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Abstract 

The Q parameter was introduced by Mandel [1] to characterize the 
photon number distribution of a given state, such that an arbitrary 
distribution is defined to be sub- or super-Poissonian depending on 

,0<Q  ,0>Q  respectively. While a sub-Poissonian distribution 

implies photon antibunching, which is a manifestation of the non-
classical characteristic of the radiation, super-Poissonian distribution 
does not require a complete quantum treatment to its explanation. 
Also, it is generally spoken of states whose Q Mandel’s parameter is 
null as being “Poissonian” states, from which coherent states are the 
most popular example. Since 0<Q  is a sufficient, but not a 

necessary condition for the nonclassicality of a quantum state, in [2], a 
generalized ( )kQ  parameter recovering the original Q for 1=k  was 
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introduced. We show that whenever ( )kQ  is negative for some k, it 

implies that the radiation is non-classical, such that, in principle, 
nonclassicality could be revealed by resorting to higher orders of 
( ) ,kQ  what is corroborated by the examples analyzed by us. Here we 

carry out a detailed study of the ( )kQ  evolving under a thermal 

reservoir and show, by an explicit counter-example, that the 
nonclassicality of squeezed coherent states is not revealed by ( )kQ  

regardless of its order. 

I. Introduction 

Several quantum effects in the properties of the quantized 
electromagnetic field have been investigated both theoretically and 
experimentally, as for example, sub-Poissonian statistics [1], detection of 
photon antibunching [3], squeezing of the quadratures [4, 5], oscillations in 
the photon statistics and interference in the phase space [6], among others. 
Photon number statistics is commonly studied through the Q parameter 
introduced by Mandel [1], and since then an arbitrary distribution is defined 
to be sub-Poissonian ( ),0<Q  super-Poissonian ( ),0>Q  or Poissonian 

( )0=Q  [2, 7, 8]. The reason why states having 0=Q  is called 

“Poissonian” is due to coherent states, which always have 0=Q  and whose 

photon number distribution is Poissonian. It is to be noted, however, that 
some noncoherent states, pure and mixed, can have Poissonian distribution, 
although other statistical properties, as for example, squeezing of the 
quadratures, may reveal quantum properties usually not shown by coherent 
states [7, 8]. On the other hand, as we show in this paper, to name a state 
having 0=Q  by “Poissonian” is misleading, since there exist states having 

0=Q  that do not possess Poissonian photon number distribution. Also, it is 

to be noted that once 0≥Q  is not enough anymore to characterize the 

quantumness of a given state by analyzing only the photon number 
distribution, it is interesting to ask if a generalized version of the Q parameter 
[2] can be able to realize this task. 
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We focus our attention on squeezed coherent states (SCS) for which a 
proper choice of both displacement and squeezed parameters makes them to 
have either 0<Q  or .0≥Q  Squeezed states of the electromagnetic field 

are specially interesting due to its potential applications in technology and 
also to investigate fundamental physics [3, 5, 9, 10]. We show that, despite 
being ,0=Q  these SCS have quite different properties from both the 

Poissonian coherent state and the Poissonian states discussed in [7, 8]. It is 
worthwhile to mention that although statistical properties of both ideal 
(lossless) [11] and real (lossy) [12-15] squeezed coherent state superpositions 
were extensively studied, the engineering of arbitrary squeezed states into 
high-Q cavities became possible only after pioneering works of [16-20], thus 
allowing for squeezing arbitrary cavity field states in high-Q cavities. 

This paper is organized as follows: in Section II, we present our model to 
study SCS in both ideal and realistic situations in the context of cavity QED. 
Our main results are presented in Sections III and IV, where we obtain 
analytically the characteristic function (Section III), from which we calculate 
both the ( )tQ  parameter and the ( )tkQ ,  generalized parameter evolving in 

time (Section IV). Finally, in Section V, we present our conclusions. 

II. The Model 

For modeling our system, we will use, as usual, the following 
Hamiltonian: 

( )∑ ∑ ∗λ+λ+ω+ω=
k k

kkkkkkk abbabbaaH ,††††  (1) 

where †a  and a are, respectively, the creation and annihilation operators for 

the cavity mode of frequency ,ω  †kb  and kb  are the analogous operators for 

the kth reservoir oscillator mode, whose corresponding frequency and 
coupling with the cavity mode are kω  and .kλ  A detailed treatment of how 

to engineer and teleport superpositions of SCS in lossy cavities scenario can 
be found in [12-14]. Here we will assume the SCS as prepared by the 
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sequence of operations on the vacuum state ( ) ( ) ,,0 αξ=αξ DS  where 

the displacement and squeezing operators are, respectively, given by 

( ) ( )aaD ∗α−α=α †exp  and ( ) ( ),exp 22 †aaS ξ−ξ=ξ ∗  and we will focus 

our attention on the characteristic function χ, to be introduced in the next 
section, from which we can obtain the Mandel’s Q parameter evolving in 
time from a straightforward manner. The ideal case, i.e., when disregarding 
losses, can be obtained simply considering ,0=t  or equivalently, { } .0=λk  

III. Q Parameter for SCS under a Thermal Reservoir 

For solving the problem of obtaining the evolution of the statistical 
properties of the SCS taking into account the reservoir, particularly, the Q 
parameter, we use the characteristic χ function, which, in the normal order 
and in the Heisenberg picture, reads 

( ) { ( ) ( ) ( )},0,, tata
AR eetrt

∗η−η∗ ρ=ηηχ
†

 (2) 

where ( )0ARρ  is the density operator for the whole system composed of the 

cavity mode field (system A) and the reservoir (R) at the instant ,0=t  and tr 
indicates the trace on both mode and reservoir. Dynamic mean values then 
follow promptly from equation (2): 
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For the Hamiltonian model given by equation (1), the Heisenberg 
equation for ( )ta  operator can be readily obtained [21, 22]: 

( ) ( ) ( ) ( ) ( ),00 ∑ϑ+=
k

kk btatwta  (7) 

where ( ) 



 





 ω+Γ−= titw 2exp  and 
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( )
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Γ  being the damping rate of the cavity field. Once we have equation (7), we 
can obtain equation (2) for the SCS, whose initial density operator reads 

( ) ,,,0 αξαξ=ρA  (8) 

where ( )φ=ξ ir exp  and ( )θα=α iexp  are the corresponding parameters 

of the squeeze and displacement operators. 

A. Characteristic function and dynamic Q parameter 

When equation (8) is inserted in equation (2), the characteristic function 
χ will read: 

( ) [ ( )] [ ( )].expexp,,,, tatatrt ∗∗ η−ηαξαξ=ηηχ †  (9) 

If we now substitute ( )ta  from equation (7) in equation (9) considering the 

reservoir at finite temperature, we obtain 
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( ) ( ) ( ) ( ) ,0
22








ρ= ∑ ϑη−η−η ∗∗

k kk ntatwatw
A eeetr
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where we have used ( ) ( ) ( )000 BAAB ρρ=ρ  and the P Glauber-Sudarshan 

representation for the reservoir states [21] 
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with kn  being the mean occupation number characterizing the kth mode of 

the reservoir at temperature T. Using equation (8), we can write equation  
(10) as 

( ) ( ) ( ( ) ) ( ( ) ) αξη−ηαξ=ηηχ ∗∗ηε−∗ ,expexp,,,
2

atwatwet t †  

( ) [ ( ) ( )]aatwe t ∗∗∗ηε− ν−µηα= †exp
2

 

[ ( ) ( )] ,exp αν−µη−⋅ ∗ †aatw  (11) 

where we have used ( ) ( ) ,1 †aaaSS ν−µ=ξξ −  with ( ),cosh r=µ  

( ) ( ).sinhexp riφ=ν  We also put, for simplicity, ( ) aa =0  and 

( ) ( )∑ ε=ϑk kk tnt .2  The above equation allows us to apply the Baker-

Campbell-Hausdorff formula 
[ ] [ ]

,
,2

1,2
1 BAABBABABA eeeeeee ==

−+  with 

[ ][ ] ,0,, =BAA  thus resulting: 
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Equation (12) will be the starting point to calculate the Q parameter as 
well as its generalized version evolving in time. 

1. Dynamic Q parameter 

The time evolution of the Q parameter can be readily calculated from 
(3)-(6) using the above χ function. For the average photon number, we obtain 

( ) [ ( ) ( ) ( ) ( ( ) ( ))]ttwtwtn ε+ν+α−µααν−αµ= ∗∗∗∗ 22  (13) 

while 

( ) ( )tntn −∆ 2  

( ) ( ) ( ) 22422422 ∗∗∗ αµν−ανµ−µν= UtwUtwtw  

( ) ( ( ) ( )) ( ( ) ( )) ,2 22222 ttwttwUUtw ε+ν+ε+να+ ∗  (14) 

where ( )tn2∆  is the variance of the photon number, and we have written 
θ−θ ν−µ= ii eeU  and .θ∗θ−∗ ν−µ= ii eeU  

The dynamic Mandel’s parameter 

( ) ( ) ( )
( )tn

tntntQ −∆
=

2
 (15) 

can be obtained by combining equation (14) with equation (13). The sub-

Poissonian and Poissonian condition ( ) ( ) 02 ≤−∆ tntn  thus leads to 

[ ( ) ( ) ( ) ( ( ) ( ))]ttwUUtwUtwUtw ε+ν−µν+νµα ∗∗∗∗ 2224242 2  

( ) ( ( ) ( ))2222 ttwtw ε+ν+µν≥  (16) 

which can be solved for the displacement parameter as 
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The above condition tells us that for finite temperature we have to vary 
α  continuously in time to ensure ( ) ,0≤tQ  which results prohibitive, in 

practice. However, for zero temperature ( )( ),0=ε t  this condition turns to be 

time independent: 

( )
.2

1
222

42

ν−µν+µν

ν+µν
≥α ∗∗ UUURe

 (18) 

Equation (18) now tells us that at zero temperature we can always choose 
µα,  and ν to ensure the condition 0≤Q  for all times. We have then the 

nice result that, at zero temperature, the SCS preserves the signal of its 
corresponding Q parameter, i.e., the photon distribution of the SCS does not 
change under the effect of a thermal reservoir at zero temperature [15]. This 
behavior resembles that of the coherent state, which at zero temperature, 
looses its excitation coherently. Particularly, for the case of ,0≥Q  the 

quantum character of the photon statistics of the SCS is hidden. We turn to 
this question in the next section. 

IV. Generalized Q Parameter 

We saw in Section III that the quantum nature of the photon number 
distribution of the SCS cannot be observed when both displacement and 
squeeze parameters are adjusted to ensure ,0≥Q  even when we can be sure 

that the state is really a quantum one, as is just the case of the SCS. In other 
words, focusing only in the photon number distribution, all the measures of 
the nature of the statistics, including the Mandel’s parameter and the second-

order correlation function for zero time delay ( )( ) nQg += 102  will take 

the coherent state values ( ,0=Q  ( )( ) )102 =g  and thus it is impossible, 

resorting only to the Q parameter, to distinguish statistically between a 
Poissonian distribution due to coherent states and all other non-Poissonian 
states having .0=Q  Notwithstanding, as the photon number distribution is 

indeed different for true Poissonian states like those discussed in [7, 8], we 
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could expect that experiments relying on photoncounts can reveal these 
differences. In fact, this is the case of the binomial states studied in [2], 
where, for certain parameters, Q is always positive, while the generalized 
parameter ( ),kQ  k integer, becomes negative for .2=k  Formally, the so-

called generalized ( )tkQ ,  parameter in a given time t is given by [2] 

( ) [ ( )( ) ( ) ( ) ( ) ]
( ) ...,,3,2,1,,

1
=

−
=

+
ktn

tntntntkQ
kk

 (19) 

where ( ) ( )
( ) ( )∑ = −

= kn
k tnPkn

ntn ,!
!  is the kth factorial moment of the 

photon-number distribution ( )tnP ,  at time t. The original Q parameter is 

recovered to .1=k  As discussed in [2], ( ) 0, >tkQ  for all k is expected for 

a classical radiation with positive definite Glauber-Sudarshan P function, 
while ( ) 0, <tkQ  for any value of k implies that the P function is not 

positive definite, and then we have a non-classical state. Besides, ( )tkQ ,  has 

an interesting physical meaning, since it can be identified with the change in 
the kth factorial moment of the photon-number distribution under the one-
count process occurring at time t. The author in [2] also showed that for 
coherent states ( ) 00, =kQ  for all k, meaning that detection of one photon 

has no effect whatsoever on the photon number statistics of Poissonian states. 
On the other hand, thermal states and number states, which are expected to 
have classical and quantum photon number statistics, have ( ) 00, >kQ  and 

( ) ,00, <kQ  respectively, for all k. 

As for coherent states ( ) 00, =kQ  for all k, this provides us with a 

criterion to distinguish true Poissonian states from other ones having 
( ) .00,1 =≡ QQ  Specifically, for the SCS, we can show, see Figure 1(a), 

that fixing the squeeze and displacement parameters that make it 
( ) ,00,1 =Q  not all remaining ( ) ,1,0, ≠kkQ  can be simultaneously null. 

This implies, as we have pointed out in the introduction, that SCS with 
0=Q  do not have Poissonian distribution. Also, as one would expect from 
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the purpose of the generalized ( ),, tkQ  may be the quantumness of SCS 

photon number distribution can be revealed in higher orders of the 
generalized Q parameter. This will be investigated now, and we will show 
that, although ( )tkQ ,  can be useful to characterize Poissonian states, it is 

not always useful to reveal nonclassicality of a quantum state. 

To find the generalized ( )tkQ ,  for the SCS evolving under a thermal 

reservoir, it is convenient to rewrite equation (19) using the characteristic 
function. For ...,,3,2,1=k  we can write 
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From equation (22), we can promptly calculate ( );, tkQ  the calculus 

being straightforward when using equation (12). 

 

Figure 1. Generalized Mandel’s ( )tkQ ,  function versus tΓ  at zero 

temperature for a set of parameters. ( ) QQ ≡0,1  and higher orders of 

( )tkQ ,  are shown by dot ( ),2=k  dash ( ),3=k  dash-dot ( ),4=k  long 

dash ( ),5=k  and short dash ( ).6=k  (a) Starting from ,0=Q  with 

,6635.6=α  ;0.1=ξ  (b) Starting from ,0>Q  with ,0.5=α  0.1=ξ  and 

(c) Starting from 0<Q  with ,0.5=α  .4.0=ξ  Orders ranging from 

,12...,,7=k  not shown in Figure 1(a), show that the slope of ( )tkQ ,  

increases monotonically as k increases. 

In Figures 1(a) and 1(c), we show the ( )tkQ ,  function of the SCS, 

evolving under a thermal reservoir at ,0=T  for several k. In Figure 1(a), the 

squeeze ( )0.1=ξ  and displacement ( )6635.6=α  parameters were chosen 

to ensure ( ) ,00,1 =Q  which is indicated by the straight (solid) line on the 

zero mark parallel to the tΓ  axis. Thus, as we anticipated, at zero 
temperature, a given state having 0=Q  remains as such at all times. Higher 

orders of ( )tkQ ,  are shown by dot ( ),2=k  dash ( ),3=k  dash-dot 

( ),4=k  long dash ( ),5=k  and short dash ( ).6=k  Orders ranging from 
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,12...,,7=k  not shown in Figure 1(a), show that ( )tkQ ,  is always positive 

and increases its slope as k increases. From now on, we shall use the same 
notation (dot, dash, etc.) to indicate the higher orders of ( )., tkQ  In Figure 

1(b), the squeeze ( )0.1=ξ  and displacement ( )0.5=α  parameters were 

chosen to start from ( ) ,00, >kQ  which is indicated by the solid line. Going 

to higher orders of k, essentially the same behavior seen in Figure 1(a), is 
reproduced. On the other hand, when the squeeze ( )4.0=ξ  and 

displacement ( )0.5=α  parameters are chosen to start from ( ) ,00,1 <Q  

Figure 1(c), a reverse behavior occurs for ( ) :, tkQ  with the solid line 

indicating the original Q parameter, we see that ( )tkQ ,  becomes more 

negative with increasing k. 

 

Figure 2. Generalized Mandel’s ( )tkQ ,  function versus tΓ  at finite 

temperature corresponding to a mean thermal photon 4.0=n  for a set of 
parameters. ( ) QQ ≡0,1  and higher orders of ( )tkQ ,  are rescaled and 

shown by dot ( ),2=k  dash ( ),3=k  dash-dot ( ),4=k  long dash ( ),5=k  

and short dash ( ).6=k  (a) Starting from ,0=Q  with ,6635.6=α  0.1=ξ  

and (b) Starting from ,0<Q  with .4.0,0.5 =ξ=α  Orders ranging from 

,12...,,7=k  not shown in Figure 1(a), show that the slope of ( )tkQ ,  

increases monotonically as k increases. 
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 In Figures 2(a) and 2(b), we compute the effect of temperature on the 
generalized ( )., tkQ  For the sake of clarity, we have rescaled the curves in 

Figure 2(b) by the factor ( );,13000 tQ×  ( );,2800 tQ×  ( );,3200 tQ×  

( );,440 tQ×  ( );,57 tQ×  ( ).,61 tQ×  Note, from Figure 2(b), that the 

transition from sub- to super-Poissonian statistics occurs at the same point, 
no matter the order of the ( )., tkQ  Also, our simulations reveal that this 

point moves to left when the temperature is increased. This is somewhat 
expected, since the role of the temperature is to accelerate the degradation of 
quantum properties, such that the nonclassicality of the SCS as a whole, 
including the photon statistics, is lost the faster the higher the temperature. 

Anyway, it is remarkable that for each temperature, there exists only a 
single point indicating the transition from sub- to super-Poissonian statistics 
[15]. 

V. Conclusions 

In this paper, we have studied the time evolution of the photon number 
statistics of squeezed coherent states (SCS) through both the Mandel’s and 
the generalized Mandel’s parameter under dissipation at zero and finite 
temperature. Once SCS can have its Q parameter greater than, lesser than, or 
equal to zero, we focus our attention to the case ,0≥Q  in which the photon 

statistics can be classically explained. On the other hand, it is well known 
that SCS is a quantum state, irrespective of the value of Q, notably in its 
squeeze properties. Since the quantumness of the photon number distribution 
of the SCS having displacement and squeezing parameters making its 0≥Q  

is hidden from the very definition of the Q parameter, we resort to the 
generalized ( )tkQ ,  parameter to try to detect non-classicality, as suggested 

in [2], in the photon statistics of the SCS. As pointed out in [2], ( )tkQ ,  has 

these nice properties: (i) it recovers the ( )tQ  parameter when ,1=k  (ii) if 

( ) 0, <tkQ  for some integer k, then the state considered is nonclassical, (iii) 

to the coherent state, ( )0,kQ  is null for all k. When we calculate the 
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generalized ( )tkQ ,  for the SCS with displacement and squeeze parameters 

adjusted to give ( ) 00,1 =Q  or ( ) ,00,1 >Q  in both the cases, we found 

( ) 0, ≥tkQ  for all .2≥k  Therefore, different from what was expected, 

higher orders of ( )tkQ ,  cannot be neither simultaneously zero, thus 

indicating that SCS are different from true Poissonian states, nor negative for 
some ,1≠k  thus indicating that ( )tkQ ,  is not able to reveal nonclassicality 

in its higher orders. 
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