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Abstract 

This paper applies Auto-Regressive Integrated Moving Average model 
(ARIMA) with (multivariate model) and without (univariate model) 
explanatory variables to predict the fish catch in Lake Manzala, Egypt. 
Bootstrap technique has been applied to allow one to judge the 
uncertainty of estimators obtained from the suggested ARIMA   
model, without prior assumptions about the underlying probability 
distributions. This method is based on generating 1000 random 
samples with replacement from the original observations. Then refit 
the suggested ARIMA model to each sample to end with a probability 
distribution of the model parameters, which can be used to estimate 
the bias of the parameters. Also, Jackknife technique has been applied 
after bootstrapping the ARIMA model. Jackknife-after-bootstrap 
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(JAB) technique aimed to estimate the bias of the bootstrap estimates, 
by deleting each observation in turn to obtain n estimates based         
on 1−n  observations; this procedure has been repeated for each 
bootstrap sample. The main aim of applying these techniques is to try 
to minimize the bias of the estimation of ARIMA model, so we can get 
accurate estimation of the parameters which consider the most 
accurate tool to help the decision maker to apply proper management 
policies to optimize the fishing effort and protect the fish stock. 
Evidence from the Egyptian fisheries revealed that using ARIMA 
coupled with both bootstrap and JAB leads to the most accurate 
prediction in the perspective especially with time series data. 

1. Introduction 

Time series models use past values of the dependent/independent 
variables to forecast the future values of the considered variable; they can be 
grouped in univariate and multivariate models depending on using only past 
values of the examined variable or also the past values of other explanatory 
variables. Auto-Regressive Integrated Moving Average (ARIMA) models 
are, in theory, the most general class of models for forecasting a time series 
which can be stationarized by transformations such as differencing and 
lagging. In fact, the easiest way to think of ARIMA models is as fine-tuned 
versions of random-walk and random-trend models: the fine-tuning consists 
of adding lags of the differenced series and/or lags of the forecast errors to 
the prediction equation, as needed to remove any last traces of autocorrelation 
from the forecast errors [5]. 

ARIMA lags of the differenced series appearing in the forecasting 
equation are called “auto-regressive” terms, lags of the forecast errors are 
called “moving average” terms, and a time series which needs to be 
differenced to be made stationary is said to be an “integrated” version of a 
stationary series. Random-walk and random-trend models, auto-regressive 
models, and exponential smoothing models (i.e., exponential weighted 
moving averages) are all special cases of ARIMA models [6]. 

In statistical analysis, the interesting in obtaining not only a point 
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estimate of a statistic, but also an estimate of the variation in this point 
estimate, and a confidence interval for the true value of the parameter. 
Traditionally, we may apply the central limit theorem and normal distribution 
approximations to obtain standard errors and confidence intervals. These 
techniques are valid only if the statistic, or some known transformation of         
it, is asymptotically normally distributed [13]. Hence, if the normality 
assumption does not hold, then the traditional methods should not be used to 
obtain confidence intervals. 

As a general term, bootstrapping describes any operation which allows a 
system to generate itself from its own small well-defined subsets. The 
bootstrap is a method allowing one to judge the uncertainty of estimators 
obtained from random samples, without prior assumptions about the 
underlying probability distributions. The method consists of forming many 
new samples of the same size as the observed sample, by drawing a random 
selection of the original observations, i.e., usually introducing some of the 
observations several times [12]. The estimator under study (ARIMA model 
parameters) is then estimated for every one of the samples thus generated, 
and will show a probability distribution of its own [15]. 

Jackknife is a statistical procedure in which estimates are formed of a 
parameter based on a set of n observations by deleting each observation in 
turn to obtain n estimates, each based on 1−n  observations. This method 
has deposed distribution-based methods in many applications due to its 
simplicity, its applicability in complicated situations, and its lack of 
distributional assumptions, resulting in greater reliability in practice. 
Jackknife after bootstrap aimed to estimate the bias of the bootstrap estimates 
[15]. 

Building on the previous literature background, this paper aims at 
predicting the main species catch using ARIMA model and estimating the 
bias of the predictions using re-sampling technique. These can help to get an 
accurate catch prediction to help the decision maker to apply proper 
management policies to optimize the fishing effort and protect the fish 
stocks. 
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2. Methodology 

This part of the study includes shedding light on the case study used, the 
collected data description and the applied statistical techniques. 

2.1. Case study 

The data used in this paper is extracted from the annual statistics books 
published by Central Agency of Public Mobilisation And Statistics 
(CAPMAS) and General Authority for Fisheries Resources Development 
(GAFRD). These statistics include monthly catch of each species, monthly 
number of fishing boats, and monthly number of fishermen. The available 
historical data consists of monthly catch of Tilapia species from 1986 to 
2011. 

Lake Manzala is considered to be one of the main sources of fish 
production in Egypt. Its fish production represents about 25% of all national 
fish production in Egypt. From the catch time series, it seems that the catch 
during 1986-2011 can be distinguished between three main periods; the 1st 
from 1986 to 1994, the 2nd from 1995 to 1998 and the 3rd period from 1999 
to 2011. The annual catch average was 36 kilo tonnes (Kt) in first period; in 
the second period, it was 48 Kt, while it was 52 Kt in the third period. The 
average number of the registered vessels was 2982 during the 1st period, and 
6181 during the 2nd period; while it was 4381 in the 3rd period. With respect 
of average number of fishermen, it was 8953 in the 1st period and 18635 in 
the 2nd period; while it was 12393 in the 3rd period. 

Catch composition shows that Tilapia species represents about 76% of 
total catch of the lake during 1986 to 2011, this means that Tilapia species is 
considered the dominant species and it plays a vital role in management and 
development of the lake fisheries. So, any policies aiming at improving fish 
production should be directed toward sustainable development of this 
species. 

2.2. Data description 

A primary concern of fishery science has been dynamic systems 
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modeling, specifically the construction of mathematical models that 
determine values of fishing dynamic system, this system is composed of an 
input, fishing effort, an output, catch, and a mathematical model which 
translates values of fishing effort to catch. The mathematical model can be 
constructed from two very different approaches: either driving the model 
from fundamental laws of nature; or using “the probabilistic or stochastic 
approach”. Actually, the fundamental difference between those two modeling 
approaches is that the deterministic approach describes a model in advance 
which is subsequently used to fit the collected data, while the stochastic 
approach deduces a model solely from the actual data [22]. 

As shown in Figure 1, the time series plot of the monthly catches of 
Tilapia in kilo tonne (Kt) shows a slow upward trend from 1986 to 1994; 
from 1995 to 1998, there is much variation with increasing catch rate and 
more fluctuations and during 1999 to 2011, the catch rate decreased and has 
less variation than the second period but still higher than the catch rate in the 
first period. In order to show a clear history of catches and to estimate the 
growth or decay of Tilapia catches, a time series analysis for monthly data 
had been investigated. 

 

Figure 1. Monthly time series plot during 1986-2011 of Tilapia catch in Kt. 

Estimated autocorrelation is very useful tool to test seasonal pattern or as 
a preliminary step in determining an appropriate time series model for the 
data [9]. Figure 2 shows the estimated autocorrelation between successive 
values of this time series. In Autocorrelation Function (ACF) plot, the 
vertical bars represent the coefficient of each lag and pair of lines at a 
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distance from the base line which is multiples of the standard error at each 
lag to represent the confidence limits. Significant autocorrelation extends 
above or below the confidence limits. It is clear that there is a statistically 
significant correlation between the successive values which means that the 
time series during 1986-2012 are not stationary. 

 

Figure 2. Estimated autocorrelation during 1986-2012 of Tilapia catch. 

Periodogram 

Periodogram is often used to identify cycles of fixed frequency in the 
data. The periodogram is constructed by fitting a series of sine functions at 
each of 312 frequencies. The ordinates are equal to the squared amplitudes of 
the sine functions. The periodogram can be thought of as an analysis of 
variance by frequency, the sum of the ordinates equals the total corrected 
sum of squares in an ANOVA table [21]. The periodogram plots the 
ordinates horizontally and frequency vertically, and plots the amplitudes of 
sinusoids (any curve derivable from the sine curve by multiplication by a 
constant or addition of a constant; a curve of the same shape as the sine curve 
but with possibly different amplitude, period or intercepts with the axis) for 
various frequencies against the frequencies [23]. Periodograms are computed 
using Fourier transformations. The value of the ordinate at each frequency 

iF  is given by the following formula if n (number of observation) is odd: 

 ( ) [ ] ,2
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If the periodogram plot shows one spike, that is, obviously larger than 
any other spike, then the largest magnitude is the length of seasonality 
ignoring the spike corresponds to frequency zero [6]. Figure 3 shows the 
periodogram plot of the time series of Tilapia catch; the largest ordinate 
value was 99.866 corresponding to 12 months seasonality length. 

 

Figure 3. Periodogram plot during 1986-2011 of Tilapia catch. 

To remove the trend, the first non-seasonal difference operator has been 
used. The estimated autocorrelation shows that there is no statistically 
significant correlation between the successive values of the first difference 
except around one or two years reflecting seasonality [5]. 

2.3. Study techniques 

This part sheds light on the deployed analytical techniques: Box-Jenkins 
model and re-sampling technique (bootstrap and Jackknife after bootstrap). 
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2.3.1. Box-Jenkins model 

It contains two main models: 

(1) Auto-Regressive Moving Average (ARMA) model that consists of 
five parameters ( ) ( ) .,, SQPqp  Statistically, ARMA model uses only the 

original data of the time series without any type of transformation. 

(2) Auto-Regressive Integrated Moving Average model (ARIMA) that 
suggests data transformation (e.g., the differences). 

It consists of seven parameters which can be expressed as 
( ) ( ) .,,,, SQDPqdp  As the original data was non-stationary and the first 

difference operator has been used to convert it to stationary data, it has been 
decided to use the ARIMA model in this study. The definition of the model 
parameters can be expressed as follows [4]: 

=Pp,  non-seasonal and seasonal auto-regressive parameters, 

respectively, 

=Qq,  non-seasonal and seasonal moving average parameters, 

respectively, 

=Dd ,  non-seasonal and seasonal differences, respectively, 

=S  seasonally length. 

The general formula of (ARMA) can be as follows: 

iptpttt eYYYY +α++α+α+α= −−− 22110  

.2211 qiqii eee −−− β−−β−β−  (3) 

The general form of ARIMA model can be expressed as follows: 

iptpttt eZZZZ +α++α+α+α= −−− 22110  

,2211 qiqii eee −−− β−−β−β−  (4) 

where tZ  is the operator, which can transform the non-stationary time series 
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to stationary time series. So, if the first non-seasonal difference operator is 
applied, then .1−−= ttt YYZ  

Actually, to build ARIMA model, three main stages are required: (1) 
model identification, (2) parameters estimation and (3) model validation. 
This procedure is repeated until an adequate and valid time series model is 
specified. Model identification involves two stages: the model structure, and 
its corresponding model order. Using Autocorrelation Function (ACF) and 
Partial Autocorrelation Function (PACF) facilitates specifying model orders 
p and q. The ACF is used to estimate the autocorrelation between time series 
variable and the values for earlier time period. The PACF measures the linear 
relationship between time series observations separated by K time periods 
with the effects of intervening observations removed. A synopsis of ACF and 
PACF properties is listed below [4]: 

• Mean non-stationary: The ACF decays slowly. The PACF possesses 
a large positive or negative value at lag 1. 

• Strong seasonality: The ACF is zero except at the seasonal lags, i.e., 
S, 2S, 3S, … and decays very slowly. 

• Auto-regressive behaviour: For a low order AR model, the PACF is 
nonzero for lags ,...,,3,2,1 pK =  and is zero thereafter. For 

seasonal AR model, the PACF is nonzero at lags ,3,2, SSSK =  

,..., pS  and zero elsewhere. 

• Moving average behaviour: For low order MA model, the ACF is 
nonzero for lags ,...,,3,2,1 qK =  and zero thereafter. For seasonal 

MA model, the PACF is nonzero at lags ,...,,3,2, qSSSSK =  and 

is zero elsewhere. 

When performing model identification, mean non-stationary and 

seasonality should be corrected by applying the difference operator ,d
s∆  

where d is the level of differencing and S is the time period to which d is 
applied, before specifying the AR and MA model orders. Once a model has 
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been tentatively specified, the model parameters are estimated. The most 
important validation procedure in ARIMA modeling approach is to inspect 
the ACF of residuals for any significant lags that still remain. An adequate 
ARIMA model is the one whose ACF is not statistically significantly 
different from zero. Also, diagnostic checking is usually done by inspecting 
the residuals, such as Portmanteau Test (sometimes called the Box-Pierce-
Ljung statistic) and Goodness-of-Fit test determine if the residuals can be 
adequately modeled by normal distribution or not [16]. 

The tentative, parameterized model, at this point, is still a first-cut, 
informed guess. The most important validation procedure in ARIMA 
modeling approach is to inspect the ACF of the residuals for any significant 
lags that still remain. An adequate ARIMA model is one which the ACF 
contains no significant lags and thus resembles a white noise process. An 
important use of a time series model is to forecast future values of an output 
series. The forecasts are usually statistically valid only for next season of an 
output series; due to increasing prediction error as the forecast continues into 
the future [22]. 

2.3.2. Re-sampling techniques 

2.3.2.1. Bootstrap 

The bootstrap was first discussed by Efron [14] and is detailed further by 
Efron and Tibshirani [15]. Bootstrap was developed to provide standard 
errors and confidence intervals for a model coefficient and predicted values 
in situations in which the standard assumptions are not valid. The bootstrap 
method attempts to determine the probability distribution from the data itself, 
without recourse to Central Limit Theorem. The bootstrap algorithm, for a 
sample size of n, is as follows: 

 (i) Select B bootstrap samples of size n drawn with replacement. 

(ii) Estimate parameters, ( ),ˆ∗θ b  for each bootstrap sample ....,,2,1 Bb =  

The bootstrap estimates of the standard errors are given by equation (5), 

where ( )
∗
⋅θ̂  is the mean of the B bootstrap estimates. In order to obtain these 
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estimates, Efron and Tibshirani [15] suggested that the number of bootstrap 
replicates, B, can normally be taken from the range 25 to 200: 

 ( ( ) ( ) ) .ˆˆ
1

1

1

2∑
=

∗
⋅

∗ θ−θ
−

=
∧ B

b
bBSE   (5) 

The bootstrap estimate of the bias, when the parameter estimates are ,θ̂  
is given by equation (6). This estimate requires B, the number of bootstrap 
replicates, to be much larger than when estimating only the standard errors: 

 ( ) .ˆˆ θ−θ=
∧ ∗

⋅bias  (6) 

For each bootstrap sample, ARIMA model results are computed and 
stored. The bootstrap sampling process has provided B estimates of a 
parameter. The standard deviation of these B estimates of the bootstrap 
estimate is the standard error of this parameter. The bootstrap confidence 
interval is found the arranging the B values in sorted order and selecting the 
appropriate percentiles from the list [26]. A 90% bootstrap confidence 
interval for the slope is given by fifth and ninety-fifth percentiles of the 
bootstrap estimates values. The main assumption made when using the 
bootstrap method is that our sample approximates the population fairly well. 
Because of this assumption, bootstrapping does not work well for small 
samples in which there is little likelihood that the sample is representative      
of the population. Bootstrapping should only be used in medium to large 
samples [12]. 

2.3.2.2. Jackknife method 

If the true parameter values are given by the vector θ and this is 
estimated by ,θ̂  then the bias of the estimate is given by equation (7): 

 .θ̂−θ=bias  (7) 

For a sample size n, let θ̂  be the estimated parameter values data 

including all the observations, and let iθ̂  be the estimated parameter values 

on data excluding the ith observation, that is, ( )....,,...,,,ˆˆ
121 nii xxxx +θ=θ  
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Letting ( )⋅θ̂  be the mean of all the fitted parameters on the reduced data, that 

is the mean of all ,ˆ
iθ  enables the Jackknife estimate of the bias to be given 

by equation (8): 

 ( ) ( ( ) ).ˆˆ1 θ−θ−=
∧

⋅nbias  (8) 

The Jackknife corrected estimate of the bias, ,~
θ  can then be given by 

equation (9): 

∧
−θ=θ .ˆ~ bias  

Therefore, 

 ( ) ( ).ˆ1ˆ~
⋅θ−−θ=θ nn  (9) 

The standard errors formula of the Jackknife is given by equation (10): 

 ( ( ) ( ) ) .ˆˆ1

1

2∑
=

⋅θ−θ−=
∧ n

i
in

nSE  (10) 

Efron and Tibshirani [15] stated that the Jackknife provides a simple 
procedure to estimate the bias and the standard errors. However, the 

Jackknife is only valid when the statistic θ̂  is smooth, that is, small changes 
in the data cause only small changes in the estimates of the parameters. 
Jackknife is a special kind of bootstrap. Each bootstrap sub-sample has all 
but one of the original elements of the list. For n observations, there are n 
Jackknife sub-samples. A simple approach that uses the information in the 
original bootstrap samples without further re-sampling was sought. 

Efron [14] derived the Jackknife after Bootstrap (JAB) in an attempt to 
provide a solution to this problem. The JAB usually requires 100-1000 times 
less computation than JAB. Although the JAB is theoretically justified, 
situations arise in practice, where it performs poorly. These situations occur 
when a large number of bootstrap samples are not able to be drawn [5]. The 
JAB estimates in these situations have a tendency to be over-inflated and         
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do not reflect the true variability in the bootstrap statistics but more the 
limitations of using a small number of bootstrap samples. 

3. Study Results 

3.1. Fitting univariate ARIMA time series model 

Tilapia catch time series has been split to two data sets; the first data set 
from 1986 to 2010 is used to fit ARIMA model and last year 2011 has been 
used as a test data set to check the validity of the suggested model for 
forecasting. The best model has been found after many trials. This model is 
second order of non-seasonal auto-regressive and first order of seasonal auto-
regressive model based on first non-seasonal difference. This can be 
expressed as ARIMA (2,1,0)(1,0,0)12, which means that the catch in a month 
depends on the catch in previous two months and previous twelfth months; 
that is, previous years levels. It is noted that the constant term is not 
significantly different from zero; we may assume that there is no specific 
level of the catch regardless of the effect of the previous levels so the model 
has been refitted without constant term. Figure 4 shows the time sequence 
plot of ARIMA model for Tilapia species catch. 

 

Figure 4. Time sequence plot of ARIMA (2,1,0)(1,0,0)12 during 1986-2010 
of Tilapia catch. 

The ARIMA model (2,1,0)(1,0,0)12 can be expressed as follows: 

12132121111 −−− ∆β+∆β+∆β=∆ tttt CCCC  

,1413213131 −− ∆ββ−∆ββ− tt CC  (11) 
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where: 

=∆1  The first difference operator; so ,11 −−=∆ ttt CCC  

=tC  Monthly catch in time period t, 

ARIMA...,,, 21 =βββ p  model parameters and 

=t  time in months 1, 2, 3, …. 

This model can be simplified as follows: 

( ) ( ) 12332212111 −−−− β+β−β−β+β+= ttttt CCCCC  

( ) ( ) .153214323113331 −−− ββ+ββ−ββ+β+ββ− ttt CCC  (12) 

Table 1 displays the parameters in the ARIMA model without 
explanatory variables and the values of the estimated coefficients and their 
associated standard error, t-statistic, and p-values. 

Table 1. Summary of univariate ARIMA model parameters 
Parameter AR1 AR2 SAR1 Portmanteau test RUNM 
Estimation –0.246 –0.226 0.357 0.000 0.234 

Standard error 0.057 0.058 0.056   
t-value –4.317 –3.923 6.400   
p-value 0.000 0.000 0.000   

Table 1 summarizes the statistical significance of the terms in the 
forecasting model. Terms with p-values less than 0.05 are statistically 
significantly different from zero at the 95% confidence level. The p-value for 
the auto-regressive parameters is less than 0.05, so it is significantly different 
from zero. Also, the p-value for the SAR1 term is less than 0.05, so it is 
significantly different from zero. The estimated white noise variance is 0.535 
with 308 degrees of freedom and the estimated white noise standard 
deviation is 0.720. It is noted that the auto-regressive parameters are negative 
which were expected because there is a downward trend in the time series. 
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The two tests Portmanteau Test and Runs above and below median (RUNM) 
have been run to determine whether or not the residuals come form a random 
sequence of numbers. A sequence of random numbers is often called white 
noise, since it contains equal contributions at many frequencies. The 
Portmanteau Test is used to determine if there is any pattern left in the 
residuals that may be modeled. The test is computed as follows: 

 ( ) ( ) ,2
1

2

∑
=

−
+=

k

j

j
jN

r
NNkQ  (13) 

( )kQ  is distributed as a Chi-square with ( )QPqpK ----  degrees of freedom. 

This is accomplished by testing the significance of the autocorrelations up to 
a certain lag. The Portmanteau Test is based on the sum of squares of the first 
24-autocorrelation coefficients. Since the p-value for this test is less than 
0.05, the hypothesis that the series is random at the 95% confidence level 
cannot be rejected. The second test RUNM counts the number of times, the 
sequence was above or below the median. Since the p-value for this test is 
greater than or equal to 0.05, the hypothesis that the residuals are random at 
the 95% or higher confidence level cannot be rejected. The ARIMA model 
for Tilapia species catch can be extracted as follows: 

12321 357.0226.0021.0754.0 −−−− +++= ttttt CCCCC  

.080.0007.0269.0 151413 −−− −−− ttt CCC  (14) 

The most important validation procedure in ARIMA modeling approach 
is to inspect the ACF and PACF of the residuals for any significant lags that 
still remain. An adequate ARIMA model is one whose ACF and PACF       
are not significantly different from zero. Figure 5 shows the residuals 
autocorrelation and residuals partial autocorrelation for the Tilapia species 
catch, which give good evidence that the ARIMA model (2,1,0)(1,0,0)12 is 
the best model for all time series. 
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Figure 5. The residuals autocorrelation ACF and residuals partial 
autocorrelation PACF for Tilapia species catch. 

3.2. Fitting multivariate ARIMA time series model 

An analysis for the same time series was carried out using ARIMA 
model plus explanatory variables such as number of vessels, and number of 
fishermen; logically the effect of these variables cannot be ignored because 
the current catches may not only depend on the previous catches, but also on 
at least one of those explanatory variables. It was found that the only 
significant forms of the independent variables were the reciprocal of number 
of fishermen and number of vessels to power (–2). Table 2 shows the 
estimated parameters of ARIMA model with explanatory variables and the 
values of the estimated coefficients and their associated standard error, 
t-statistic, and p-values. 
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Table 2. Summary of multivariate ARIMA model parameters 
Parameter AR1 AR2 SAR1 Fleet–2 Fishermen–1 Portmanteau test RUNM 
Estimation –0.247 –0.226 0.356 –383075 304.866 0.000 0.324 

Standard error 0.057 0.0575 0.056 1E-6 0.001   
t-value –4.322 –3.925 6.400 –3E-11 224789   
p-value 0.000 0.000 0.000 0.000 0.000   

It is noticeable that all terms are statistically significantly different from 
zero at the 95% confidence level. The estimated white noise variance is 
0.53482 with 306 degrees of freedom and the estimated white noise standard 
deviation is 0.518. The parameter estimation of the explanatory variable 
Fleet–2 has a negative sign which means that the decreasing number of 
vessels will cause an increase in the catch, while the parameter estimation of 
the explanatory variable Fishermen–1 has a positive sign which means that 
the increase in number of fishermen size causes a decrease in the catch and 
vice versa which is quite logical finding, we conclude that the relationship 
between the explanatory variables and the catch is based on good reasons. 

The ARIMA model (2,1,0)(1,0,0)12 with two explanatory variables can 
be expressed as follows: 

( ) ( ) ( ) 1333112332212111 −−−−− β+ββ−β+β−β−β+β+= tttttt CCCCCC  

( ) .FishermenFleet 1
2

2
11532143231

−−
−− γ+γ+ββ+ββ−ββ+ tt CC (15) 

The ARIMA model with two explanatory variables for Tilapia species 
catch can be extracted as follows: 

12321 356.0226.0021.0753.0 −−−− +++= ttttt CCCCC  

151413 080.0007.0269.0 −−− −−− ttt CCC  

.Fishermen87.304Fleet383075 12 −− +−  (16) 

By comparing the two models, it is noticeable that the ARIMA 
parameters are the same in both models. But the second model improves 
more accuracy of the prediction. Table 3 shows the performance of the two 
models. 
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Table 3. The performance of univariate and multivariate ARIMA models 
Statistics Univariate ARIMA model Multivariate ARIMA model 
RMSE 0.732 0.730 
MAE 0.533 0.521 

MAPE 19.333 18.180 
ME 0.004 0.002 

MPE –4.154 –3.981 

Table 3 summarizes the performance of the currently selected model in 
fitting the historical data, which are: the root mean squared error (RMSE); 
the mean absolute error (MAE); the mean absolute percentage error (MAPE); 
the mean error (ME); and the mean percentage error (MPE). Each of the 
statistics is based on the one-ahead forecast errors, which are the differences 
between the data value at time t and the forecast of that value made at time 

.1−t  The first three statistics measure the magnitude of the errors. A better 
model will give a smaller value. The last two statistics measure bias. A better 
model will give a value close to zero. So, ARIMA with explanatory model 
can produce more accurate predictions than ARIMA without explanatory 
model. 

The previous sections have introduced ARIMA model with and without 
explanatory variables, and have given fitted models for the Tilapia catch data 
as well as appropriate tests of significance and residuals analysis. These tests 
of significance for the fitted parameter values rely on the information matrix 
yielding good estimates of the standard errors. Although the true values of 
the standard errors are not known and so cannot be compared with the 
estimates, the validity of the estimates can be checked by means of 
simulation. The following section describes how to simulate data from 
ARIMA model and how this simulated data can be used to estimate the 
standard errors. The simulation study performed to validate the estimates of 
the standard errors highlighted a bias in the variance, and this requires further 
investigations. If the bias is too large, then the fitted models will be limited 
use. 
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The two methods introduced in the previous sections (bootstrap and 
Jackknife after bootstrap) have both been used to obtain estimates of the 
parameter bias for the ARIMA model without explanatory variables and 
ARIMA model with explanatory variables, equations (14) and (16). For each 
parameter, a histogram of the replicates is displayed with an overlaid smooth 
density estimate. The histograms in Figure 6 show that the distributions of 
replicated bias are normal (for example, the first and second parameters of 
the first ARIMA model and the parameters of the explanatory variables of 
the second ARIMA model), which mean that the bootstrap can produce 
unbiased estimates for the parameters, the same results are observed for the 
other parameters of the two models. 

 

Figure 6. Histogram of replicated bias for the ARIMA model parameters (a) 
the 1−tC  parameter of the first ARIMA model, (b) the 2−tC  parameter of the 

first ARIMA model, (c) the Fleet parameter of the second ARIMA model 
and (d) the Fishermen parameter of the second ARIMA model. 

Figure 6 gives good evidence that bootstrap technique can produce 
accurate predictions. A normal probability plot has been used to further 
assess deviation from the normal distribution. Figure 7 gives an evidence that 
the residuals of the bootstrap are normally distributed for ARIMA model of 
Tilapia species with and without explanatory variables. 

The bootstrap technique (for 1000 bootstrap replications) and JAB have 
been used to estimate the bias and the standard errors for each model. The 
estimates of the bias and the standard errors for both models are given in 
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Table 4. The results show that the Jackknife and bootstrap produce quite 
similar estimates of the bias. 

 

Figure 7. The normal probability plot and the histogram of the residuals of 
ARIMA models. 

Table 4. Estimates of bias and standard errors 
 Univariate ARIMA model Multivariate ARIMA model 
 Bootstrap JAB Bootstrap JAB 

Parameters Bias SE Bias SE Bias SE Bias SE 

1−tC  –0.001 0.099 0.001 0.105 –0.002 0.097 0.004 0.103 

2−tC  0.012 –0.463 0.013 –0.505 0.009 –0.458 0.010 –0.475 

3−tC  0.005 0.161 0.003 0.174 0.009 0.159 0.002 0.161 

12−tC  0.006 0.063 0.005 0.064 0.004 0.058 0.005 0.061 

13−tC  –0.002 0.142 –0.003 0.139 0.004 0.137 –0.002 0.139 

14−tC  0.000 –0.003 0.000 –0.003 0.002 –0.003 0.001 –0.003 

15−tC  –0.001 0.028 –0.001 0.029 –0.001 0.029 –0.008 0.031 

2Fleet−      8282.806 376214 1431.671 372935.901 

1Fishermen−      2.444 168.901 –0.393 175.994 

The ratios of the bias to the standard errors for the Jackknife are given in 
Table 5. 
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Table 5. Ratios of bias to standard for Jackknife and bootstrap estimates 
 Univariate ARIMA model Multivariate ARIMA model 
 Bootstrap JAB Bootstrap JAB 

Parameters Bias/SE Bias/SE Bias/SE Bias/SE 

1−tC  2.64% 0.42% 0.75% 0.57% 

2−tC  1.98% 2.17% 2.69% 2.74% 

3−tC  6.22% 1.58% 3.17% 2.08% 

12−tC  7.62% 9.22% 8.82% 8.96% 

13−tC  3.45% 1.87% 1.52% 1.98% 

14−tC  6.04% 1.56% 0.90% 0.89% 

15−tC  3.85% 2.56% 4.75% 3.17% 
2Fleet−    2.20% 0.38% 

1Fishermen−    1.45% 0.22% 

Two types of percentile estimates are calculated: empirical percentiles 
and bias-corrected and adjusted BCa percentiles. The empirical percentiles 
are easy to calculate, but may not be very accurate unless the sample size is 
very large. The BCa percentiles require more computation but are more 
accurate. For either type of percentile, using at least 1000 replications is 
recommended for accurate estimation. The empirical percentiles are simply 
the percentiles of the empirical distribution of the replicates. The BCa 
method transforms the specified probability values to determine which 
percentiles of the empirical distribution most accurately estimate the 
percentiles of the parameter. The percentiles of the empirical distribution 
corresponding to these values are then returned. To estimate the BCa 
percentiles, the bias correction (denoted )0Z  and the acceleration must be 

calculated. If these values are not specified (and they usually are not), then 
the bias correction will be obtained from the replicates, and the acceleration 
will be obtained using Jackknife. In Jackknife, the data are broken into 
groups and these groups are Jackknifined, the floor of the group size is 
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( ),20n  which will yield roughly 20 Jackknife replicates, depending on the 

magnitude of n. 

Jackknife after bootstrap is a technique for obtaining estimates of the 
variation in functionals of the bootstrap distribution, such as the bias of the 
statistic, also it provides information on influence of each observation [15]. 
Table 6 shows the results of the bootstrap technique and JAB for ARIMA 
model of Tilapia species without explanatory variables and for ARIMA 
model of Tilapia species with explanatory variables using 95% confidence 
level. 

Table 6. The empirical and BCa percentiles of ARIMA model without 
explanatory variables and ARIMA model with explanatory variables 

 Univariate ARIMA model Multivariate ARIMA model 
 Bootstrap JAB Bootstrap JAB 

Parameter BCa Empirical
percentiles

Empirical
percentiles

BCa Empirical
percentiles

Empirical 
percentiles 

1−tC  0.848 0.843 0.699 0.846 0.839 0.695 

2−tC  0.149 0.162 0.001 0.161 0.154 0.001 

3−tC  0.245 0.255 0.127 0.247 0.243 0.119 

12−tC  0.462 0.474 0.373 0.45 0.462 0.361 

13−tC  –0.051 –0.034 –0.171 –0.031 –0.034 –0.171 

14−tC  0.352 0.331 0.195 0.344 0.333 0.194 

15−tC  –0.076 –0.072 –0.187 –0.084 –0.089 –0.196 
2Fleet−     488820.201 597403.4 –926342.7 

1Fishermen−    3364.21 3359.33 1915.77 

The corrected parameters with the estimated bias using bootstrap 
technique and JAB for both ARIMA models parameters with the ARIMA 
models parameters are shown in Table 7. 
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Table 7. ARIMA models parameters and the corrected parameters 
 Univariate ARIMA model Multivariate ARIMA model 

Parameter ARIMA Bootstrap JAB ARIMA Bootstrap JAB 

1−tC  0.754 0.751 0.754 0.753 0.753 0.754 

2−tC  0.021 0.02 0.031 0.021 0.033 0.035 

3−tC  0.226 0.236 0.228 0.226 0.231 0.229 

12−tC  0.357 0.361 0.362 0.357 0.362 0.362 

13−tC  –0.269 –0.264 –0.271 –0.269 –0.271 –0.271 

14−tC  –0.007 –0.007 –0.007 –0.007 –0.007 –0.007 

15−tC  –0.081 –0.082 –0.081 –0.081 –0.082 –0.081 
2Fleet−     –383075 –374792.19 –381643 

1Fishermen−     304.866 307.31 304.473 

The corrected parameters and ARIMA models parameters have been 
used to predict the catch in 2011. Figure 8 shows the comparison between the 
actual data and the predicted values using the corrected parameters. 

 

 

Figure 8. The actual data and the predicted values using the corrected 
parameters for both models. 
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From Figure 8, it is noticeable that ARIMA model parameters and the 
corrected parameters with the estimated bias produced by using bootstrap 
technique and the corrected parameters produced by using JAB can produce 
quite similar predictions. But the minimum difference between the predicted 
values and the actual values is observed in the use of the corrected 
parameters using the estimated bias produced by using JAB technique. 

4. Conclusions 

Evidence from the Egyptian fisheries revealed that using ARIMA 
coupled with both bootstrap and JAB leads to the most accurate prediction in 
the perspective especially with time series data. These two additional 
analytical techniques bootstrap and JAB have been used to estimate the bias 
of the estimated parameters. Consequently, it is strongly recommended 
adopting these two consecutive techniques with similar situations to 
minimize the bias of the estimated parameters. 
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