ( ).HB  An 

operator T is said to be of class A, if .22 TT ≥  An operator T is called 
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paranormal if ,22 TxxT ≥  for every unit vector x in H. An operator T 

is called k-paranormal for positive integer k, if 11 ++ ≥ kk TxxT  for 

every unit vector x in H. An operator T is called quasinormal if 

( ) ( ) .TTTTTT ∗∗ =  

An operator T is called a Fredholm operator if the range of T denoted by 

( )Tran  is closed and both Tker  and ∗Tker  are finite dimensional and is 

denoted by ( ).HT Φ∈  An operator T is called upper semi-Fredholm 

operator, ( ),HT +Φ∈  if ( )Tran  is closed and Tker  is finite dimensional. 

An operator T is called lower semi-Fredholm operator, ( ),HT −Φ∈  if 
∗Tker  is finite dimensional. The index of a semi-Fredholm operator T is 

an   integer defined as ( ) .kerdimkerdim ∗−= TTTind  An upper semi-

Fredholm operator with index less than or equal to 0 is called upper semi-

Weyl operator and is denoted by ( ).HT −
+Φ∈  A lower semi-Fredholm 

operator with index greater than or equal to 0 is called lower semi-Weyl 

operator and is denoted by ( ).HT +
−Φ∈  A Fredholm operator of index 0 is 

called Weyl operator. The set of all isolated eigenvalues of finite multiplicity 
of T is denoted by ( )T00π  and the set of all isolated eigenvalues of finite 

multiplicity of T in ( )Taσ  is denoted by ( ).00 Taπ  

The spectrum of T is denoted by ( ),Tσ  where 

( ) { }.invertiblenotis: ITCT λ−∈λ=σ  

The approximate point spectrum of T is denoted by ( ),Taσ  where 

( ) { }.belowboundednotis: ITCTa λ−∈λ=σ  

The essential spectrum of T is defined as 

( ) { }.Fredholmnotis: ITCTe λ−∈λ=σ  
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The essential approximate point spectrum of T is defined as 

( ) { ( )}.: HITCTea
−
+Φ∉λ−∈λ=σ  

The Weyl spectrum of T is defined as 

( ) { }.Weylnotis: ITCTw λ−∈λ=  

When the space is infinite dimensional, ( ) { }00 =w  and ( ) { }0=Tw  if T 

is compact. Weyl has shown that ( )KT +σ∈λ  for every compact operator 

K if and only if λ is not an isolated eigenvalue of finite multiplicity in ( )Tσ  

for a Hermitian operator. We say that Weyl’s theorem holds for T [6] if T 
satisfies the equality ( ) ( ) ( )TTwT 00π=−σ  and a-Weyl’s theorem holds for 

T [18] if T satisfies the equality ( ) ( ) ( ).00 TTT a
eaa π=σ−σ  

The ascent of T denoted by ( ),Tp  is the least nonnegative integer n such 

that .kerker 1+= nn TT  The descent of T denoted by ( ),Tq  is the least 

nonnegative integer n such that ( ) ( ).1+= nn TranTran  T is said to be of 

finite ascent if ( ) ,∞<λ−Tp  for all .C∈λ  If ( )Tp  and ( )Tq  are both 

finite, then ( ) ( )TqTp =  (by [10, Proposition 38.3]). Moreover, <0  

( ) ( ) ∞<−λ=−λ TIqTIp  precisely when λ is a pole of the resolvent of T. 

An upper semi-Fredholm operator with finite ascent is called upper semi-
Browder operator and is denoted by ( )HBT +∈  while a lower semi-

Fredholm operator with finite descent is called lower semi-Browder operator 
and is denoted by ( ).HBT −∈  A Fredholm operator with finite ascent and 

descent is called Browder operator. Clearly, the class of all Browder 
operators is contained in the class of all Weyl operators. Similarly, the class 
of all upper semi-Browder operators is contained in the class of all upper 
semi-Weyl operators and the class of all lower semi-Browder operators is 
contained in the class of all lower semi-Weyl operators. 

The Browder spectrum of T is defined as 

( ) { }.Browdernotis: ITCTb λ−∈λ=σ  
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For an operator T, ( )Tp00  is defined as 

( ) ( ) ( ).00 TTTp bσ−σ=  

We say that T satisfies property ( )w  if 

( ) ( ) ( )TTT eaa 00π=σ−σ  

and T satisfies property (b) if 

( ) ( ) ( ).00 TpTT eaa =σ−σ  

An operator T is said to have the single valued extension property 
(SVEP) at ,0 C∈λ  if for every open neighborhood U of ,0λ  the only 

analytic function XUf →:  which satisfies the equation ( ) ( ) 0=λ−λ fTI  

for all ,U∈λ  is the function .0≡f  An operator T is said to have SVEP, if 

T has SVEP at every point .C∈λ  

An operator T is called polaroid if ( ) ( ),TTiso π⊆σ  where ( )Tπ  is the 

set of poles of the resolvent of T and ( )Tisoσ  is the set of all isolated points 

of ( ).Tσ  An operator T is said to be isoloid if every isolated point of ( )Tσ  is 

an eigenvalue of T. An operator T is said to be reguloid if for every isolated 
point λ of ( ),Tσ  TI −λ  is relatively regular. An operator T is known as 

relatively regular if and only if ker T and ( )XT  are complemented. Also, 

polaroid ⇒ reguloid ⇒ isoloid. 

In [16], we showed that class kA  operators form a proper subclass of    

k-paranormal operators, class kA  operators have finite ascent and satisfy 

Weyl’s theorem. 

In this paper, we prove that if T is class kA  operator for a positive integer 

k and ( ),0 Tisoσ∈λ≠  then the Riesz-idempotent operator λE  with respect 

to λ is self-adjoint and satisfies ( ) ( ) .kerker ∗
λ λ−=λ−= TTHE  If T is 

algebraically class kA  operator, then Weyl’s theorem holds for T and ( ),Tf  
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for every ( )( ),THolf σ∈  T is polaroid and other Weyl type theorems are 

discussed. 

2. Spectral Properties of Class kA  Operators 

Definition 2.1. An operator ( )HBT ∈  is defined to be of class ,kA  if 

21
21 TT kk ≥++  for some positive integer k. If ,1=k  then class kA  

coincides with class A operator. 

Example 2.2. Let H be the direct sum of a denumerable number of 
copies of two dimensional Hilbert space .RR ×  Let A and B be two positive 
operators on .RR ×  For any fixed positive integer n, define an operator 

nBATT ,,=  on H as follows: 

( )( ) ( ) ( ) ( ) ( )( )....,,...,,,,0...,,, 121321 += nn xBxAxAxAxxxT  

Its adjoint ∗T  is given by 

( )( ) ( ) ( ) ( ) ( )( )....,,...,,,...,,, 132321 +
∗ = nn xBxAxAxAxxxT  

For ,kn ≥  nBAT ,,  is of class kA  if and only if A and B satisfy 

( ) ....,,2,1,21
1121 kiAABA kikiik =≥++−+−  

If ⎟
⎠
⎞

⎜
⎝
⎛=

00
021

A  and ,
11
11
⎟
⎠
⎞

⎜
⎝
⎛=B  then nBATT ,,=  is of class .2A  

Kubrusly and Duggal [13] have shown that k-paranormal operators are 
hereditarily normaloid. Since class kA  operators are k-paranormal, it follows 

that class kA  operators are hereditarily normaloid. 

Theorem 2.3. If T is class kA  operator for a positive integer k and for 

( ) ,, λ=σ∈λ TC  then .λ=T  
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Proof. If ,0=λ  then since class kA  operator is normaloid, .0=T  

Assume that .0≠λ  Then T is an invertible normaloid operator with 

( ) .λ=σ T  TT
λ

= 1
1  is an invertible normaloid operator with ( ) { }.11 =σ T  

Hence 1T  is similar to an invertible isometry B (on an equivalent normed 

linear space) with ( ) 1=σ B  (by Theorem 2, [12]) 1T  and B being similar, 1 

is an eigenvalue of TT
λ

= 1
1  (by Theorem 5, [12]). Therefore, by Theorem 

1.5.14 of [14], .1 IT =  Hence .λ=T   

Theorem 2.4. If T is class kA  operator for a positive integer k and M is 

an invariant subspace of T, then the restriction MT |  is also class .kA  

Proof. Let ⎟
⎠
⎞

⎜
⎝
⎛=

00
01

P  be the orthogonal projection of H onto M and 

.1 MTT |=  Then PTPTP =  and ( ) .1 MPTPT |=  

Since T is of class kA  operator, .021
21 ≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+

+ PTTP kk  By 

Hansen’s inequality [9], 

( ) ( ) kkkkkkkk PTPTPTTPPTP +
++∗

+
++∗

+
+ ≤=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
1

1111
1111

21  

.
00
0

00
0 1

21
1

1
1

21
1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= +

+++
kkkk

TT  

Hence .
00
0

00
0

2
121

211
21

1 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=≥⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≥

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

++
+ TPTPPTPT kkkk

 Hence 

1T  is also class kA  operator on M.  
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Theorem 2.5. If T is class kA  operator for a positive integer k, 

( )Tpσ∈λ≠0  and T is of the form ⎟
⎠

⎞
⎜
⎝

⎛λ=
3

2
0 T

T
T  on ( ) ⊕λ−Tker  

( ) ,∗λ−Tran  then 

1. 02 =T  and 

2. 3T  is class .kA  

Proof. Let P be the orthogonal projection of H onto ker ( ).λ−T   

Since T is class ,kA  T satisfies 

,021
21 ≥−++ TT kk  

where k is a positive integer. Hence 

( ) ,021
21 ≥−++ PTTP kk  

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ λ=
00
02

2 PTP  and ( )
( )

.
00
012

21
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ λ=
+

+
k

k PTP   

Therefore, 

( ) .
00
0

00
0 2

21
211

121
2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ λ=≥≥=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ λ
++++ PTPPTPPTP kkkk  

Therefore, 

.
00
0 2

2
1

21 PTPPTP kk =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ λ=++  

Hence 1
21
+

+ kkT  is of the form ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ λ= ∗+
+

BA
AT kk

2
1

21  for some linear 

operators ( ) ( )λ−→λ− ∗ TTranA ker:  and ( ) ( ) .: ∗∗ λ−→λ− TranTranB  
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Since 
( )

( ) ,
00
0

1
1

2121
12

PTPPTP
k

kkk
k +

+
++

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ λ  we can 

easily show that .0=A  Therefore, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ λ=++

B
T kk

0
02

1
21  and hence 

( )

( ) .
0

0
1

12
21

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ λ= +

+
+

k

k
k

B
T  

This implies that 03232
1

2 =++λ+λ − kkk TTTTT "  and .1
21

3 +
+= kkTB  

Therefore, 

,0 21
21 ⎟

⎠
⎞

⎜
⎝
⎛=−≤ ∗+

+
ZY
YX

TT kk  

where 2,0 TYX λ−==  and .2
3

2
21

21
3 TTTZ kk −−= ++  

A matrix of the form 0≥⎟
⎠
⎞

⎜
⎝
⎛

∗ ZY
YX

 if and only if 0,0 ≥≥ ZX  and =Y  

,2121 WZX  for some contraction W. Hence 02 =T  and 3T  is class .kA   

Corollary 2.6. If T is class kA  operator for a positive integer k and 

( ) 0=λ− xT  for 0≠λ  and ,Hx ∈  then ( ) .0=λ− ∗ xT  

Corollary 2.7. If T is class kA  operator for a positive integer k, ∈λ≠0  

( ),Tpσ  then T is of the form ⎟
⎠

⎞
⎜
⎝

⎛λ=
30
0

T
T  on ( ) ⊕λ−Tker  ( ) ,∗λ−Tran  

where 3T  is class kA  and ( ) { }.0ker 3 =λ−T  

If ( ),Tiso σ∈λ  then the spectral projection (or Riesz idempotent) λE  

of  T with respect to λ is defined by ( )∫∂
−

λ −
π

=
D

dzTziE ,2
1 1  where D                      

is a closed disk with centre at λ and radius small enough such that 
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( ) { }.λ=σ TD ∩  Then ,2
λλ = EE  ,λλ = TETE  ( ) { }λ=σ

λ| HET  and 

( ) .ker HET λ⊂λ−  

Theorem 2.8. If T is a class kA  operator for a positive integer k and 

( )Tσ∈λ  is an isolated point, then the Riesz idempotent operator λE  with 

respect to λ satisfies ( ).ker λ−=λ THE  Hence λ is an eigenvalue of T. 

Proof. Since ( ) ,ker HET λ⊆λ−  it is enough to prove that ⊆λHE  

( ).ker λ−T  Now ( ) { }λ=σ
λ| HET  and HET

λ|  is class .kA  Therefore, by 

Theorem 2.3, .λ=
λ| HET  Hence ( ).ker λ−=λ THE   

Theorem 2.9 [11]. If T is a class kA  operator for a positive integer k, 

then T has SVEP and ( ) 1≤λ TIp  for all .C∈λ  Furthermore, both T and 
∗T  are reguloid. 

Corollary 2.10. If T is a class kA  operator for a positive integer k, then 

T is isoloid. 

Theorem 2.11. Let T be a class kA  operator for a positive integer k and 

0≠λ  be an isolated point in ( ).Tσ  Then the Riesz idempotent operator   

λE  with respect to λ is self-adjoint and satisfies ( )λ−=λ THE ker  

( ) .ker ∗λ−= T  

Proof. Without loss of generality, we assume that .1=λ  Let 

⎟
⎠

⎞
⎜
⎝

⎛=
3

2
0
1

T
T

T  on ( ) ( ) .ker ∗λ−⊕λ− TranT  By Theorem 2.5, 02 =T  and 

3T  is class .kA  Since ( ),1 Tisoσ∈  either ( )31 Tisoσ∈  or ( ).1 3Tσ∉  If 

( ),1 3Tisoσ∈  since 3T  is isoloid, ( )31 Tpσ∈  which contradicts ( )λ−3ker T  

{ }0=  (by Corollary 2.7). Therefore, ( )31 Tσ∉  and hence 13 −T  is 

invertible. Therefore, =− 1T ( )10 3 −⊕ T  is invertible on H and ( )1ker −T  

( ) .1ker ∗−= T  Also, 
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( ) ( )
( )

.
00
01

0
01

2
1

2
1

1
3

1
1 ⎟

⎠
⎞

⎜
⎝
⎛=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
−

π
=−

π
= ∫∫ ∂ −

−

∂
−

λ DD
dz

Tz
z

idzTzIiE  

Therefore, λE  is the orthogonal projection onto ( )λ−Tker  and hence λE  is 

self-adjoint.  

Theorem 2.12. If T is a partial isometry and class kA  operator, then T 

is quasinormal. 

Proof. Since T is a partial isometry, TTTT ∗=  [8]. This together with 

the definition of class kA  operator gives ( ) ( ) 111 −∗∗++∗ ≥≥ kkkk TTTTTT  

.TT∗≥≥"  

 Therefore, 
21212 ,, xTxxTxTxTTx kk ++∗ ≤≤=  

.2222 TxxTxT k ≤≤≤ "  

Hence .2 TxxT =  

TxTxxTTTxTxxTTxTTxTTTxxTT ,,,, 222222 +−−=− ∗∗∗∗∗  

TxTxxTxTxTxTxTxT ,,,, 222222 +−−=  

.0222 =−= xTTx  

Hence ,TTTTTTT ∗∗ ==  i.e., T is quasinormal.  

3. Weyl Type Theorems for Algebraically Class kA  Operators 

Definition 3.1. An operator T is defined to be of algebraically class kA  

for a positive integer k, if there exists a non-constant complex polynomial 
( )tp  such that ( )Tp  is of class .kA  

Theorem 3.2. If T is algebraically class kA  operator for some positive 

integer k and ( ) ,0μ=σ T  then 0μ−T  is nilpotent. 
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Proof. Since T is algebraically class ,kA  there is a non-constant 
polynomial ( )tp  such that ( )Tp  is class kA  for some positive integer k, 
then applying Theorem 2.3, 

( )( ) ( )( ) ( ){ }0μ=σ=σ pTpTp  implies ( ) ( ).0μ= pTp  

Let ( ) ( ) ( ) ( ) ( ) ,10 100 tk
t

kk zzzapzp μ−μ−μ−=μ− "  where sj μ≠μ  for 

.sj ≠  Then ( ) ( ) ( ) ( ) ( ) .0 10 100 tk
t

kk TTTapTp μ−μ−μ−=μ−= "  Since 

tTTT μ−μ−μ− ...,,, 21  are invertible, ( ) .000 =μ− kT  Hence 0μ−T  is 
nilpotent.  

If T is algebraically class kA  operator for some positive integer k, then 

there exists a non-constant polynomial ( )tp  such that ( )Tp  is class .kA  By 

Theorem 4.3 [16], ( )Tp  is of finite ascent. Therefore, ( )( )Tp  and hence T 
has SVEP ([14, Theorem 3.3.6]). 

Theorem 3.3. If T is algebraically class kA  operator for some positive 

integer k, then Weyl’s theorem holds for T. 

Proof. Assume that ( ) ( ).TwT −σ∈λ  Then λ−T  is Weyl and not 
invertible. 

Claim. ( ).Tσ∂∈λ  Assume on the contrary that λ is an interior point of 

( ).Tσ  Then there exists a neighborhood U of λ such that ( ) 0dim >μ−TN  

for all μ in U. Hence by ([7, Theorem 10]), T does not have SVEP which 
is   a   contradiction. Hence ( ) ( ).TwT −σ∂∈λ  Therefore, by punctured 
neighborhood theorem, ( ).00 Tπ∈λ  

Conversely, suppose that ( ).00 Tπ∈λ  Using the Riesz idempotent λE  

with respect to λ, we can represent T as the direct sum ,
0

0

2

1 ⎟
⎠
⎞

⎜
⎝
⎛=

T
T

T  where 

( ) { }λ=σ 1T  and ( ) ( ) { }.2 λ−σ=σ TT  Then by Theorem 3.2, λ−1T  is 

nilpotent. Since ( ),00 Tπ∈λ  λ−1T  is a finite dimensional operator, so 

λ−1T  is Weyl. But since λ−2T  is invertible, λ−T  is Weyl. Hence 

( ) ( ).TwT −σ∈λ  Therefore, ( ) ( ) ( ).00 TTwT π=−σ   
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By ([3, Theorem 2.16]), we get the following result. 

Corollary 3.4. If T is algebraically class kA  for some positive integer k, 

and ∗T  has SVEP, then a-Weyl’s theorem and property ( )w  hold for T. 

Theorem 3.5. If T is algebraically class kA  operator for some positive 

integer k, then ( )( ) ( )( )TwfTfw =  for every ( )( ).THolf σ∈  

Proof. Suppose that T is algebraically class kA  for some positive integer 

k. Then T has SVEP. Hence by [10, Proposition 38.5], ( ) 0≤λ−Tind  for all 

complex numbers λ. Now to prove the result, it is sufficient to show that 
( )( ) ( )( ).TfwTwf ⊆  Let ( )( ).Twf∈λ  Suppose if ( )( ),Tfw∉λ  then 

( ) ITf λ−  is Weyl and hence ( )( ) .0=λ−Tfind  Let ( ) =λ−zf  

( ) ( ) ( ) ( ).21 zgzzz nλ−λ−λ− …  Then ( ) ( ) ( )"21 λ−λ−=λ− TTTf  

( ) ( )TgT nλ−  and ( )( ) ( ) ( ) "+λ−+λ−==λ− 210 TindTindTfind  

( ) ( ).TindgTind n +λ−+  Since each of ( ) ,0≤λ− iTind  we get that 

( ) ,0=λ− iTind  for all ....,,2,1 ni =  Therefore, iT λ−  is Weyl for each 

....,,2,1 ni =  Hence ( )Twi ∉λ  and hence ( )( ),Twf∉λ  which is a 

contradiction. Hence the theorem.  

Theorem 3.6. If T is algebraically class kA  operator for some positive 

integer k, then Weyl’s theorem holds for ( ),Tf  for every ( )( ).THolf σ∈  

Proof. For every ( )( ),THolf σ∈  

( )( ) ( )( ) ( ) ( )( )TTfTfTf 0000 π−σ=π−σ  by ([15, Lemma]) 

( )( )Twf=  by Theorem 3.3 

( )( )Tfw=  by Theorem 3.5. 

Hence Weyl’s theorem holds for ( ),Tf  for every ( )( ).THolf σ∈   

Theorem 3.7. If T or ∗T  is algebraically class kA  operator for some 

positive integer k, then ( )( ) ( )( ).TfTf eaea σ=σ  
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Proof. For ( ),HBT ∈  by [17], the inclusion ( )( ) ( )( )TfTf eaea σ⊆σ  

holds for every ( )( )THolf σ∈  with no restrictions on T. Therefore, it is 

enough to prove that ( )( ) ( )( ).TfTf eaea σ⊆σ  

Suppose if ( )( ),Tfeaσ∉λ  then ( ) ( ),HTf −
+Φ∈λ−  that is, ( ) λ−Tf  

is upper semi-Fredholm operator with index less than or equal to zero. Also, 
( ) ( ) ( ) ( ) ( ),21 TgTTTcTf nα−α−α−=λ− …  where ( )Tg  is invertible 

and .,21 Cn ∈ααα …  

If T is algebraically class kA  for some positive integer k, then there 

exists a non-constant polynomial ( )tp  such that ( )Tp  is class .kA  Then 

( )Tp  has SVEP and hence T has SVEP. Therefore, ( ) 0≤α− iTind  and 

hence ( )HT i
−
+Φ∈α−  for each ....,,2,1 ni =  Therefore, ( ) ∉α=λ if  

( )( ).Tf eaσ  Hence ( )( ) ( )( ).TgTf eaea σ=σ  

If ∗T  is algebraically class kA  for some positive integer k, then there 

exists a non-constant polynomial ( )tp  such that ( )∗Tp  is class .kA  Then 

( )∗Tp  has SVEP and hence ∗T  has SVEP. Therefore, ( ) 0≥α− iTind  for 

each ....,,2,1 ni =  Therefore, ( ) ( )( )∑ = ≤λ−=α−≤ n
i i TfindTind1 .00  

Therefore, ( ) 0=α− iTind  for each ....,,2,1 ni =  Therefore, iT α−  is 

Weyl for each ....,,2,1 ni =  ( ) ( )HT i
−
+Φ∈α−  and hence ( ).Teai σ∉α  

Therefore, ( ) ( )( ).Tff eai σ∉α=λ  Hence ( )( ) ( )( ).TfTf eaea σ=σ   

Theorem 3.8. If T is algebraically class kA  operator for some positive 

integer k, then T is polaroid. 

Proof. If ( )Tisoσ∈λ  using the spectral projection of T with respect to 

λ, we can write ,21 TTT ⊕=  where ( ) { }λ=σ 1T  and ( ) ( ) { }.2 λ−σ=σ TT  

Since 1T  is algebraically class kA  operator and ( ) { },1 λ=σ T  by Theorem 

3.2, IT λ−1  is nilpotent. Since ( ),2Tσ∉λ  IT λ−2  is invertible. Hence 
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both IT λ−1  and IT λ−2  and hence IT λ−  have finite ascent and descent. 

Hence λ is a pole of the resolvent of T. Hence T is polaroid.  

Corollary 3.9. If T is algebraically class kA  operator for some positive 
integer k, then T is reguloid. 

Corollary 3.10. If T is algebraically class kA  operator for some positive 
integer k, then T is isoloid. 

If ∗T  has SVEP, then by ([1, Lemma 2.15]), ( ) ( )TTea σ=σ  and by ([2, 

Corollary 2.45]) ( ) ( ).TT aσ=σ  Hence we get the following result. 

Corollary 3.11. If T is algebraically class kA  for some positive integer k 

and if in addition ∗T  has SVEP, then a-Weyl’s theorem holds for ( )Tf  for 

every ( )( ).THf σ∈  

Corollary 3.12. If ∗T  is algebraically class kA  for some positive integer 

k, then ( )( ) ( )( ).TwfTfw =  

By ([1, Theorem 2.17]), we get the following results. 

Corollary 3.13. If T is algebraically class kA  for some positive integer 

k, and ∗T  has SVEP, then property (b) holds for T. 

Corollary 3.14. If T is algebraically class kA  for some positive integer 
k, Weyl’s theorem, a-Weyl’s theorem, then property (w) and property (b) 

hold for .∗T  

4. Generalized Weyl’s Theorem 

For an operator T and a nonnegative integer n, define [ ]nT  to be the 

restriction of T to ( )nTR  viewed as a map from ( )nTR  into ( ).nTR  In 

particular, [ ] .0 TT =  If for some integer n, ( )nTR  is closed and [ ]nT  is an 

upper (resp. a lower) semi-Fredholm operator, then T is called an upper 
(resp. lower) semi-B-Fredhom operator. Moreover, if [ ]nT  is a Fredholm 
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operator, then T is called a B-Fredholm operator. A semi-B-Fredholm 
operator is an upper or a lower semi-B-Fredholm operator. The index of a 
semi-B-Fredholm operator T is the index of semi-Fredholm operator [ ],dT  

where d is the degree of the stable iteration of T and defined as =d  

{ ( ( ) ( )) ( ( ) ( ))}.,allfor;inf TNTRTNTRnmNmNn mn ∩∩ ⊂⇒≥∈∈  
T is called a B-Weyl operator if it is B-Fredholm of index 0. The B-Weyl 
spectrum ( )TBWσ  of T is defined by ( ) { ITCTBW λ−∈λ=σ :  is not a   
B-Weyl operator}. We say that T satisfies generalized Weyl’s theorem [4] if 
( ) ( ) ( ),TETT BW =σ−σ  where ( )TE  denotes the isolated eigenvalues of T 

with no restriction on multiplicity. An operator T is Drazin invertible, if it 
has finite ascent and descent. 

Theorem 4.1. If T is algebraically class kA  operator for some positive 

integer k, then generalized Weyl’s theorem holds for T. 

Proof. Assume that ( ) ( ).TT BWσ−σ∈λ  Then λ−T  is B-Weyl and 

not invertible. Then as in the necessary part of the proof of Theorem 3.3, we 
get ( ).TE∈λ  

Conversely, suppose that ( ).TE∈λ  Then λ is isolated in ( ).Tσ  Using 

the Riesz idempotent λE  with respect to λ, we can represent T as the direct 

sum ,
0

0

2

1 ⎟
⎠
⎞

⎜
⎝
⎛=

T
T

T  where ( ) { }λ=σ 1T  and ( ) ( ) { }.2 λ−σ=σ TT  Then by 

Theorem 3.2, λ−1T  is nilpotent. Since ( ),2Tσ∉λ  λ−2T  is invertible. 

Hence both λ−1T  and λ−2T  have both finite ascent and descent. Hence 

λ−T  has both finite ascent and descent. Hence λ−T  is Drazin invertible. 
Therefore, by [5, Lemma 4.1], λ−T  is B-Fredholm of index 0. Hence 

( ) ( ).TT BWσ−σ∈λ  Therefore, ( ) ( ) ( ).TETT BW =σ−σ   

References 

 [1] P. Aiena, Fredholm and Local Spectral Theory with Application to Multipliers, 
Kluwer Acad. Publishers, 2004. 



S. Panayappan, N. Jayanthi and D. Sumathi 124 

 [2] P. Aiena, Weyl type theorems for polaroid operators, 3GIUGNO, 2009. 

 [3] P. Aiena and P. Pena, Variations on Weyl’s theorem, J. Math. Anal. Appl. 324 
(2006), 566-579. 

 [4] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, 
Proc. Amer. Math. Soc. 130 (2002), 1717-1723. 

 [5] M. Berkani, Index of B-Fredholm operators and poles of the resolvent, J. Math. 
Anal. Appl. 272 (2002), 596-603. 

 [6] L. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 
(1966), 285-288. 

 [7] J. K. Finch, The single valued extension property on a Banach space, Pacific J. 
Math. 58 (1975), 61-69. 

 [8] P. R. Halmos, Hilbert Space Problem Book, Springer-Verlag, New York, 1974. 

  [9] F. Hansen, An operator inequality, Math. Ann. 246 (1980), 249-250. 

 [10] H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982. 

 [11] N. Jayanthi and D. Sumathi, Class kA  operators, Paper Presented at the UGC 

National Seminar for Staff on Recent Advancements in Pure and Applied 
Mathematics at Sri Sarada College for Women (Autonomous), Salem, Tamilnadu, 
2012. 

 [12] D. Koehler and P. Rosenthal, On isometries of normed linear spaces, Studia Math. 
35 (1970), 213-216. 

 [13] C. S. Kubrusly and B. P. Duggal, A note on k-paranormal operators, Operators 
and Matrices 4(2) (2010), 213-223. 

 [14] K. B. Laursen and M. M. Neumann, An introduction to local spectral theory, 
London Mathematical Society Monographs New Series 20, Clarendon Press, 
Oxford, 2000. 

 [15] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, 
Glasgow Math. J. 38(1) (1996), 61-64. 

 [16] S. Panayappan, N. Jayanthi and D. Sumathi, Weyl’s theorem and tensor product 
for class kA  operators, Pure Mathematical Sciences 1(1) (2012), 13-23. 

 [17] V. Rakocevic, Approximate point spectrum and commuting compact 
perturbations, Glasgow Math. J. 28 (1986), 193-198. 

 [18] V. Rakocevic, Operators obeying a-Weyl’s theorem, Rev. Roumaine Math. Pures 
Appl. 34(10) (1989), 915-919. 


