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Abstract

If T is class Ay operator for a positive integer k and 0= A e
isoo(T), then the Riesz-idempotent operator E; with respect to A is
self-adjoint and satisfies E;H = ker(T — 1) = ker(T —A)*. If T is
algebraically class A, operator, then Weyl’s theorem holds for T and

other Weyl type theorems are discussed.
1. Introduction and Preliminaries

Let B(H) be the Banach algebra of all bounded linear operators on a
non-zero complex Hilbert space H. By an operator T, we mean an element in

B(H). If T lies in B(H), then T denotes the adjoint of T in B(H). An

operator T is said to be of class A, if [T? |>|T |°. An operator T is called

© 2012 Pushpa Publishing House
2010 Mathematics Subject Classification: 47A10, 47A53.
Keywords and phrases: class A, class Ay, algebraically class A, Weyl’s theorem, polaroid.

Communicated by U. N. Bassey; Editor: Universal Journal of Mathematics and Mathematical
Sciences: Published by Pushpa Publishing House.
Received June 1, 2012



110 S. Panayappan, N. Jayanthi and D. Sumathi

paranormal if || T2x | > | Tx |[?, for every unit vector x in H. An operator T
is called k-paranormal for positive integer k, if || T**1x | > Tx[**1 for
every unit vector x in H. An operator T is called quasinormal if
TT*T)=(T"T)T.

An operator T is called a Fredholm operator if the range of T denoted by
ran(T) is closed and both kerT and kerT* are finite dimensional and is
denoted by T € ®(H). An operator T is called upper semi-Fredholm
operator, T € ®_(H), if ran(T) is closed and kerT is finite dimensional.
An operator T is called lower semi-Fredholm operator, T € ®_(H), if
ker T is finite dimensional. The index of a semi-Fredholm operator T is
an integer defined as ind(T)=dimkerT —dimkerT". An upper semi-
Fredholm operator with index less than or equal to O is called upper semi-

Weyl operator and is denoted by T € ®,(H). A lower semi-Fredholm

operator with index greater than or equal to 0 is called lower semi-Weyl
operator and is denoted by T € ®*(H). A Fredholm operator of index 0 is

called Weyl operator. The set of all isolated eigenvalues of finite multiplicity
of T is denoted by mgo(T) and the set of all isolated eigenvalues of finite

multiplicity of T in o,(T) is denoted by ©§o(T).
The spectrum of T is denoted by o(T), where
o(T)={r € C:T — Al is not invertible}.
The approximate point spectrum of T is denoted by 4(T ), where
6a(T)={L e C:T —Al is not bounded below}.

The essential spectrum of T is defined as

ce(T)={L € C:T — Al is not Fredholm}.
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The essential approximate point spectrum of T is defined as
GeaT) =L eC:T—al ¢ D (H)}.

The Weyl spectrum of T is defined as
W(T)={L e C:T—Axl is not Weyl}.

When the space is infinite dimensional, w(0) = {0} and w(T) = {0} if T
is compact. Weyl has shown that A € o(T + K) for every compact operator
K if and only if A is not an isolated eigenvalue of finite multiplicity in o(T)
for a Hermitian operator. We say that Weyl’s theorem holds for T [6] if T
satisfies the equality o(T)— w(T) = mpo(T) and a-Weyl’s theorem holds for
T [18] if T satisfies the equality o,(T) — 6ga(T) = nd(T).

The ascent of T denoted by p(T), is the least nonnegative integer n such

that kerT" = kerT™L. The descent of T denoted by q(T), is the least

nonnegative integer n such that ran(T™) = ran(T"*1). T is said to be of
finite ascent if p(T —1) <, forall A e C. If p(T) and q(T) are both
finite, then p(T)=q(T) (by [10, Proposition 38.3]). Moreover, 0 <
p(AM —=T) = q(Al —T) < oo precisely when A is a pole of the resolvent of T.

An upper semi-Fredholm operator with finite ascent is called upper semi-
Browder operator and is denoted by T e B,(H) while a lower semi-
Fredholm operator with finite descent is called lower semi-Browder operator
and is denoted by T € B_(H). A Fredholm operator with finite ascent and
descent is called Browder operator. Clearly, the class of all Browder
operators is contained in the class of all Weyl operators. Similarly, the class
of all upper semi-Browder operators is contained in the class of all upper
semi-Weyl operators and the class of all lower semi-Browder operators is
contained in the class of all lower semi-Weyl operators.

The Browder spectrum of T is defined as

op(T)={L € C:T — Al is not Browder}.
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For an operator T, pgo(T) is defined as

Poo(T) = o(T) — o, (T).

We say that T satisfies property (w) if

6a(T) — 0ea(T) = 7oo(T)
and T satisfies property (b) if
a(T) — cea(T) = Poo(T)-
An operator T is said to have the single valued extension property
(SVEP) at Ay € C, if for every open neighborhood U of Ly, the only
analytic function f : U — X which satisfies the equation (A1 —T)f(A) =0

forall A e U, is the function f =0. An operator T is said to have SVEP, if
T has SVEP at every point A € C.

An operator T is called polaroid if isoo(T) < n(T), where n(T) is the
set of poles of the resolvent of T and iso o(T) is the set of all isolated points
of o(T). An operator T is said to be isoloid if every isolated point of o(T) is

an eigenvalue of T. An operator T is said to be reguloid if for every isolated
point A of o(T), Al —T is relatively regular. An operator T is known as

relatively regular if and only if ker T and T(X) are complemented. Also,

polaroid = reguloid = isoloid.

In [16], we showed that class A, operators form a proper subclass of
k-paranormal operators, class Ay operators have finite ascent and satisfy
Weyl’s theorem.

In this paper, we prove that if T is class A, operator for a positive integer
kand 0 # A e isoo(T), then the Riesz-idempotent operator E, with respect
to A is self-adjoint and satisfies E;H = ker(T — 1) = ker(T —1)". If T is
algebraically class A, operator, then Wey!’s theorem holds for T and f(T),
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for every f e Hol(o(T)), T is polaroid and other Weyl type theorems are

discussed.

2. Spectral Properties of Class A, Operators

Definition 2.1. An operator T e B(H) is defined to be of class Ay, if

2
|Tk+1 [k+1 >|T |2 for some positive integer k. If k =1, then class A,

coincides with class A operator.

Example 2.2. Let H be the direct sum of a denumerable number of
copies of two dimensional Hilbert space R x R. Let A and B be two positive
operators on R x R. For any fixed positive integer n, define an operator
T =Tp B n OnH as follows:

T((xq, X2, X3, --.)) = (0, A(X1), A(X2), -ey A(Xp)s B(Xp41), )
Its adjoint T™ is given by

T (x4 X2, X3, ) = (A(x2), A(Xg), ..o A%n), B(¥ny1), -.)-

For n >k, Ta g isofclass A if and only if A and B satisfy
: |
(AKTIHIR2T AR+ "T > A2 =12, . k.
2 0 1 1 .
If A= Y and B = , then T =Ty g , isofclass Ay.
0 O 1 1 o

Kubrusly and Duggal [13] have shown that k-paranormal operators are
hereditarily normaloid. Since class Ay operators are k-paranormal, it follows

that class Ay operators are hereditarily normaloid.

Theorem 2.3. If T is class A, operator for a positive integer k and for

LeC,o(T)=Ax, then T = A
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Proof. If A =0, then since class Ay operator is normaloid, T =0.

Assume that A = 0. Then T is an invertible normaloid operator with
o)=L Ty = %T is an invertible normaloid operator with o(T;) = {1}.

Hence T, is similar to an invertible isometry B (on an equivalent normed

linear space) with o(B) =1 (by Theorem 2, [12]) T; and B being similar, 1
is an eigenvalue of T; = %T (by Theorem 5, [12]). Therefore, by Theorem

1514 0f [14], Ty = I. Hence T = A. O

Theorem 2.4. If T is class A, operator for a positive integer k and M is

an invariant subspace of T, then the restriction T ), is also class Ay.

1 0
Proof. Let P = (0 Oj be the orthogonal projection of H onto M and

T]_ :T||V|' Then TP = PTP and Tl = (PTP)|M
1k 2 2
Since T is of class Ay operator, P||T~" [Tk —|T|* |P >0. By
Hansen’s inequality [9],
1+k 2 *1+ Kk 1+k 1 *1+KT1+k 1
Pl T [Tok |P = P(T™T T )1k P < (PT T P)1+k
1

1+k (2 Tk 2
(T ok iRm0
0 0 0 0

2

g 2 2

Hence {| T ek OJ > P(|T1+k|1+k)P > P|T P = (' Tg' gj Hence
0 0

Ty isalso class Ay operator on M. O
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Theorem 2.5. If T is class Ay operator for a positive integer Kk,

. AT,
0#Aeoy(T) and T is of the form T = 0 T on ker(T —A)®
3

ran(T — )", then
1.T, =0 and
2. Tz isclass Ay.
Proof. Let P be the orthogonal projection of H onto ker (T —2).
Since T is class Ay, T satisfies
Tk ﬁ ~|TP =0
where k is a positive integer. Hence
p(| Tk |ﬁ ~|T)P >0,

2
where P|T [°P = 217 01 ang (P T*PP) = :
0 0 0 0

Therefore,

2 1 2 2
['7‘0| 8}=(P|Tk+1|2P)m2P|Tk+1|MP2P|T|2P:(|7”O| 8}.

Therefore,

2 2
Tk tcap =120 O T e,
0 0

2 2 2
Hence | TX*1[k51 is of the form | TK*![iGT = (' ?”l AJ for some linear
A B

operators A:ran(T —1)" — ker(T =) and B: ran(T —1)" — ran(T —1)".
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2(k+1) 2 \k+1
Since (' o 0 g] =P(| T )P = P(| Tkt |mj P, we can

0

. ket 2o [(|n
easily show that A =0. Therefore, | T [k+1 = 0
B

|Tk+1 |2 _ |}b |2(k+l) 0

J and hence

S kp okl K kil 2
This implies that A“T, + A T,Tg +---+T,T3 =0 and B = | T3 ™ k1.

Therefore,

2 X Y
0£|Tk+l|k+l—|T|2=( . j
Y Z

LY kil o 2 2
where X =0,Y =-AT, and Z =| T3 " [k+1 —| To |* —| T3 |*.
. XY . .
A matrix of the form V¢ 7 >0 ifandonlyif X >0,Z>0and Y =

X1/2W21/2, for some contraction W. Hence T, = 0 and T3 isclass A,. [

Corollary 2.6. If T is class A, operator for a positive integer k and
(T-A)x=0for A =0 and x € H, then (T —1)*x = 0.

Corollary 2.7. If T is class A, operator for a positive integer k, 0 # A

A0 —
cp(T), then T is of the form T = (O T j on ker(T —2)@® ran(T — )",

3
where T3 isclass Ay, and ker(T; — 1) = {0}.
If X eisoo(T), then the spectral projection (or Riesz idempotent) E,

of T with respect to A is defined by E, = zini-[aD(z —T)_ldz, where D

is a closed disk with centre at A and radius small enough such that
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DNo(T)={r}. Then Ef=E;, ET=TE, oT|gn)=1{\ and
ker(T — 1) < E; H.

Theorem 2.8. If T is a class A, operator for a positive integer k and

L € o(T) is an isolated point, then the Riesz idempotent operator E, with

respect to A satisfies E; H = ker(T —A). Hence A is an eigenvalue of T.
Proof. Since ker(T —X) < E,H, it is enough to prove that E; H <
ker(T —2). Now o(T|g,4)={A} and T|g,y is class Ac. Therefore, by

Theorem 2.3, T\g, y = A. Hence By H = ker(T —4). O

Theorem 2.9 [11]. If T is a class A, operator for a positive integer k,
then T has SVEP and p(Alt) <1 for all A e C. Furthermore, both T and

T™ are reguloid.

Corollary 2.10. If T is a class A, operator for a positive integer k, then
T is isoloid.

Theorem 2.11. Let T be a class Ay operator for a positive integer k and
L = 0 be an isolated point in o(T). Then the Riesz idempotent operator
E; with respect to A is self-adjoint and satisfies E;H = ker(T — 1)
= ker(T — 1)".

Proof. Without loss of generality, we assume that A =1. Let

1 T s
T = (0 TZJ on ker(T — 1) ® ran(T —1)". By Theorem 2.5, T, = 0 and
3

Ty is class Ay. Since 1eisoo(T), either 1 eisoc(Tz) or 1¢ o(T3). If
1 e isoo(T3), since T isisoloid, 1 € o,(T3) which contradicts ker(T3 — 1)
= {0} (by Corollary 2.7). Therefore, 1¢ o(T3) and hence Tz -1 is
invertible. Therefore, T —1 =0 (T3 —1) is invertible on H and ker(T —1)

= ker(T —1)". Also,
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1 a1 (@-p! 0 (10
Ex—z_mjaD(ZI_T)ldz_TﬂjaD( 0 (z—T3)_1JdZ _(0 Oj'

Therefore, E; is the orthogonal projection onto ker(T — 1) and hence E, is

self-adjoint. O

Theorem 2.12. If T is a partial isometry and class A, operator, then T
is quasinormal.

Proof. Since T is a partial isometry, T = TT*T [8]. This together with
the definition of class A, operator gives T*K+HTK+ > (T*T)k > (T*1)*2
> 2T,
Therefore,
[TX? = (77T, x) < (| TR P, ) < | TP
<[ TE P < T2 P < TP
Hence || T2x || = | Tx|.
I T*T 2% = Tx | = (T*T 2%, T*T2%) = (T*T 2x, TX) — (Tx, T*T 2X) + (Tx, Tx)
= (T2X, T2X) — (T2, T2x) = (T 2X, T2X) + (Tx, Tx)
= Tx|? = T2 | = .

Hence T*TT =T =TT"T, i.e., T is quasinormal. O
3. Weyl Type Theorems for Algebraically Class A, Operators

Definition 3.1. An operator T is defined to be of algebraically class Ay

for a positive integer k, if there exists a non-constant complex polynomial
p(t) such that p(T) is of class Ay.

Theorem 3.2. If T is algebraically class A, operator for some positive

integer k and o(T) = ng, then T — g is nilpotent.
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Proof. Since T is algebraically class Ay, there is a non-constant
polynomial p(t) such that p(T) is class A, for some positive integer Kk,
then applying Theorem 2.3,

o(p(T)) = p(o(T)) = {p(ko)} implies p(T) = p(uo).

k k k

Let p(z) - p(uo) = a(z — o)™ (2 —pg)™ - (2 — py)™, where pj = pg for
. k k k i
j#s. Then 0=p(T)-p(ug)=a(T —po)0(T —pg)™? (T —pe)™. Since
T-w, T—py,..,T—py are invertible, (T — Mo)ko =0. Hence T —pgq is
nilpotent. O

If T is algebraically class A, operator for some positive integer k, then
there exists a non-constant polynomial p(t) such that p(T) is class A.. By

Theorem 4.3 [16], p(T) is of finite ascent. Therefore, (p(T)) and hence T
has SVEP ([14, Theorem 3.3.6]).

Theorem 3.3. If T is algebraically class A, operator for some positive
integer k, then Weyl’s theorem holds for T.

Proof. Assume that A € o(T)—w(T). Then T — i is Weyl and not
invertible.

Claim. A € do(T). Assume on the contrary that A is an interior point of
o(T). Then there exists a neighborhood U of A such that dim N(T —u) >0

for all u in U. Hence by ([7, Theorem 10]), T does not have SVEP which
is a contradiction. Hence A € do(T)—w(T). Therefore, by punctured

neighborhood theorem, A € 7o (T).

Conversely, suppose that A € mpo(T). Using the Riesz idempotent E;
T, O

with respect to A, we can represent T as the direct sum T = ( 1 T j where
2

o(Ty) ={A} and o(T,) =o(T)—{r}. Then by Theorem 3.2, T; — A is
nilpotent. Since A e mgg(T), Ty —A is a finite dimensional operator, so
Ty — A is Weyl. But since T, —A is invertible, T —X is Weyl. Hence
L € o(T)—w(T). Therefore, o(T) — W(T) = mgo(T). O
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By ([3, Theorem 2.16]), we get the following result.
Corollary 3.4. If T is algebraically class A, for some positive integer k,

and T* has SVEP, then a-Weyl’s theorem and property (w) hold for T.

Theorem 3.5. If T is algebraically class A, operator for some positive
integer k, then w(f(T)) = f(w(T)) for every f e Hol(o(T)).

Proof. Suppose that T is algebraically class A, for some positive integer
k. Then T has SVEP. Hence by [10, Proposition 38.5], ind(T — 1) < 0 for all
complex numbers A. Now to prove the result, it is sufficient to show that
f(W(T)) < wW(f(T)). Let A e f(W(T)). Suppose if A e w(f(T)), then
f(T)—Al is Weyl and hence ind(f(T)-21)=0. Let f(z)-A=
(z-M)(@Z-%3)...(z=%p)g(z). Then f(T)-A=(T=2)(T =%p)--
(T-2y)9(™) and ind(f(T)-A)=0=ind(T —Aq)+ind(T —Ay)+--
+ind(T —A,)+indg(T). Since each of ind(T —4;)<0, we get that
ind(T —2;)=0, forall i =1, 2, ..., n. Therefore, T —2; is Weyl for each
i=12 ..,n Hence Aj ¢w(T) and hence A ¢ f(w(T)), which is a

contradiction. Hence the theorem. O

Theorem 3.6. If T is algebraically class Ay operator for some positive

integer k, then Weyl’s theorem holds for f(T), for every f e Hol(o(T)).

Proof. For every f e Hol(o(T)),

o(f(T)) - moo(f(T))

f(o(T) — mgo(T)) by ([15, Lemma]))

f(w(T)) by Theorem 3.3

= w(f(T)) by Theorem 3.5.

Hence Weyl’s theorem holds for f(T), for every f € Hol(o(T)). O

Theorem 3.7. If T or T* is algebraically class A, operator for some
positive integer k, then o5 (f(T)) = f(oea(T)).
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Proof. For T € B(H), by [17], the inclusion c¢3(f(T)) < f(cea(T))

holds for every f e Hol(o(T)) with no restrictions on T. Therefore, it is
enough to prove that f(cgy(T)) < ea(F(T)).

Suppose if A ¢ ca(f(T)), then f(T)—A e @, (H), thatis, f(T)-2
is upper semi-Fredholm operator with index less than or equal to zero. Also,
fM)-A2=c(T —ay)(T —as)...(T —ay)a(T), where g(T) is invertible
and oyog, ...a, € C.

If T is algebraically class Ay for some positive integer k, then there

exists a non-constant polynomial p(t) such that p(T) is class Ac. Then
p(T) has SVEP and hence T has SVEP. Therefore, ind(T — o) <0 and

hence T —aj € ®,(H) for each i =1, 2, ..., n. Therefore, A = f(a;) ¢
f(cea(T)). Hence cea(f(T)) = g(cea(T)).

If T* is algebraically class A, for some positive integer k, then there
exists a non-constant polynomial p(t) such that p(T™) is class A.. Then
p(T*) has SVEP and hence T* has SVEP. Therefore, ind(T — o) > 0 for
each i =1, 2, ..., n. Therefore, 0 < Zin:lind(T —aj)=ind(f(T)-2)<0.
Therefore, ind(T —aj)=0 for each i=1, 2, ..., n. Therefore, T —a; is
Weyl for each i =1, 2,..,n. (T —aj)e ®,(H) and hence a; ¢ cea(T).
Therefore, A = f(aj) & f(oea(T)). Hence cea(f(T)) = f(oea(T)). O

Theorem 3.8. If T is algebraically class A, operator for some positive
integer k, then T is polaroid.

Proof. If A e isoo(T) using the spectral projection of T with respect to
A, we can write T =T; ®T,, where o(T;) = {A} and o(T,) = o(T) — {A}.
Since Ty is algebraically class A, operator and o(T;) = {A}, by Theorem
3.2, Ty — Al is nilpotent. Since A ¢ o(T,), T, — Al is invertible. Hence
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both T — Al and T, — Al and hence T — Al have finite ascent and descent.
Hence A is a pole of the resolvent of T. Hence T is polaroid. O

Corollary 3.9. If T is algebraically class A, operator for some positive
integer k, then T is reguloid.

Corollary 3.10. If T is algebraically class A, operator for some positive
integer k, then T is isoloid.

If T* has SVEP, then by ([1, Lemma 2.15]), 60,(T) = o(T) and by ([2,
Corollary 2.45]) o(T) = 64(T). Hence we get the following result.

Corollary 3.11. If T is algebraically class A, for some positive integer k
and if in addition T* has SVEP, then a-Weyl’s theorem holds for f(T) for
every f e H(o(T)).

Corollary 3.12. If T is algebraically class A, for some positive integer
k, then w(f(T)) = f(w(T)).

By ([1, Theorem 2.17]), we get the following results.

Corollary 3.13. If T is algebraically class Ay for some positive integer
k, and T* has SVEP, then property (b) holds for T.

Corollary 3.14. If T is algebraically class A, for some positive integer
k, Weyl’s theorem, a-Weyl’s theorem, then property (w) and property (b)
hold for T".

4. Generalized Weyl’s Theorem
For an operator T and a nonnegative integer n, define Tiny to be the

restriction of T to R(T") viewed as a map from R(T") into R(T"). In
particular, Tjo; = T. If for some integer n, R(T") is closed and Tin] is an

upper (resp. a lower) semi-Fredholm operator, then T is called an upper
(resp. lower) semi-B-Fredhom operator. Moreover, if Tin] is a Fredholm
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operator, then T is called a B-Fredholm operator. A semi-B-Fredholm
operator is an upper or a lower semi-B-Fredholm operator. The index of a
semi-B-Fredholm operator T is the index of semi-Fredholm operator Tia]s

where d is the degree of the stable iteration of T and defined as d =
infine N;forallme N,m>n = (RMT"NN(T)) < (RT™) N N(T))}.
T is called a B-Weyl operator if it is B-Fredholm of index 0. The B-Weyl
spectrum oy (T) of T is defined by ogyw(T)={A € C:T —Al is not a

B-Weyl operator}. We say that T satisfies generalized Weyl’s theorem [4] if
o(T)—opw(T) = E(T), where E(T) denotes the isolated eigenvalues of T

with no restriction on multiplicity. An operator T is Drazin invertible, if it
has finite ascent and descent.

Theorem 4.1. If T is algebraically class A, operator for some positive

integer k, then generalized Weyl’s theorem holds for T.

Proof. Assume that A € o(T)—ogw (T). Then T —A is B-Weyl and
not invertible. Then as in the necessary part of the proof of Theorem 3.3, we
get A € E(T).

Conversely, suppose that A € E(T). Then A is isolated in o(T). Using

the Riesz idempotent E; with respect to A, we can represent T as the direct
T, 0

sum T =(5 T j where o(T;) = {A} and o(T5) = o(T)— {A}. Then by
2

Theorem 3.2, Ty — A is nilpotent. Since A ¢ o(T,), T, —A is invertible.
Hence both T; —A and T, — A have both finite ascent and descent. Hence

T — A has both finite ascent and descent. Hence T — A is Drazin invertible.
Therefore, by [5, Lemma 4.1], T — A is B-Fredholm of index 0. Hence

L e o(T)—opy (T). Therefore, o(T) — ogw (T) = E(T). O
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