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Abstract 

In this work, we obtain results by using a physical potential ( )yxm ,Φ  

whose parameters have biological significance [5] to explain the 
interaction between two species in population dynamics. In using the 
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degenerated parameters [8], this potential is reduced to the form of 
( ),, yxmΦ  where m is the coupling constant. Consequently, we         

study the effect of this constant on the potential ( )., yxmΦ  The 

deterministic chaos results are obtained in Figures 2 and 3. An 
interesting result of our theoretical model resides in the fact that after 
many manifestations of the deterministic chaos, the physical potential 

( )yxm ,Φ  remained unchanged above a critical value .2=m  This 

situation corresponds without any doubt to the Hopf bifurcation in the 
nonlinear system, where the stationary effect changes to the unstable 
to stable and leads to a limit cycle. Then we studied the manifestations 
of the stochastic chaos by considering the transformed potential 

( ),,ˆ
, yxm εΦ  where ε  is the noise intensity. In such a case the 

combined effect of the noise and the coupling constant, gives results as 
illustrated in Figures 4 and 5. The second model [5] leads to a 
potential ( )yxlm ,,Φ  with two coupling constants ( )lm,  which 

indicate that the use of degenerated parameter is strictly forbidden. 
The results obtained show the chaotic behavior of the potential 

( )yxlm ,,Φ  for the arbitraries values of coupling constants ( ),, lm  

Figures 6 and 7. The stochastic manifestations are also shown by the 

transformed potential ( ),,ˆ ,, yxlm εΦ  Figures 8 and 9. 

1. Introduction 

The study of manifestations of chaos in a class of Fokker-Plank 
equations is by now an interesting subject of research regarding mathematic 
but also because of so many applications in Physics, Chemistry and Biology 
[4]. 

When the coefficient of the Fokker-Planck equation depends explicitly  
of time, it has been proving that the spectrum of Floquet for this system 
presents a transition on these statistical properties. 

However, Millonas and Reichl [10] recently shown that not only a whole 
class of Fokker-Planck equations with time-independent coefficients exhibits 
such transition, but also how this transition can be related to the dynamical 
properties of certain Hamiltonian equations of motion. 
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In general case, it is worthy of note that, since few years, the new 
nonlinear physics that takes on, have as goal, fascinating phenomenon such 
as turbulences, physico-chemical and biological oscillations. The chaotic 
appearances of these phenomenons are now replaced by an unexpected 
unification concept of strange attractors and Lyapunov exponent. 

In this work, we show the manifestation of the stochastic chaos by 
considering a family of Fokker-Planck equations in two dimensions. The 
potential ( )yx,Φ  will be obtained by generalizing the Hutchinson equations 

[5] for a model of interaction between two species in population dynamics   
[3, 6, 12]. 

2. Stochastic Chaos in a Dissipative System 

2.1. Diffusion process in nR  with a potential ( )xΦ  independent of the 

time and in the fluctuating environment 

Let us consider a diffusion process described by a set of coupled 
stochastic differential equations [1]: 

 ( ) ( ) ,...,,2,1; nitdWdtxdx iii =ε+Φ−∂=  (2.1) 

where ( ),xΦ  with ,nx R∈  is the potential bounded from below, ( )tWi  are 

uncorrelated Wiener process and ε is a diffusion coefficient. Note that (2.1) 
describes a purely classical diffusion process and leads to a purely classical 
Fokker-Planck equation [13]. 

Although not the only possible physical basis for this equation, one 
might think of (2.1) as a mechanical system with potential proportional to 
( ),xΦ  subjected to very strong friction in a fluctuating environment. 

2.2. Fokker-Planck equation 

The evolution of probability density ( )txP ,  on nR  is described by the 
Fokker-Planck equation 

 ( ).2 Φ∇∇+Δε=
∂
∂ PPt
P  (2.2) 
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2.3. Transformation of the Fokker-Planck equation to a Schrödinger 
equation 

Equation (2.2) can be readily written in a form of eigenvalue equation. 
For this purpose, using the time separation ansatz, such that 

 ( ) ( ) ,, ε
λ−

λΨ=
t

extxP  (2.3) 

we successively obtain [10]: 

 

( )
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

=Φ∇∇

ΔΨε=Δε

Ψ
ε
λ−=

∂
∂

ε
λ−

λ
ε
λ−

ε
λ−

λ

t

t

t

eP

eP

et
P

,2
1

2
1

,

 (2.4) 

by substituting (2.4) into (2.2), one obtains: 

 .λλ Ψλ−=ΨL  (2.5) 

The operator L is defined by the formula 

 .2
1 2 ΔΦε+∇Φ∇ε+Δε=L  (2.6) 

Let us consider now the following eigenfunction: 

 ,εΦ−
λλ ϕ=Ψ e  (2.7) 

we obtain in order 

 

( )

[ ( ) ]

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

ϕΔΦε=ΔΦΨε

ϕ∇Φ∇ε+Φ∇ϕ−=Ψ∇Φ∇ε

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ε=ΔΨε

λ
ε
Φ−

λ

λλ
ε
Φ−

λ

Φ∇ϕ+ΔΦεϕ−ϕ∇Φ∇ε−ϕΔ
ε
Φ−

λ
λλλλ

.

,

,2
1

2
1

2

2
1

2
122

2

e

e

e

 (2.8) 
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By substituting (2.8) in (2.5), we obtain after some algebra: 

 ( ) .2
1

2
1

2
1 22

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
λϕ−=ϕ⎥⎦

⎤
⎢⎣
⎡ ΔΦε+Φ∇−Δε=Ψ ε

Φ−
λλ

ε
Φ−

λ eeL  (2.9) 

Multiplying (2.9) by ε
Φ−e  and by written ,ε

Φ−
ε
Φ−

=ζ Lee  we obtain an 

eigenvalue equation: 

 λλ λϕ=ζϕ  (2.10) 

with the operator 

 ,ˆ
2
1 2 Φ+Δε−=ζ  (2.11) 

ζ is a Hermitian Schrödinger type equation with a transformed potential Φ̂  
defined by: 

 ( ) .2
1

2
1ˆ 2 ΔΦε+Φ∇=Φ  (2.12) 

Consequently, the problem of solving the Fokker-Planck (2.2), has been 
reduced to the problem defined by the Schrödinger equation (2.10). 

3. Generalization of the Volterra Equations 

3.1. Volterra classical model 

The classical model of Volterra [16], for competition between two 
species with densities 1N  and 2N  living in the same environment is: 

 
( )

( )⎪
⎩

⎪
⎨

⎧

α−θ=

α−θ=

.

,

1222222
2

2111111
1

NNNWNrdt
dN

NNNWNrdt
dN

 (3.1) 

In (3.1), the first terms represent the intrinsic growth terms of the given 
species, while the second terms represent competition terms. Consequently, 

1r  and 2r  are the intrinsic growth rates, 1α  and 2α  are the coefficients of 
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competition, 1θ  and 2θ  are the saturation values for populations 1N  and 2N  

when there is not competition. The function ( )iiNW θ  is the well-known 

saturation inducing function introduced in mathematical ecology by Verhulst 
[6, 3, 12], viz: 

 ( ) ( ).1 iiii NNW θ−=θ  (3.2) 

We observe that in the classical model of Volterra [13], there are binary 
interaction terms. However, it is well known by experiences that competition 
coefficient 1α  and 2α  can vary depending of the environment. That is why 

the social phenomenon has been introduced by Hutchinson [5] in the 
classical model of Volterra [13]. 

3.2. Hutchinson models 

3.2.1. Tertiary model of interaction 

Hutchinson firstly considers the simplest case by assuming that the effect 
of a given species upon another species is determined not only by constants 

1α  and 2α  but by a factor 21Nβ  or 12Nβ  proportional to the total number 

of species in competition. Then the competition equations are as follows: 

 
( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

β−θ=

β−θ=

.

,

2
1222222

2

2
2111111

1

NNNWNrdt
dN

NNNWNrdt
dN

 (3.3) 

We now observe that the interaction terms are tertiary (3.3) can best be 
considered by drawing the isoclines: 

 

⎪
⎪
⎩

⎪⎪
⎨

⎧

=γ−−θ=

=γ−−θ=

.0Thus.0

,0Thus.0

2
1222

1
2

2
2111

2
1

NNdN
dN

NNdN
dN

 (3.4) 

By written ,1
i

ii
r
θβ

=γ  equations (3.4) are obtained by using the explicit 
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form (3.2) of the inducing function. Thus for the positive value of the 

coefficient, the isocline 0
2
1 =dN

dN  cuts the 1N  axis at a point 11 θ=N  and 

2N  axis at a point .
1
1

2 γ
θ

=N  The isocline 0
1
2 =dN

dN  cuts the 2N  axis at a 

point 11 θ=N  and 1N  axis at a point .
2
2

1 γ
θ

=N  

With reasonably large and commensurate values of 1θ  and 2θ  and 

moderated values of the coefficients 1γ  and ,2γ  we obtain: 

2
1
1 θ<
γ
θ  or ,2

2

1
1

θ

θ
>γ  and similarly: 

1
2
2 θ<
γ
θ  or .2

1

2
2

θ

θ
>γ  

These conditions show that the isoclines intersect at a saddle in the 
entirely positive quadrant. The quadrant is divided into two fields in one of 
which one species wins in competition, in the other species. The effect of 
introducing the social factor is therefore to convert a competitive process 
which can begin as if 1α  or 2α  or both are less than the ratios of the relevant 

saturation values into one in which both coefficients greatly exceed the ratio. 

3.2.2. Binary and tertiary coupling model of interactions 

Hutchinson [5] also studied a more general pairs of equation (3.3) such 
that: 

 
( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

γ−β−θ=

γ−β−θ=

.

,

2
1221222222

2

2
2112111111

1

NNNNNWNrdt
dN

NNNNNWNrdt
dN

 (3.5) 

This form can be considered as containing the first two terms of power 
series: 
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...,, 2
2121 NN γβ  

..., 2
1223 NN γβ  

as approximations to more general competition functions ( )21 NF  and 

( ).12 NF  

Equations (3.5) with positive coefficient of competition can be used to 
express various intermediate situations between equations (3.1) and (3.3). 

3.2.3. Others models 

Cunningham [2] studied the equation of competition which is the 
generalization of Volterra and Hutchinson equations thus: 

 
( ) ( )

( ) ( )⎪
⎩

⎪
⎨

⎧

−θ=

−θ=

.

,

1222222
2

2111111
1

NFNNWNrdt
dN

NFNNWNrdt
dN

 (3.6) 

These equations represent the prey-predator model or of symbiosis. 
Cunningham studied in detail all the singular point of this model of 
competition, but did not find the general agreement for the existence of 
periodical solutions. 

Furthermore, Utz and Waltman [14] give the sufficient conditions for the 
existence of periodical solutions of Cunningham [2]. 

4. Physical Potential for the Stochastic Chaos 

4.1. The potential ( )yxm ,Φ  with one coupling constant 

The study of the generalization of the Volterra equations shows that, we 
actually have various two coupled deterministic differential equations in 

.2
+R  We can generate a set of physical potentials in two variables ( )yx,Φ  

and check whether the potential conditions are satisfied or not, viz: 

 .
22

xyyx ∂∂
φ∂=

∂∂
Φ∂  (4.1) 
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The advantage of our theoretical approach is in the fact that the 
parameters of ( )yx,Φ  obtained will have well defined physical 

interpretations. 

We are going to introduce in this work a supplementary generalization, 

by considering in 2
+R  a generalized inducing function of Verhulst’s type    

[3, 6], viz: 

 ,1
nNNW ⎟
⎠
⎞⎜

⎝
⎛
θ

−=⎟
⎠
⎞⎜

⎝
⎛
θ

  (4.2) 

where n is a positive parameter having a biological significance. See Figure 1 
and Table 1. 

Table 1. Main characteristics of the generalized logistic model [3] 

N ( )0r  ( )θr  ( )0r′  ( )θ′r  Name 

1>n  0r  0 0 
θ

− 0nr  Generalized logistic 

1=n  0r  0 
θ

− 0nr  
θ

− 0nr  Logistic 

10 << n  0r  0 ∞ θ
− 0nr  Generalized logistic 

0→n  ∞ 0 ∞ 0 Gompertz 

0=n  0 0 0 0 Constant 

In this work, we consider competition equations (3.3) of Hutchinson [5] 
by using the inducing function (4.2) and we obtain: 

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

β−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

θ
−=

β−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

θ
−=

.1

,1

2
112

2

2
22

2

2
211

1

1
11

1

NNNNrdt
dN

NNNNrdt
dN

n

n

n

n

 (4.3) 

Let us introduce variables ,1Nx =  2Ny =  to simplify the written, and, 
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new coefficients define as follows: 

 .,, n
ii

n
i

in
i

i
i knmr

θ=
βθ

=
θ

=α  (4.4) 

Then (4.3) reads in the following form: 

 
( )

( )⎪
⎩

⎪
⎨

⎧

−−α=

−−α=

.

,

2
222

2
111

xmykydt
dy

ymxkxdt
dx

n

n

 (4.5) 

Consequently, the potential ( )yx,Φ  is readily defined by the following 

equations: 

 
( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

∂
Φ∂−=−−α=

∂
Φ∂−=−−α=

yxmykydt
dy

xymxkxdt
dx

n

n

2
222

2
111 ,

 (4.6) 

by integrating (4.6) according to x, we have 

 ( ) .222,
22

1
22

11 Cyxmn
xxkyx

n
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+
−α=Φ

+
 (4.7) 

Now, by using the second term of (4.5), we have the following equality: 

( )2
222

2
11 xmykyyxmy

C
y

n −−α=γ−
∂
∂=

∂
Φ∂  

hence 

 ,2222
222222222211 yxmynykyxmC n α

−
+
α−

α
+

α
= +  (4.8) 

substituting C by its value in (4.7), we obtain the desired result, viz: 

( ) ( ) ( )2
2

2
1

2
22

2
11 2

1
2
1, ++ α+α

+
+α+α−=Φ nn yxnykxkyx  

.2
2222 yxmα+  (4.9) 
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Using the potential condition defined by (4.1), we get: 

 .212211 γ=γ⇒α=α mm  (4.10) 

This result is checked by equaling the partial derivative of ( )yx,Φ  according 

to x, with the first equation of (4.6). 

4.2. Remark 

(a) In the expression of ( )yx,Φ  the mutual interaction parameters 1m  

and 2m  only appear in the coupled term .22 yx  If we consider the degenerated 

parameters case proposed by Leung [8] by written: 

 ,;; 212121 kkkmmm ==α=α=α==  (4.11) 

the potential ( )yxm ,Φ  with subscript m is written as follows: 

( ) ( ) ( ) .2
1

22
1, 222222 ymxyxnyxkyx nn

m α++
+
α++α−=Φ ++  (4.12) 

(b) If the system is without mutual interaction ( ),0=m  then the equation 

is analytically integrable for some n values. 

If ,0≠m  then the system moves in chaotic way when m increases. 
Considering the higher change of behavior, main illustrations are given in 
Figures 2 and 3. 

(c) If 1=n  (logistic model), then the corresponding potential is written 
as: 

 ( ) ( ) ( ) .2
1

32
1, 223322 ymxyxyxkyxm α++α++α−=Φ  (4.13) 

If ,2=n  then the corresponding potential is: 

 ( ) ( ) ( ) .2
1

42
1, 224422 ymxyxyxkyxm α++α++α−=Φ  (4.14) 

It is interesting to notice that for variables ( ) 2, +∈ Ryx  and with the 

redefinition of the potential parameter (4.14) ( )yxm ,Φ  is identical to the 
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potential ( )21, IIξΦ  used by Lett [7] to study the problem of First Passage 

Time in a double modes laser viz: 

 ( ) ( ) ( ) .2
1

4
1

2
1, 21212121 IIIIIIII ξ++++α−=Φξ  (4.15) 

By considering an extension of the domain of variables, thus ( ) ,, 2Ryx ∈  

the potential ( )yx,Φ  also allows to study others physical phenomena. The 

result of our biological model has been obtained by considering the domain 

( ) ., 2
+∈ Ryx  

4.3. The study of projected potential ( )0,xΦ  

By projecting ( )yxm ,Φ  in the plane ( ),0=y  we can write ( )yxm ,Φ  

( ).0,xΦ=  Then we obtain: 

 ( ) ( ) .2
212

10,
2

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−α−=Φ nk
xkxx  (4.16) 

It is useful to observe that the physical potential (4.16), ( )0,xΦ  with 
2Rx ∈  gives for 1=n  and 2=n  two classical potential used in the study 

of Stochastic Resonance (SR) [11] and of the Mean First Passage Time 
(MFPT) in a nonlinear system influenced by the noise [9]. 

4.4. Expression of the transformed potential ( )yxm ,ˆ , εΦ  

According to (2.12), the transformed potential ( )yxm ,ˆ ,εΦ  of the potential 

( )yxm ,Φ  is writing as: 

 ( ) ( ) ( ( )) .,2
1,2

1,ˆ 2
, yxyxyx mmm Φ∇+ΔΦε−=Φ ε  (4.17) 

Components of ( )yxm ,Φ∇  are written according to (4.12) as: 

 ( ) [ ( ) ( )].;, 22 mxykymyxkxyx nn
m −−α−−−α−=Φ∇  (4.18) 
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Furthermore, we have: 

( ( ) ),1 2
2

2
myxnk

x
nm −+−α−=

∂

Φ∂  

( ( ) )nm ynmxk
y

+−−α−=
∂
Φ∂ 12

2

2
 (4.19) 

that give for 2

2

2

2

yx
mm

∂
Φ∂

+
∂
Φ∂  the following relation: 

 ( ( ) ( ) ( )),12 nnnn
m yxmyxnk +−++−α−=ΔΦ  (4.20) 

by using equations (4.18) and (4.19), we obtain 

( ) [ ( ) ( ) ( )]22
, 122

1,ˆ yxmyxnkyx nn
m +++++−α⋅ε−=Φ ε  

[ ( ) ( ) ].2
1 2222222 nn ymxkymyxkx −−+−−α+  (4.21) 

(a) If ,1=n  then we have 

( ) [ ( ) ( )]22
, 222

1,ˆ yxmyxkyxm ++++−⋅εα−=Φ ε  

[ ( ) ( ) ].2
1 2222222 ymxkymyxkx −−+−−α+  (4.22) 

(b) If ,2=n  then we have 

( ) [ ( ) ( )]22
, 3222

1,ˆ yxmkyxm +++−⋅εα−=Φ ε  

[ ( ) ( ) ].2
1 22222222 ymxkymyxkx −−+−−α+  (4.23) 

By considering the noise, the chaotic behavior of this potential is 
illustrated in Figures 4 and 5. 

4.5. The potential ( )yxlm ,,Φ  with two coupling constants 

We start from equation (3.5) that we generalize by considering as 
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previously a generalized inducing function of Verhulst type; we obtain a two 
dimensional system, viz: 

 

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
γ−β−

θ
−=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
γ−β−

θ
−=

.1

,1

2
1212

2

2
22

2

2
2121

1

1
11

1

NNNNrdt
dN

NNNNrdt
dN

n

n

n

n

 (4.24) 

By introducing variables 1Nx =  and 2Ny =  and by introducing new 

coefficients defined as: 

 .;,;
i

n
ii

i
i

n
ii

i
n
iin

i

i
i rlrmkr θβ

=
θγ

=θ=
θ

=α  (4.25) 

Equations (4.24) are writing in the following form: 

 
( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

−−−α=

−−−α=

.

,

2
2222

2
1111

xmxlykydt
dy

ymylxkxdt
dx

n

n

 (4.26) 

To find the potential ( ),, yxΦ  we use the following conditions: 

,; yyxx
∂
Φ∂−=

∂
Φ∂−=  

thus: 

 
( )

( )⎪
⎪
⎩

⎪⎪
⎨

⎧

−−−α=
∂
Φ∂−

−−−α=Φ∂−

.

,

2
2222

2
11

2
11

xmxlykyy

ymylxkxdx

n
 (4.27) 

By integrating the first equation, we obtain 

 ( ) .2222,
22

1
21

22
11 Cyxmyxl

n
xxkyx

n
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

+
−α=Φ

+
 (4.28) 

The second equation helps to determine the function C. 
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Then 

.2
2

11
211

yyxmxl
y
C

∂
Φ∂−α+

α
=

∂
∂  

By integration, we have: 

2222211211
222 ykyxmyxlC α

+
α

+
α

=  

.222
222222222 yxmynxyl n α

−
+
α

−
α

− +  (4.29) 

By substituting (4.29) into (4.28), we obtain: 

( ) ( )2
22

2
112

1, ykxkyx α+α−=Φ  

( ) .222
1 22222222

2
2

1 yxmxylyxn
nn α

+
α

+α+α
+

+ ++  (4.30) 

Now, let us find whether the potential condition (4.1) is verified; we get: 

,2 2222
2

ylxymyx α+α=
∂∂
Φ∂  

.2 2222
2

ylxymxy α+α=
∂∂
Φ∂  (4.31) 

Consequently, the potential condition is therefore verified with the 
parameters ( ).,, 222 lmα  However, due to the linear terms, the condition of 

the potential is not reduced to a relation between the constant of the model, 
but implies variables ( );, yx  see (4.31). 

Consequently, let us find the potential ( )yx,Φ  by integrating the second 

equation of the system (4.30). We obtain the following result: 

( ) ( )2222112
1, ykxkyx α+α−=Φ  

( ) .222
1 22112112

2
2

1 yxmyxlyxn
nn α+α+α+α

+
+ ++  (4.32) 
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Then the potential condition (4.1) is also verified; we get: 

,2 1111
2

xlxymyx α+α=
∂∂
Φ∂  

.2 1111
2

xlxymxy α+α=
∂∂
Φ∂  (4.33) 

We observe that the coupling terms did not have the same mathematical 
structure in the expressions (4.30) and (4.32) of the physical potential 

( )yxlm ,,Φ  with two coupling constants ( )lm,  such as ( )1mm =  and 

( )1ll =  as in the (4.32) whereas ( )2mm =  and ( )2ll =  as in equation (4.30). 

This raises up the fundamental problem of finding the subsidiary condition 
allowing to pass from relation (4.30) to relation (4.32) and reciprocally. 

After those conditions of ( ),, yxΦ  the following relation is obtained: 

 ,22221111 xymylxymxl α+α=α+α  (4.34) 

we observe that regarding to condition (4.34) the use of degenerated 
parameters [8] becomes impossible. 

4.6. Expression of the transformed potential ( )yxlm ,ˆ ,, εΦ  

By following the preceding method, we obtain for the transformed 

potential ( )yx,Φ̂  the following relation: 

 ( ) [ ( ) ( ) ( )nn
lm yxnkkyx 212211,, 12

1,ˆ α+α++α+α−ε−=Φ ε  

( ) ( )]xlylxmym 2211
2

22
2

11 α+α+α+α+  

[ ( )22
111

22
12

1 ymylxkx n −−−α+  

( ) ].22
222

22
2 xmxlyky n −−−α+  (4.35) 
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As previously mentioned with various chaotic behaviors, we give in 
Figures 8 and 9, two characteristics examples for the physical potential (4.30) 
and two characteristics examples for the transformed potential (4.35) on the 
figures enclosed in the text. 

5. Conclusion 

Chaotic phenomena abound in the sciences, they can be found in nearly 
all branches of nonlinear modeling. In mechanics for instance where two 
degrees of freedom play a part, or alternatively, if we have a nonlinear 
oscillator with external parametric forcing or noise. Other examples can be 
found in chemistry and theoretical biology, where interactions between 
various components, chemical elements or population densities, give rise to 
nonlinear equations. However, although chaotic dynamics had been known 
to exist for a long time, its importance for broad variety of applications began 
to be widely appreciated only within the last decade. The field continues to 
develop rapidly in many directions, and implications continue to grow. In 
particular, Millonas and Reichl [10] consider the manifestation of chaos in 
the diffusion process on nR  described by the set of coupled stochastic 
differential equations with a potential ( ).xΦ  For the probability density 

( ),xρ  the problem of solving the Fokker-Planck equation (2.2) has been 

reduced to the problem defined by a Schrödinger type equation (2.10) with a 

transformed potential ( )xΦ̂  (2.12). 

In order to obtain chaos, the system needed to be at least two 
dimensional, and in the previous work [10] the potential ( )xΦ  is chosen for 

convenience only. the aim is to focus attention in the effects produced by 
changes in the noise intensity ε. In this work, we report the results obtained 
by using the physical potential ( )yxm ,Φ  with one coupling constant, and 

the physical potential ( )yxlm ,,Φ  with two coupling constants. These 

potentials which parameters have biological significances are derived 
through the generalization of kinetic equation proposed by Hutchinson [5] to 
explain the interactions between two species in population dynamics. 
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As the system of equations is hardly nonlinear, we distinguish this work 
into two cases: 

• The deterministic chaos obtained by changing the values of the 
parameters in the physical potentials. 

• The stochastic chaos obtained by changing simultaneously, the values 
of the parameters and the noise intensity. 

It is interesting to observe that results obtained through our theoretical 
models are spectacular as illustrated in Figures 2 and 9. 

 

Figure 1. Behavior of the inducing function ( ) .
0r
Nr  

 
Figure 2. Deterministic chaos in the potential ( )., yxmΦ  Values of the 
parameters .0,1,1 ===α mk  
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Figure 3. Deterministic chaos in the potential ( )., yxmΦ  Values of the 

parameters .5,1,1 ===α mk  

 

 

Figure 4. Stochastic chaos in the potential ( ).,, yxm εΦ  Values of the 

parameters .01.0,0,1,1 =ε===α mk  
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Figure 5. Stochastic chaos in the potential ( ).,, yxm εΦ  Values of the 

parameters .1,5.0,1,1 =ε===α mk  

 

 

 

Figure 6. Deterministic chaos in the potential ( ).,, yxlmΦ  Values of the 

parameters .1.0,0,5.0,1,2,1 222121 =====α=α lmkk  
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Figure 7. Deterministic chaos in the potential ( ).,, yxlmΦ  Values of the 

parameters .1.0,1,5.0,1,2,1 222121 =====α=α lmkk  

 

 

Figure 8. Stochastic chaos in the potential ( ).,,, yxlm εΦ  Values of the 

parameters ,11 =α  ,22 =α  ,11 =k  ,5.02 =k  ,21 =m  ,02 =m  ,11 =l  

,1.02 =l  .1.0=ε  
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Figure 9. Stochastic chaos in the potential ( ).,,, yxlm εΦ  Values of the 

parameters ,21 =α  ,12 =α  ,11 =k  ,52 =k  ,11 =m  ,5.02 =m  ,21 =l  

,5.02 =l  .01.0=ε  
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