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Abstract 

The goal of every experimenter is to obtain a design that gives 
maximum information. Similarly, the performance of a design is 
measured by the amount of information it contains. This paper 
investigates mixture experiments in the second-degree Kronecker 
model. The parameter subspace of interest in this study is maximal 
parameter subsystem which is subspace of the full parameter space. 
Previous studies in this area have not been able to show how a design 
can be improved based on the same parameter subspace. This paper 
attempts to show an improvement of such designs by first obtaining a 
proper coefficient matrix. Optimal designs of mixture experiments are 
derived by employing the Kronecker model approach and applying the 
various optimality criteria. Results of A- and D-optimal designs for 

3,2=m  ingredients are given. The results obtained are higher than 

those presented in the previous studies. Finally, the efficiencies of 
these designs are then calculated. 
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1. Introduction 

A mixture experiment is an experiment which involves mixing of 
proportions of two or more components to make different compositions of an 
end product. Consequently, many practical problems are associated with the 
investigation of mixture ingredients of m factors, assumed to influence the 
response through the proportions in which they are blended together. The 
definitive text, Cornell [1] lists numerous examples and provides a thorough 
discussion of both theory and practice. Early seminal work was done by 
Scheffe’ [14, 15] in which he suggested and analyzed canonical model forms 
when the regression function for the expected response is a polynomial of 
degree one, two, or three. 

The m component proportions, mtt ...,,1  form the column vector of 

experimental conditions, ( )′= mttt ...,,1  with 0≥it  and further subject to 

the simplex restriction, 

 .1
1
∑
=

=
m

i
it  (1) 

For the second-degree model, Draper and Pukelsheim [3] proposed a 
representation involving the Kronecker square .tt ⊗  Its regression function 

is ,:
2m

mTf ℜ→  ( ) ,...,,1 jim ttttttt =⊗→′=  mji ...,,1, =  with the 

lexicographical order of the subscripts. This representation yields the model 
equation 

 [ ] ( ) ( ) ,
1, 1,

2∑ ∑
= =

θ+θ+θ=θ′=
m

ji

m

ji
jijiijiiit ttttfYE  (2) 

where ,tY  the observed response under the experimental conditions ,Tt ∈  is 

taken to be a scalar random variable and ( )
2

...,,, 2211
m

mm ℜ∈′θθθ=Θ  is 

an unknown parameter. 

Mixture experiments were first discussed in Quenouille [13]. Later on, 
Scheffe’ [14, 15] made a systematic study and laid a strong foundation. 
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Draper and Pukelsheim [3] proposed a set of mixture models referred to 
as K-models. 

Gaffke and Heiligers [5] and Pukelsheim [11] gave a review of the 
general design environment. Klein [8] showed that the class of weighted 
centroid designs is essentially complete for 2≥m  ingredients, for Kiefer 
ordering. As a consequence, the search for optimal designs may be restricted 
to weighted centroid designs for most criteria. 

Klein [8] and Kinyanjui et al. [6] showed how invariance results can be 
applied to analytical derivations of optimal designs. The spectral analysis of 
invariant symmetric matrices yielded both eigenvalues and eigenvectors. 

2. General Design Problem 

The statistical properties of a design τ are reflected by the moment 
matrix 

( ) ( ) ( ) ( ).2∫ ∈τ′=τ
mT

mNNDdtftfM  

The amount of information which the design T contains on the parameter 
system θ′K  is captured by the information matrix, 

( )( ) ( ) ( ) ( ) ( )sNNDKKKMKKKMCk ∈′τ′′=τ −1  for .θ′K  

The problem of finding a design with maximum information on the 
parameter subsystem θ′K  can now be formulated as 

Maximize ( )( )( )τφ MCkp  with Tt ∈  

Subject to ( )( ) ( ),sPDMCk ∈τ  (3) 

where T denotes the set of all designs .mT  The side condition ( )( ) ∈τMCk  

( )sPD  is equal to the existence of an unbiased linear estimator for θ′K  

under τ, Pukelsheim [11, 12]. In this case, the design τ is called feasible for 
.θ′K  Any design solving problem (3) for a fixed ( ]1,θ−∈p  is called pφ -

optimal for θ′K  in T. For all ( ],1,∞−∈p  the existence of pφ -optimal 

design for θ′K  is guaranteed by Theorem 7.13 in Pukelsheim [11]. 
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But from a result of Draper et al. [2] on weighted centroid designs, the 
design problem reduces to 

Maximize ( )ηφ MCkp  with mT∈α  

Subject to ( )( )( ) ( ).sPDMCk ∈αη  (4) 

3. Derivation of the Optimal Designs 

By considering the maximal parameter subsystem, the following form of 
parameter subsystem becomes of interest in this paper, 

( )
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mK for all 
2mℜ∈θ  and .2≥m   (5) 

In this formula, the scaling down factor 







2
2

m
 is motivated by the fact that it 

coincides with the number of the interaction terms in the model. 

When fitting model (2) to a set of observations, a parameter subsystem, 

say ,θ′K  of interest is chosen with .
2 smK ×ℜ∈  

Definition 3.1. We define the K matrix as 

 ( ) ,, 2
1
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The amount of information which the design T contains on the parameter 
system θ′K  is captured by the information matrix for ,θ′K  

( )( ) ( ) ( ) ( ) ( ).11 sNNDKKKMKKKMCk ∈′τ′′=τ −−  
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Defining ( ) ,1KKKL ′′= −  we get the following information matrix: 

 ( )( ) ( ) .LLMMCk ′τ=τ  (7) 

A convex combination 

 ( ) ∑
=

ηα=αη
m

j
jj

1
,  with ( ) Tm ∈′ααα=α ...,,, 21  (8) 

is called a weighted centroid design with weight vector α, where ∑
=

=α
m

i
i

1
.1  

In this study, we denote the set of all weighted centroid designs by ( ).αη  

A necessary and sufficient condition for pφ -optimality of a weighted 

centroid design ( )αη  with weight vector ( ) mm T∈′αα=α ...,,1  follows 

from the Kiefer-Wolfowitz equivalence theorem in Pukelsheim [11] and 
given by Klein [7]. Suppose ( )αη  satisfies the side condition ( )( )( )αηMCk  

( )sPD∈  and jC  written as ( ( ))jkj MCC η=  for ....,,1 mj =  Then, ( )αη  

solves problem (4) with ( ]1,∞−∈p  if and only if 

( )( )( ) ( )( )( ) ( )
( )( )( )





αη≤

αδ∈αη=
αη −

otherwisetrace

,allfortrace
trace 1

p

p
kp

kj
MC

jMC
MCC  (9) 

with ( ) { }.0\: >α=αδ jj  The case ,−∞=p  that is, E-optimality, has a 

similar optimality condition, Klein [7]. 

Klein [8] in Lemma 3.1 shows that an H-invariant symmetric matrix has 
seven distinct entries at most. 

Then any matrix ( )HssymC ,=  can be uniquely represented in the form 

 .
2212

1211








′

=
CC

CC
C  (10) 
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3.1. A-optimal weighted centroid designs 

Utilizing condition (9), a weighted centroid design ( )αη  is A-optimal for 

θ′K  if and only if 

 ( ( ) ) ( ( ) ) { }
( ( ) )





α<

∈α=
α

−

−
−

otherwise.trace

,2,1fortrace
trace

1

1
2

C

jC
CC j  (11) 

3.1.1. A-optimal weighted centroid design with two ingredients 

Theorem 3.1.1. In the second-degree Kronecker model for mixture 
experiments with 2=m  ingredients, the unique A-optimal design for θ′K  is 

( ) .326631635.0673368365.0 21 η+η=αη A  

The maximum value of the A-criterion for θ′K  in m ingredients is ( ) =φ−1v  

.320064674.0  

Proof. Let ( ) mT∈′αα=α 0...,,0,, 21  be a weight vector with ( ) =α∂  

{ }.2,1  Suppose ( )αη  is A-optimal for θ′K  in T. Let ( ) ( )( )( ).αη=α MCC k  

By applying equations (6), (7) and (8), and substituting the moment 
matrix for 2=m  (M as in Klein [7]) when 1=j  and when ,2=j  we get 

 ( )( )( ) ,

44

416
8

4

41616
8

2
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2221



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


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
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





α
αα

αα+αα

ααα+α

=αη= MCC kk  (12) 

the corresponding information matrix for 2=m  ingredients. 

Utilizing condition (11) for ,1=j  the inverse of equation (12), and 

( ) [ ( ) ] ,212 −− α=α CC  and putting the simplex restriction, ,121 =α+α  we 

obtain .0173413 1
2
1 =+α−α  
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Upon solving, we get 673368365.01 =α  since ( ).1,01 ∈α  

Similarly, for ,2=j  we obtain .04813 2
2
2 =−α+α  

Upon solving, we get 326631634.02 =α  since ( ).1,01 ∈α  

Thus the A-optimal weighted centroid design is 

( ) .326631635.0673368365.0 212211 η+η=ηα+ηα=αη A  

To obtain the optimal value for 2 ingredients, we adopt the definition of 

average-variance criterion ( ) ( ) ,trace1 1
1

1
−

−
− 


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 α=φ Csv  where 
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=
2

1m
s  

as provided in Pukelsheim [11]. That is, for m-2 ingredients, we have 

( ) ( )
1

21
21

1

1
1 4

174
3
1trace

2
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α
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


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 +

=φ Cmv  

( ) .320064674.0124368545.3 1 == −  

3.1.2. A-optimal weighted centroid design with three ingredients 

Theorem 3.1.2. In the second-degree Kronecker model for mixture 
experiments with 3=m  ingredients, the unique A-optimal design for θ′K  is 

( ) .393529818.0606470182.0 21 η+η=αη A  

The maximum value of the A-criterion for θ′K  in m ingredients is ( ) =φ−1v  

.232298577.0  

Proof. Let ( ) mT∈′αα=α 0...,,0,, 21  be a weight vector with ( ) =α∂  

{ }.2,1  Suppose ( )αη  is A-optimal for θ′K  in T. Let 

( ) ( )( )( ).αη=α MCC k  

By applying equations (6), (7) and (8), and substituting the moment 
matrix for 3=m  (M as in Klein [7]) when 1=j  and when ,2=j  we get 
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( )( )( )α= nMCC kk  

,
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the corresponding information matrix for 3=m  ingredients. 
Utilizing condition (11) for ,1=j  the inverse of equation (13), and 

( ) [ ( ) ] ,212 −− α=α CC  and putting the simplex restriction, ,121 =α+α  we 

obtain .0193811 1
2
1 =+α−α  

Upon solving, we get 606470182.01 =α  since ( ).1,01 ∈α  

Similarly, for ,2=j  we obtain, .081611 2
2
2 =−α+α  

Upon solving, we get 393529818.02 =α  since ( ).1,01 ∈α  

Thus the A-optimal weighted centroid design is 

( ) .393529818.0606470181.0 212211 η+η=ηα+ηα=αη A  

To obtain the optimal value for 3 ingredients, we adopt the definition of 

average-variance criterion ( ) ( ) ,trace1 1
1

1
−

−
− 


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
 α=φ Csv  where 
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as provided in Pukelsheim [11]. That is, for m-3 ingredients, we have 
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( ) .232298577.0304804668.4 1 == −  
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3.2. D-optimal weighted centroid designs 

Utilizing condition (9), a weighted centroid design ( )αη  is D-optimal for 

θ′K  if and only if 

 ( ( ) ) ( ( ) ) { }
( ( ) )





α<

∈α=
α −

otherwise.trace

,2,1fortrace
trace

0

0
1

C

jC
CC j  (14) 

3.2.1. D-optimal weighted centroid design with two ingredients 

Theorem 3.2.1. In the second-degree Kronecker model for mixture 
experiments with 2=m  ingredients, the unique D-optimal design for θ′K  is 

( ) .3
1

3
2

21 η+η=αη A  

The maximum value of the A-criterion for θ′K  in m ingredients is ( ) =φ−1v  

.3
1  

Proof. Using the inverse of equation (12) and the respective information 
matrix when 1=j  together with condition (14), we get 

( ( ) ) ( ( ) ) ,32tracetrace
1

01
1 =

α
⇔α=α − CCC  meaning that .3

2
1 =α  

Similarly, utilizing the inverse of equation (12) and the respective 
information matrix when 2=j  together with condition (14), we get 

( ( ) ) ( ( ) ) ,31tracetrace
1

01
2 =

α
⇔α=α − CCC  meaning that .3

1
1 =α  

Substituting these values to equation (12) and taking the determinant, we get 
( )( ) .037037037.0det =αC  

The maximum value of the D-criterion for 2=m  ingredients is 

( ) ( )( )( ) ( ) .3
1037037037.0det 3

1
3
1

0 ==α=φ CV  
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3.2.2. D-optimal weighted centroid design with three ingredients 

Theorem 3.2.2. In the second-degree Kronecker model for mixture 
experiments with 3=m  ingredients, the unique D-optimal design for θ′K  is 

( ) .2
1

2
1

21 η+η=αη A  

The maximum value of the A-criterion for θ′K  in m ingredients is ( ) =φ−1v  

.4
1  

Proof. Using the inverse of equation (13) and the respective information 
matrix when 1=j  together with condition (14), we get 

( ( ) ) ( ( ) ) ,63tracetrace
1

01
1 =

α
⇔α=α − CCC  meaning that .2

1
1 =α  

Similarly, utilizing the inverse of equation (13) and the respective 
information matrix when 2=j  together with condition (14), we get 

( ( ) ) ( ( ) ) ,63tracetrace
2

01
2 =

α
⇔α=α − CCC  meaning that .2

1
2 =α  

Substituting these values to equation (13) and taking the determinant, we get 

( )( ) .0002441406.0det =αC  

The maximum value of the D-criterion for 3=m  ingredients is 

( ) ( )( )( ) ( ) .4
10002441406.0det 6

1
6
1

0 ==α=φ CV  

4. Efficiency 

The problem in equation (4) calls for maximizing information as 
measured by the information function φ, in the set M of competing moment 
matrices. The optimal value of this problem is, by definition, 

( ) ( )( ).sup
M

MCV K
M

φ=φ
∈

 

A moment matrix M∈M  is said to be formally φ-optimal for θ′K  in M 
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when ( )( )MCKφ  attains the optimal value ( ).φV  If, in addition, the matrix 

M lies in the feasibility cone ( ),KA  then M is called φ-optimal for θ′K  in M, 

Pukelsheim [12]. 

However, an optimal design is not an end in itself, but an aid to 
identifying efficient practical designs. The appropriate notation for efficiency 
is as follows: 

Definition. The φ-efficiency of a design E∈ξ  is defined by 

( )( )( )
( ) .
φ

ξφ=ξ−φ V
MCeff K  

It is a number between 0 and 1, and gives the extent (often quoted in 
percent) to which the design ξ exhausts the maximum information ( )φV  for 

θ′K  in M, Pukelsheim [12]. 

We now turn to the designs, we obtained in Section 3 to illustrate their 
efficiencies. 

Example 4.1. The A- and D- efficiencies for 3=m  ingredients. 

The maximum value of the A-criterion for θ′K  in three ingredients is 

0.0641. Thus, 
( )( )( )

( ) .2759.02323.0
0641.0

1
==

φ
ξφ=ξ−φ

−V
MCeff K  

Similarly, the maximum value of the D-criterion for θ′K  in three ingredients 

is 0.0833. Thus, 
( )( )( )

( ) .3332.02500.0
0833.0

0
==

φ
ξφ=ξ−φ V

MCeff K  

5. Discussions and Conclusions 

The parameter subsystem considered in this study is the maximal 
parameter subsystem. The optimality criteria used were the average-variance 
and the determinant criteria. It is worth noting that maximizing the average-
variance and the determinant of the information matrix is appropriate. The 
optimal values obtained have been found to be larger than the ones obtained 
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in the previous studies. This is attributed to the scaling factor which we 
included while developing the coefficient matrix. These large values indicate 
that the information matrices of these designs carry large information. This is 
always the goal of every experimenter and it is the main result of this paper. 
Furthermore, the efficiencies also indicate that these designs perform about 
three times more than the earlier designs. This therefore is an appealing result 
for these designs. The details on the quadratic subspace can be found in the 
previous studies. 

Finally, in this paper, results for two and three ingredients were derived, 
a general result for any m ingredients is worth investigating. An obvious 
question is to change the regression function from the Kronecker square to 
the Kronecker cube ( ) .ttttf ⊗⊗=  
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Appendix I 

Parameter subsystems of interest: 

When ,2=m  
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