

Volume 4, Number 2, 2012, Pages 109-124

Published Online: November 2012

Available online at http://pphmj.com/journals/ijaota.htm Published by Pushpa Publishing House, Allahabad, INDIA

SPECTRAL PROPERTIES OF CLASS A_k AND ALGEBRAICALLY CLASS A_k OPERATORS

S. Panayappan, N. Jayanthi and D. Sumathi

Post Graduate and Research Department of Mathematics Government Arts College (Autonomous) Coimbatore 18, Tamilnadu, India e-mail: jayanthipadmanaban@yahoo.in

Abstract

If T is class A_k operator for a positive integer k and $0 \neq \lambda \in iso \sigma(T)$, then the Riesz-idempotent operator E_{λ} with respect to λ is self-adjoint and satisfies $E_{\lambda}H = \ker(T - \lambda) = \ker(T - \lambda)^*$. If T is algebraically class A_k operator, then Weyl's theorem holds for T and other Weyl type theorems are discussed.

1. Introduction and Preliminaries

Let B(H) be the Banach algebra of all bounded linear operators on a non-zero complex Hilbert space H. By an operator T, we mean an element in B(H). If T lies in B(H), then T^* denotes the adjoint of T in B(H). An operator T is said to be of class A, if $|T^2| \ge |T|^2$. An operator T is called © 2012 Pushpa Publishing House

2010 Mathematics Subject Classification: 47A10, 47A53.

Keywords and phrases: class A_k , class A_k , algebraically class A_k , Weyl's theorem, polaroid.

Communicated by U. N. Bassey; Editor: Universal Journal of Mathematics and Mathematical Sciences: Published by Pushpa Publishing House.

Received June 1, 2012

paranormal if $||T^2x|| \ge ||Tx||^2$, for every unit vector x in H. An operator T is called k-paranormal for positive integer k, if $||T^{k+1}x|| \ge ||Tx||^{k+1}$ for every unit vector x in H. An operator T is called *quasinormal* if $T(T^*T) = (T^*T)T$.

An operator T is called a $Fredholm\ operator$ if the range of T denoted by ran(T) is closed and both $\ker T$ and $\ker T^*$ are finite dimensional and is denoted by $T \in \Phi(H)$. An operator T is called $upper\ semi$ - $Fredholm\ operator$, $T \in \Phi_+(H)$, if ran(T) is closed and $\ker T$ is finite dimensional. An operator T is called $lower\ semi$ - $Fredholm\ operator$, $T \in \Phi_-(H)$, if $\ker T^*$ is finite dimensional. The index of a semi-Fredholm operator T is an integer defined as $ind(T) = \dim \ker T - \dim \ker T^*$. An upper semi-Fredholm operator with index less than or equal to 0 is called $upper\ semi$ - $weyl\ operator\ and\ is\ denoted\ by\ <math>T \in \Phi_+^-(H)$. A lower semi-Fredholm operator with index greater than or equal to 0 is called $upper\ semi$ - $upper\ semi$

The spectrum of T is denoted by $\sigma(T)$, where

$$\sigma(T) = {\lambda \in C : T - \lambda I \text{ is not invertible}}.$$

The approximate point spectrum of T is denoted by $\sigma_a(T)$, where

$$\sigma_a(T) = {\lambda \in C : T - \lambda I \text{ is not bounded below}}.$$

The essential spectrum of *T* is defined as

$$\sigma_{\rho}(T) = \{\lambda \in C : T - \lambda I \text{ is not Fredholm}\}.$$

Spectral Properties of Class A_k and Algebraically Class A_k Operators 111 The essential approximate point spectrum of T is defined as

$$\sigma_{ea}(T) = \{ \lambda \in C : T - \lambda I \notin \Phi_+^-(H) \}.$$

The Weyl spectrum of T is defined as

$$w(T) = {\lambda \in C : T - \lambda I \text{ is not Weyl}}.$$

When the space is infinite dimensional, $w(0) = \{0\}$ and $w(T) = \{0\}$ if T is compact. Weyl has shown that $\lambda \in \sigma(T+K)$ for every compact operator K if and only if λ is not an isolated eigenvalue of finite multiplicity in $\sigma(T)$ for a Hermitian operator. We say that Weyl's theorem holds for T [6] if T satisfies the equality $\sigma(T) - w(T) = \pi_{00}(T)$ and a-Weyl's theorem holds for T [18] if T satisfies the equality $\sigma_a(T) - \sigma_{ea}(T) = \pi_{00}^a(T)$.

The ascent of T denoted by p(T), is the least nonnegative integer n such that $\ker T^n = \ker T^{n+1}$. The descent of T denoted by q(T), is the least nonnegative integer n such that $\operatorname{ran}(T^n) = \operatorname{ran}(T^{n+1})$. T is said to be of finite ascent if $p(T-\lambda) < \infty$, for all $\lambda \in C$. If p(T) and q(T) are both finite, then p(T) = q(T) (by [10, Proposition 38.3]). Moreover, $0 < p(\lambda I - T) = q(\lambda I - T) < \infty$ precisely when λ is a pole of the resolvent of T. An upper semi-Fredholm operator with finite ascent is called *upper semi-Browder operator* and is denoted by $T \in B_+(H)$ while a lower semi-Fredholm operator with finite descent is called *lower semi-Browder operator* and is denoted by $T \in B_-(H)$. A Fredholm operator with finite ascent and descent is called *Browder operator*. Clearly, the class of all Browder operators is contained in the class of all weyl operators. Similarly, the class of all upper semi-Browder operators and the class of all lower semi-Browder operators is contained in the class of all lower semi-Browder operators is contained in the class of all lower semi-Browder operators is contained in the class of all lower semi-Browder operators is contained in the class of all lower semi-Browder operators.

The Browder spectrum of *T* is defined as

$$\sigma_b(T) = {\lambda \in C : T - \lambda I \text{ is not Browder}}.$$

For an operator T, $p_{00}(T)$ is defined as

$$p_{00}(T) = \sigma(T) - \sigma_b(T).$$

We say that T satisfies property (w) if

$$\sigma_a(T) - \sigma_{ea}(T) = \pi_{00}(T)$$

and T satisfies property (b) if

$$\sigma_a(T) - \sigma_{ea}(T) = p_{00}(T).$$

An operator T is said to have the single valued extension property (SVEP) at $\lambda_0 \in C$, if for every open neighborhood U of λ_0 , the only analytic function $f: U \to X$ which satisfies the equation $(\lambda I - T) f(\lambda) = 0$ for all $\lambda \in U$, is the function $f \equiv 0$. An operator T is said to have SVEP, if T has SVEP at every point $\lambda \in C$.

An operator T is called *polaroid* if $iso \sigma(T) \subseteq \pi(T)$, where $\pi(T)$ is the set of poles of the resolvent of T and $iso \sigma(T)$ is the set of all isolated points of $\sigma(T)$. An operator T is said to be isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T. An operator T is said to be reguloid if for every isolated point λ of $\sigma(T)$, $\lambda I - T$ is relatively regular. An operator T is known as relatively regular if and only if ker T and T(X) are complemented. Also, polaroid \Rightarrow reguloid \Rightarrow isoloid.

In [16], we showed that class A_k operators form a proper subclass of k-paranormal operators, class A_k operators have finite ascent and satisfy Weyl's theorem.

In this paper, we prove that if T is class A_k operator for a positive integer k and $0 \neq \lambda \in iso\ \sigma(T)$, then the Riesz-idempotent operator E_{λ} with respect to λ is self-adjoint and satisfies $E_{\lambda}H = \ker(T - \lambda) = \ker(T - \lambda)^*$. If T is algebraically class A_k operator, then Weyl's theorem holds for T and f(T),

Spectral Properties of Class A_k and Algebraically Class A_k Operators 113 for every $f \in Hol(\sigma(T))$, T is polaroid and other Weyl type theorems are discussed.

2. Spectral Properties of Class A_k Operators

Definition 2.1. An operator $T \in B(H)$ is defined to be of class A_k , if $|T^{k+1}|^{\frac{2}{k+1}} \ge |T|^2$ for some positive integer k. If k=1, then class A_k coincides with class A operator.

Example 2.2. Let H be the direct sum of a denumerable number of copies of two dimensional Hilbert space $R \times R$. Let A and B be two positive operators on $R \times R$. For any fixed positive integer n, define an operator $T = T_{A,B,n}$ on H as follows:

$$T((x_1, x_2, x_3, ...)) = (0, A(x_1), A(x_2), ..., A(x_n), B(x_{n+1}), ...).$$

Its adjoint T^* is given by

$$T^*((x_1, x_2, x_3, ...)) = (A(x_2), A(x_3), ..., A(x_n), B(x_{n+1}), ...).$$

For $n \ge k$, $T_{A,B,n}$ is of class A_k if and only if A and B satisfy

$$(A^{k-i+1}B^{2i}A^{k-i+1})\frac{1}{k+1} \ge A^2, \quad i = 1, 2, ..., k.$$

If
$$A = \begin{pmatrix} 1/2 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$, then $T = T_{A, B, n}$ is of class A_2 .

Kubrusly and Duggal [13] have shown that k-paranormal operators are hereditarily normaloid. Since class A_k operators are k-paranormal, it follows that class A_k operators are hereditarily normaloid.

Theorem 2.3. If T is class A_k operator for a positive integer k and for $\lambda \in C$, $\sigma(T) = \lambda$, then $T = \lambda$.

Proof. If $\lambda=0$, then since class A_k operator is normaloid, T=0. Assume that $\lambda\neq 0$. Then T is an invertible normaloid operator with $\sigma(T)=\lambda$. $T_1=\frac{1}{\lambda}T$ is an invertible normaloid operator with $\sigma(T_1)=\{1\}$. Hence T_1 is similar to an invertible isometry B (on an equivalent normed linear space) with $\sigma(B)=1$ (by Theorem 2, [12]) T_1 and B being similar, 1 is an eigenvalue of $T_1=\frac{1}{\lambda}T$ (by Theorem 5, [12]). Therefore, by Theorem 1.5.14 of [14], $T_1=I$. Hence $T=\lambda$.

Theorem 2.4. If T is class A_k operator for a positive integer k and M is an invariant subspace of T, then the restriction $T_{|M|}$ is also class A_k .

Proof. Let $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ be the orthogonal projection of H onto M and $T_1 = T_{|M|}$. Then TP = PTP and $T_1 = (PTP)_{|M|}$.

Since T is of class A_k operator, $P\left(\left|T^{1+k}\right|^2 | \overline{1+k} - \left|T\right|^2\right)P \ge 0$. By Hansen's inequality [9],

$$P\left(\mid T^{1+k}\mid \frac{2}{1+k}\right)P = P(T^{*1+k}T^{1+k})\frac{1}{1+k}P \le (PT^{*1+k}T^{1+k}P)\frac{1}{1+k}$$

$$= \begin{pmatrix} \mid T_1^{1+k} \mid^2 & 0 \\ 0 & 0 \end{pmatrix}^{\frac{1}{1+k}} = \begin{pmatrix} \mid T_1^{1+k} \mid^{\frac{2}{1+k}} & 0 \\ 0 & 0 \end{pmatrix}.$$

Hence
$$\left(\left| \begin{array}{cc} T_1^{1+k} \right|^{\frac{2}{1+k}} & 0 \\ 0 & 0 \end{array} \right) \ge P \left(\left| T^{1+k} \right|^{\frac{2}{1+k}} \right) P \ge P \left| \left| T \right|^2 P = \left(\left| \begin{array}{cc} \left| T_1 \right|^2 & 0 \\ 0 & 0 \end{array} \right).$$
 Hence

 T_1 is also class A_k operator on M.

Spectral Properties of Class A_k and Algebraically Class A_k Operators 115

Theorem 2.5. If T is class A_k operator for a positive integer k,

$$0 \neq \lambda \in \sigma_p(T)$$
 and T is of the form $T = \begin{pmatrix} \lambda & T_2 \\ 0 & T_3 \end{pmatrix}$ on $\ker(T - \lambda) \oplus \overline{ran(T - \lambda)^*}$, then

1. $T_2 = 0$ and

2. T_3 is class A_k .

Proof. Let P be the orthogonal projection of H onto ker $(T - \lambda)$.

Since T is class A_k , T satisfies

$$|T^{k+1}|^{\frac{2}{k+1}} - |T|^2 \ge 0,$$

where *k* is a positive integer. Hence

$$P(|T^{k+1}|^{\frac{2}{k+1}}-|T|^2)P\geq 0,$$

where
$$P|T|^2P = \begin{pmatrix} |\lambda|^2 & 0 \\ 0 & 0 \end{pmatrix}$$
 and $(P|T^{k+1}|^2P) = \begin{pmatrix} |\lambda|^{2(k+1)} & 0 \\ 0 & 0 \end{pmatrix}$.

Therefore,

$$\begin{pmatrix} |\lambda|^2 & 0 \\ 0 & 0 \end{pmatrix} = (P|T^{k+1}|^2 P) \frac{1}{k+1} \ge P|T^{k+1}| \frac{2}{k+1} P \ge P|T|^2 P = \begin{pmatrix} |\lambda|^2 & 0 \\ 0 & 0 \end{pmatrix}.$$

Therefore,

$$P|T^{k+1}|\frac{2}{k+1}P = \begin{pmatrix} |\lambda|^2 & 0\\ 0 & 0 \end{pmatrix} = P|T|^2P.$$

Hence $|T^{k+1}| \frac{2}{|k+1|}$ is of the form $|T^{k+1}| \frac{2}{|k+1|} = \begin{pmatrix} |\lambda|^2 & A \\ A^* & B \end{pmatrix}$ for some linear operators $A : \overline{ran(T-\lambda)^*} \to \ker(T-\lambda)$ and $B : \overline{ran(T-\lambda)^*} \to \overline{ran(T-\lambda)^*}$.

Since
$$\begin{pmatrix} |\lambda|^{2(k+1)} & 0 \\ 0 & 0 \end{pmatrix} = P(|T^{k+1}|^2)P = P\left(|T^{k+1}|^{\frac{2}{k+1}}\right)^{k+1}P$$
, we can easily show that $A = 0$. Therefore, $|T^{k+1}|^{\frac{2}{k+1}} = \begin{pmatrix} |\lambda|^2 & 0 \\ 0 & B \end{pmatrix}$ and hence $|T^{k+1}|^2 = \begin{pmatrix} |\lambda|^{2(k+1)} & 0 \\ 0 & B^{(k+1)} \end{pmatrix}$.

This implies that $\lambda^k T_2 + \lambda^{k-1} T_2 T_3 + \dots + T_2 T_3^k = 0$ and $B = |T_3^{k+1}| \frac{2}{k+1}$. Therefore,

$$0 \le |T^{k+1}|^{\frac{2}{k+1}} - |T|^2 = \begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix},$$

where X = 0, $Y = -\overline{\lambda}T_2$ and $Z = |T_3^{k+1}| \frac{2}{|k+1|} - |T_2|^2 - |T_3|^2$.

A matrix of the form $\begin{pmatrix} X & Y \\ Y^* & Z \end{pmatrix} \ge 0$ if and only if $X \ge 0$, $Z \ge 0$ and $Y = X^{1/2}WZ^{1/2}$, for some contraction W. Hence $T_2 = 0$ and T_3 is class A_k .

Corollary 2.6. If T is class A_k operator for a positive integer k and $(T - \lambda)x = 0$ for $\lambda \neq 0$ and $x \in H$, then $(T - \lambda)^*x = 0$.

Corollary 2.7. If T is class A_k operator for a positive integer k, $0 \neq \lambda \in \sigma_p(T)$, then T is of the form $T = \begin{pmatrix} \lambda & 0 \\ 0 & T_3 \end{pmatrix}$ on $\ker(T - \lambda) \oplus \overline{ran(T - \lambda)^*}$, where T_3 is class A_k and $\ker(T_3 - \lambda) = \{0\}$.

If $\lambda \in iso\ \sigma(T)$, then the spectral projection (or Riesz idempotent) E_{λ} of T with respect to λ is defined by $E_{\lambda} = \frac{1}{2\pi i} \int_{\partial D} (z-T)^{-1} dz$, where D is a closed disk with centre at λ and radius small enough such that

Spectral Properties of Class A_k and Algebraically Class A_k Operators 117 $D \cap \sigma(T) = \{\lambda\}$. Then $E_{\lambda}^2 = E_{\lambda}$, $E_{\lambda}T = TE_{\lambda}$, $\sigma(T_{|E_{\lambda}H}) = \{\lambda\}$ and $\ker(T - \lambda) \subset E_{\lambda}H$.

Theorem 2.8. If T is a class A_k operator for a positive integer k and $\lambda \in \sigma(T)$ is an isolated point, then the Riesz idempotent operator E_{λ} with respect to λ satisfies $E_{\lambda}H = \ker(T - \lambda)$. Hence λ is an eigenvalue of T.

Proof. Since $\ker(T - \lambda) \subseteq E_{\lambda}H$, it is enough to prove that $E_{\lambda}H \subseteq \ker(T - \lambda)$. Now $\sigma(T_{|E_{\lambda}H}) = \{\lambda\}$ and $T_{|E_{\lambda}H}$ is class A_k . Therefore, by Theorem 2.3, $T_{|E_{\lambda}H} = \lambda$. Hence $E_{\lambda}H = \ker(T - \lambda)$.

Theorem 2.9 [11]. If T is a class A_k operator for a positive integer k, then T has SVEP and $p(\lambda I_T) \le 1$ for all $\lambda \in C$. Furthermore, both T and T^* are reguloid.

Corollary 2.10. If T is a class A_k operator for a positive integer k, then T is isoloid.

Theorem 2.11. Let T be a class A_k operator for a positive integer k and $\lambda \neq 0$ be an isolated point in $\sigma(T)$. Then the Riesz idempotent operator E_{λ} with respect to λ is self-adjoint and satisfies $E_{\lambda}H = \ker(T - \lambda)$ = $\ker(T - \lambda)^*$.

Proof. Without loss of generality, we assume that $\lambda = 1$. Let $T = \begin{pmatrix} 1 & T_2 \\ 0 & T_3 \end{pmatrix}$ on $\ker(T - \lambda) \oplus \overline{ran(T - \lambda)^*}$. By Theorem 2.5, $T_2 = 0$ and T_3 is class A_k . Since $1 \in iso \, \sigma(T)$, either $1 \in iso \, \sigma(T_3)$ or $1 \notin \sigma(T_3)$. If $1 \in iso \, \sigma(T_3)$, since T_3 is isoloid, $1 \in \sigma_p(T_3)$ which contradicts $\ker(T_3 - \lambda) = \{0\}$ (by Corollary 2.7). Therefore, $1 \notin \sigma(T_3)$ and hence $T_3 - 1$ is invertible. Therefore, $T - 1 = 0 \oplus (T_3 - 1)$ is invertible on H and $\ker(T - 1) = \ker(T - 1)^*$. Also,

$$E_{\lambda} = \frac{1}{2\pi i} \int_{\partial D} (zI - T)^{-1} dz = \frac{1}{2\pi i} \int_{\partial D} \begin{pmatrix} (z - 1)^{-1} & 0 \\ 0 & (z - T_3)^{-1} \end{pmatrix} dz = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Therefore, E_{λ} is the orthogonal projection onto $\ker(T - \lambda)$ and hence E_{λ} is self-adjoint.

Theorem 2.12. If T is a partial isometry and class A_k operator, then T is quasinormal.

Proof. Since T is a partial isometry, $T = TT^*T$ [8]. This together with the definition of class A_k operator gives $T^{*k+1}T^{k+1} \ge (T^*T)^k \ge (T^*T)^{k-1} \ge \cdots \ge T^*T$.

Therefore,

$$||Tx||^{2} = \langle T^{*}Tx, x \rangle \le \langle |T^{k+1}|^{2}x, x \rangle \le ||T^{k+1}x||^{2}$$
$$\le ||T^{k}x||^{2} \le \dots ||T^{2}x||^{2} \le ||Tx||^{2}.$$

Hence $||T^2x|| = ||Tx||$.

$$\|T^*T^2x - Tx\|^2 = \langle T^*T^2x, T^*T^2x \rangle - \langle T^*T^2x, Tx \rangle - \langle Tx, T^*T^2x \rangle + \langle Tx, Tx \rangle$$

$$= \langle T^2x, T^2x \rangle - \langle T^2x, T^2x \rangle - \langle T^2x, T^2x \rangle + \langle Tx, Tx \rangle$$

$$= \|Tx\|^2 - \|T^2x\|^2 = 0.$$

Hence $T^*TT = T = TT^*T$, i.e., T is quasinormal.

3. Weyl Type Theorems for Algebraically Class A_k Operators

Definition 3.1. An operator T is defined to be of algebraically class A_k for a positive integer k, if there exists a non-constant complex polynomial p(t) such that p(T) is of class A_k .

Theorem 3.2. If T is algebraically class A_k operator for some positive integer k and $\sigma(T) = \mu_0$, then $T - \mu_0$ is nilpotent.

Spectral Properties of Class A_k and Algebraically Class A_k Operators 119

Proof. Since T is algebraically class A_k , there is a non-constant polynomial p(t) such that p(T) is class A_k for some positive integer k, then applying Theorem 2.3,

$$\sigma(p(T)) = p(\sigma(T)) = \{p(\mu_0)\} \text{ implies } p(T) = p(\mu_0).$$

Let $p(z) - p(\mu_0) = a(z - \mu_0)^{k_0} (z - \mu_1)^{k_1} \cdots (z - \mu_t)^{k_t}$, where $\mu_j \neq \mu_s$ for $j \neq s$. Then $0 = p(T) - p(\mu_0) = a(T - \mu_0)^{k_0} (T - \mu_1)^{k_1} \cdots (T - \mu_t)^{k_t}$. Since $T - \mu_1, T - \mu_2, ..., T - \mu_t$ are invertible, $(T - \mu_0)^{k_0} = 0$. Hence $T - \mu_0$ is nilpotent.

If T is algebraically class A_k operator for some positive integer k, then there exists a non-constant polynomial p(t) such that p(T) is class A_k . By Theorem 4.3 [16], p(T) is of finite ascent. Therefore, (p(T)) and hence T has SVEP ([14, Theorem 3.3.6]).

Theorem 3.3. If T is algebraically class A_k operator for some positive integer k, then Weyl's theorem holds for T.

Proof. Assume that $\lambda \in \sigma(T) - w(T)$. Then $T - \lambda$ is Weyl and not invertible.

Claim. $\lambda \in \partial \sigma(T)$. Assume on the contrary that λ is an interior point of $\sigma(T)$. Then there exists a neighborhood U of λ such that $\dim N(T - \mu) > 0$ for all μ in U. Hence by ([7, Theorem 10]), T does not have SVEP which is a contradiction. Hence $\lambda \in \partial \sigma(T) - w(T)$. Therefore, by punctured neighborhood theorem, $\lambda \in \pi_{00}(T)$.

Conversely, suppose that $\lambda \in \pi_{00}(T)$. Using the Riesz idempotent E_{λ} with respect to λ , we can represent T as the direct sum $T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$, where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T) - \{\lambda\}$. Then by Theorem 3.2, $T_1 - \lambda$ is nilpotent. Since $\lambda \in \pi_{00}(T)$, $T_1 - \lambda$ is a finite dimensional operator, so $T_1 - \lambda$ is Weyl. But since $T_2 - \lambda$ is invertible, $T - \lambda$ is Weyl. Hence $\lambda \in \sigma(T) - w(T)$. Therefore, $\sigma(T) - w(T) = \pi_{00}(T)$.

By ([3, Theorem 2.16]), we get the following result.

Corollary 3.4. If T is algebraically class A_k for some positive integer k, and T^* has SVEP, then a-Weyl's theorem and property (w) hold for T.

Theorem 3.5. If T is algebraically class A_k operator for some positive integer k, then w(f(T)) = f(w(T)) for every $f \in Hol(\sigma(T))$.

Proof. Suppose that T is algebraically class A_k for some positive integer k. Then T has SVEP. Hence by [10, Proposition 38.5], $ind(T-\lambda) \leq 0$ for all complex numbers λ . Now to prove the result, it is sufficient to show that $f(w(T)) \subseteq w(f(T))$. Let $\lambda \in f(w(T))$. Suppose if $\lambda \notin w(f(T))$, then $f(T) - \lambda I$ is Weyl and hence $ind(f(T) - \lambda) = 0$. Let $f(z) - \lambda = (z - \lambda_1)(z - \lambda_2)...(z - \lambda_n)g(z)$. Then $f(T) - \lambda = (T - \lambda_1)(T - \lambda_2)...(T - \lambda_n)g(T)$ and $ind(f(T) - \lambda) = 0 = ind(T - \lambda_1) + ind(T - \lambda_2) + ... + ind(T - \lambda_n) + indg(T)$. Since each of $ind(T - \lambda_i) \leq 0$, we get that $ind(T - \lambda_i) = 0$, for all i = 1, 2, ..., n. Therefore, $T - \lambda_i$ is Weyl for each i = 1, 2, ..., n. Hence $\lambda_i \notin w(T)$ and hence $\lambda \notin f(w(T))$, which is a contradiction. Hence the theorem.

Theorem 3.6. If T is algebraically class A_k operator for some positive integer k, then Weyl's theorem holds for f(T), for every $f \in Hol(\sigma(T))$.

Proof. For every $f \in Hol(\sigma(T))$,

$$\sigma(f(T)) - \pi_{00}(f(T)) = f(\sigma(T) - \pi_{00}(T)) \text{ by ([15, Lemma])}$$

$$= f(w(T)) \text{ by Theorem 3.3}$$

$$= w(f(T)) \text{ by Theorem 3.5.}$$

Hence Weyl's theorem holds for f(T), for every $f \in Hol(\sigma(T))$.

Theorem 3.7. If T or T^* is algebraically class A_k operator for some positive integer k, then $\sigma_{ea}(f(T)) = f(\sigma_{ea}(T))$.

Spectral Properties of Class A_k and Algebraically Class A_k Operators 121

Proof. For $T \in B(H)$, by [17], the inclusion $\sigma_{ea}(f(T)) \subseteq f(\sigma_{ea}(T))$ holds for every $f \in Hol(\sigma(T))$ with no restrictions on T. Therefore, it is enough to prove that $f(\sigma_{ea}(T)) \subseteq \sigma_{ea}(f(T))$.

Suppose if $\lambda \notin \sigma_{ea}(f(T))$, then $f(T) - \lambda \in \Phi_+^-(H)$, that is, $f(T) - \lambda$ is upper semi-Fredholm operator with index less than or equal to zero. Also, $f(T) - \lambda = c(T - \alpha_1)(T - \alpha_2)...(T - \alpha_n)g(T)$, where g(T) is invertible and $\alpha_1\alpha_2, ...\alpha_n \in C$.

If T is algebraically class A_k for some positive integer k, then there exists a non-constant polynomial p(t) such that p(T) is class A_k . Then p(T) has SVEP and hence T has SVEP. Therefore, $ind(T-\alpha_i) \leq 0$ and hence $T-\alpha_i \in \Phi_+^-(H)$ for each i=1,2,...,n. Therefore, $\lambda=f(\alpha_i) \notin f(\sigma_{ea}(T))$. Hence $\sigma_{ea}(f(T))=g(\sigma_{ea}(T))$.

If T^* is algebraically class A_k for some positive integer k, then there exists a non-constant polynomial p(t) such that $p(T^*)$ is class A_k . Then $p(T^*)$ has SVEP and hence T^* has SVEP. Therefore, $ind(T-\alpha_i) \geq 0$ for each i=1,2,...,n. Therefore, $0 \leq \sum_{i=1}^n ind(T-\alpha_i) = ind(f(T)-\lambda) \leq 0$. Therefore, $ind(T-\alpha_i) = 0$ for each i=1,2,...,n. Therefore, $T-\alpha_i$ is Weyl for each i=1,2,...,n. $(T-\alpha_i) \in \Phi^-_+(H)$ and hence $\alpha_i \notin \sigma_{ea}(T)$. Therefore, $\lambda = f(\alpha_i) \notin f(\sigma_{ea}(T))$. Hence $\sigma_{ea}(f(T)) = f(\sigma_{ea}(T))$.

Theorem 3.8. If T is algebraically class A_k operator for some positive integer k, then T is polaroid.

Proof. If $\lambda \in iso\ \sigma(T)$ using the spectral projection of T with respect to λ , we can write $T = T_1 \oplus T_2$, where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T) - \{\lambda\}$. Since T_1 is algebraically class A_k operator and $\sigma(T_1) = \{\lambda\}$, by Theorem 3.2, $T_1 - \lambda I$ is nilpotent. Since $\lambda \notin \sigma(T_2)$, $T_2 - \lambda I$ is invertible. Hence

both $T_1 - \lambda I$ and $T_2 - \lambda I$ and hence $T - \lambda I$ have finite ascent and descent. Hence λ is a pole of the resolvent of T. Hence T is polaroid.

Corollary 3.9. If T is algebraically class A_k operator for some positive integer k, then T is reguloid.

Corollary 3.10. If T is algebraically class A_k operator for some positive integer k, then T is isoloid.

If T^* has SVEP, then by ([1, Lemma 2.15]), $\sigma_{ea}(T) = \sigma(T)$ and by ([2, Corollary 2.45]) $\sigma(T) = \sigma_a(T)$. Hence we get the following result.

Corollary 3.11. If T is algebraically class A_k for some positive integer k and if in addition T^* has SVEP, then a-Weyl's theorem holds for f(T) for every $f \in H(\sigma(T))$.

Corollary 3.12. If T^* is algebraically class A_k for some positive integer k, then w(f(T)) = f(w(T)).

By ([1, Theorem 2.17]), we get the following results.

Corollary 3.13. If T is algebraically class A_k for some positive integer k, and T^* has SVEP, then property (b) holds for T.

Corollary 3.14. If T is algebraically class A_k for some positive integer k, Weyl's theorem, a-Weyl's theorem, then property (w) and property (b) hold for T^* .

4. Generalized Weyl's Theorem

For an operator T and a nonnegative integer n, define $T_{[n]}$ to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into $R(T^n)$. In particular, $T_{[0]} = T$. If for some integer n, $R(T^n)$ is closed and $T_{[n]}$ is an upper (resp. a lower) semi-Fredholm operator, then T is called an *upper* (resp. *lower*) *semi-B-Fredhom operator*. Moreover, if $T_{[n]}$ is a Fredholm

Spectral Properties of Class A_k and Algebraically Class A_k Operators 123 operator, then T is called a B-Fredholm operator. A semi-B-Fredholm operator is an upper or a lower semi-B-Fredholm operator. The index of a semi-B-Fredholm operator T is the index of semi-Fredholm operator $T_{[d]}$, where d is the degree of the stable iteration of T and defined as $d = \inf\{n \in N; \text{ for all } m \in N, m \geq n \Rightarrow (R(T^n) \cap N(T)) \subset (R(T^m) \cap N(T))\}$. T is called a B-Weyl operator if it is B-Fredholm of index 0. The B-Weyl spectrum $\sigma_{BW}(T)$ of T is defined by $\sigma_{BW}(T) = \{\lambda \in C : T - \lambda I \text{ is not a } B$ -Weyl operator}. We say that T satisfies generalized Weyl's theorem [4] if $\sigma(T) - \sigma_{BW}(T) = E(T)$, where E(T) denotes the isolated eigenvalues of T with no restriction on multiplicity. An operator T is Drazin invertible, if it

Theorem 4.1. If T is algebraically class A_k operator for some positive integer k, then generalized Weyl's theorem holds for T.

has finite ascent and descent.

Proof. Assume that $\lambda \in \sigma(T) - \sigma_{BW}(T)$. Then $T - \lambda$ is *B*-Weyl and not invertible. Then as in the necessary part of the proof of Theorem 3.3, we get $\lambda \in E(T)$.

Conversely, suppose that $\lambda \in E(T)$. Then λ is isolated in $\sigma(T)$. Using the Riesz idempotent E_{λ} with respect to λ , we can represent T as the direct sum $T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix}$, where $\sigma(T_1) = \{\lambda\}$ and $\sigma(T_2) = \sigma(T) - \{\lambda\}$. Then by Theorem 3.2, $T_1 - \lambda$ is nilpotent. Since $\lambda \notin \sigma(T_2)$, $T_2 - \lambda$ is invertible. Hence both $T_1 - \lambda$ and $T_2 - \lambda$ have both finite ascent and descent. Hence $T - \lambda$ has both finite ascent and descent. Hence $T - \lambda$ is Drazin invertible. Therefore, by [5, Lemma 4.1], $T - \lambda$ is B-Fredholm of index 0. Hence $\lambda \in \sigma(T) - \sigma_{RW}(T)$. Therefore, $\sigma(T) - \sigma_{RW}(T) = E(T)$.

References

[1] P. Aiena, Fredholm and Local Spectral Theory with Application to Multipliers, Kluwer Acad. Publishers, 2004.

- [2] P. Aiena, Weyl type theorems for polaroid operators, 3GIUGNO, 2009.
- [3] P. Aiena and P. Pena, Variations on Weyl's theorem, J. Math. Anal. Appl. 324 (2006), 566-579.
- [4] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002), 1717-1723.
- [5] M. Berkani, Index of B-Fredholm operators and poles of the resolvent, J. Math. Anal. Appl. 272 (2002), 596-603.
- [6] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
- [7] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.
- [8] P. R. Halmos, Hilbert Space Problem Book, Springer-Verlag, New York, 1974.
- [9] F. Hansen, An operator inequality, Math. Ann. 246 (1980), 249-250.
- [10] H. Heuser, Functional Analysis, Marcel Dekker, New York, 1982.
- [11] N. Jayanthi and D. Sumathi, Class A_k operators, Paper Presented at the UGC National Seminar for Staff on Recent Advancements in Pure and Applied Mathematics at Sri Sarada College for Women (Autonomous), Salem, Tamilnadu, 2012.
- [12] D. Koehler and P. Rosenthal, On isometries of normed linear spaces, Studia Math. 35 (1970), 213-216.
- [13] C. S. Kubrusly and B. P. Duggal, A note on *k*-paranormal operators, Operators and Matrices 4(2) (2010), 213-223.
- [14] K. B. Laursen and M. M. Neumann, An introduction to local spectral theory, London Mathematical Society Monographs New Series 20, Clarendon Press, Oxford, 2000.
- [15] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38(1) (1996), 61-64.
- [16] S. Panayappan, N. Jayanthi and D. Sumathi, Weyl's theorem and tensor product for class A_k operators, Pure Mathematical Sciences 1(1) (2012), 13-23.
- [17] V. Rakocevic, Approximate point spectrum and commuting compact perturbations, Glasgow Math. J. 28 (1986), 193-198.
- [18] V. Rakocevic, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34(10) (1989), 915-919.