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Abstract 

Many diseases with genetic background are not just caused by single 
genes, but by a complex interplay between several genes and 
environmental factors. Thus, the investigation of their interactions 
gains more and more importance. However, statistical modeling of 
gene-gene interactions is a challenge. For example, regression models 
do not fully capture biological interaction. We may look for statistical 
approaches that offer more flexibility. Artificial neural networks do 
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not depend on pre-specified model structures and may thus be more 
appropriate to identify biological independence or interaction. Our 
approach is based on the idea that neural networks with reduced 
topology, i.e., a topology where the independent loci are not 
connected, should be able to reflect a biological independence model. 
Thus, we compare the model fits of two neural networks one with a 
reduced and one with a fully connected topology which should allow 
to decide on the presence of biological interactions. We perform a 
simulation study to investigate whether our approach leads to 
satisfactory results assuming different biological models of 
independence and interactions. It can be concluded that obviously 
similar problems as with standard regression models occur such that 
our approach in its present form is not able to identify biological 
independence. 

1. Introduction 

Complex diseases are caused by an interplay between various genes and 
environmental factors. Their investigation gains increasing attention in 
genetic epidemiology and requires that, besides main effects, interactions are 
considered for a better understanding of the effect of the covariates. Here, we 
face the problem that statistical interactions are not able to fully capture the 
complexity of biological interactions [9, 20]. Statistical interaction is usually 
defined as deviation from an additive effect of the covariates on the 
untransformed or transformed outcome. For instance in logistic regression 
models, an additive effect on the logit-transformed outcome means a 
multiplicative effect on the untransformed outcome and statistical interaction 
can be interpreted as deviation from a multiplicative effect. In contrast, 
biological interaction is presented if one gene changes the effect of another 
gene [8]. Thus, several statistical approaches have been proposed to model 
and to identify biological gene-gene interactions such as for instance support-
vector machines [6], random forests [2, 4], multi-factor dimensionality 
reduction (MDR [24]), combinatorial partitioning methods [19], focused 
interaction testing framework [16], classification and regression trees (CART 
[7]), logic regression [26], and lasso regression [28]. Nevertheless, none of 
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these methods can be considered as standard which is in part due to the fact 
that none of the approaches seems to be adequate for all two-locus disease 
models (see, e.g., [5, 13, 14, 17]). Despite this obvious problem caused by 
non-flexible modeling approaches, appropriate statistical methods are needed 
and still looked for to identify biological interaction for a meaningful 
interpretation of genetic studies [18, 29]. 

Artificial neural networks offer a great flexibility to model any functional 
relationship between response variables and covariates. In addition, it is not 
necessary to prespecify the model structure in advance. It has been shown 
that neural networks are able to reflect various types of biological models 
that are typically used to capture biological gene-gene interactions [11]. 
Thus, the advantages of neural networks may be further exploited to identify 
gene-gene interactions by especially accounting for the topology of neural 
networks. For this purpose, we start from the biological two-locus disease 
model representing biological independence, the so-called additive model by 
Risch [23]. We assume that the additive model requires less parameters to be 
represented by a neural network. To be more specific, it might be expected 
that if the two loci are indeed independent there are no synapses connecting 
these two loci in the fitted neural network. After having fitted a network with 
a complete topology and one with a reduced topology, i.e., without the 
connecting synapses, a comparison of both model fits may enable the 
researcher to decide whether the reduced topology is sufficient to capture the 
association structure of the underlying genetic data and thus to decide on the 
presence of biological interactions. This means that the trained neural 
network would then allow to distinguish between biological independence 
and biological interaction. 

The paper is organized as follows: Section 2 gives a brief overview of 
the methods used in this paper: Subsection 2.1 summarizes biological models 
for two loci representing biological independence and different types of 
biological interaction. Subsection 2.2 introduces artificial neural networks 
without dwelling into technical details. In addition, our approach to compare 
two different fitted neural networks in order to identify biological gene-gene 
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interactions is described in somewhat more detail in Subsection 2.3. To 
investigate whether our approach is successful we perform a simulation study 
where the design and its results are presented in Section 3. Finally, Section 4 
gives a critical discussion of our approach. 

2. Methods 

2.1. Two-locus disease models 

In genetic epidemiology, two-locus models that are characterized by 
penetrance tables have been mainly used to model biological independence 
and interaction [8, 27]. The so-called additive model introduced by Risch 
[23] represents biological independence of two biallelic loci. Let Y denote the 
case-control status, where 1=Y  indicates a case, i.e., a person having the 
disease of interest, and 0=Y  indicates a control, i.e., a person without the 
disease of interest, and let AG  as well as BG  denote the genotype of the two 

biallelic candidate loci A and B. AG  and BG  take 0, 1, 2 as possible values, 

i.e., the genotypes count the number of alleles at risk for both loci. Each two-
locus disease model is defined by a special structure of the so-called 
penetrance matrix ( ) ,, jiijff =  where the penetrances are defined as 

conditional probability of being a case ( )1=Y  given the joint genotype 

iGA =  and { }.2,1,0,, ∈= jijGB  For the additive model, it is assumed 

that the penetrances can be represented as sum of the so-called penetrance 
summands ia  and :jb  

( ) ( )( ) jiBAjiij jGiGYPff ,, ,1 ==|===  

( ) { }.2,1,0,,, ∈+= jiba jiji  (1) 

To ensure that ,10 ≤≤ ijf  the penetrance summands have to fulfill 

1,0 ≤≤ ji ba  and .10 ≤+≤ ji ba  

To distinguish the additive independence model from interaction models, 
we investigate two disease models that represent biological gene-gene 
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interaction. For the multiplicative disease model, the penetrances are given as 
product of so-called penetrance factors ia  and :jb  

( ) ( )( ) jiBAjiij jGiGYPff ,, ,1 ==|===  

( ) { }.2,1,0,,, ∈⋅= jiba jiji  (2) 

The second model is an epistatic model. Epistatic models provide a very 
flexible framework for two-locus disease models [15]. We consider the 
recessive epistatic model given by 

( ) ( )( ) jiBAjiij jGiGYPff ,, ,1 ==|===  

{ },2,1,0,, ∈















= ji

rccc
ccc
ccc

 (3) 

where c denotes a baseline risk and r is a risk increase or decrease. There is 
only a risk change if both loci carry two alleles of risk. 

2.2. Artificial neural networks 

We choose a feed-forward multilayer perceptron (MLP [3]) as artificial 
neural network. The underlying structure of an MLP is a directed and 
weighted graph and consists of vertices (neurons) that are organized in layers 
and edges (synapses). A synaptic weight is attached to each synapse 
indicating the effect of the related neuron. The input layer consists of all 
covariates and each covariate is represented by a separate neuron. The 
response variables are located in the output layer. The organization of 
neurons, synapses and weights is called network topology. In the special case 
of only one input layer and one output layer with one response variable, an 
MLP calculates the following function: 

( ) ( ),00 xwx ⋅+σ=











⋅+σ=µ ∑ T

i
ii wxww  (4) 

where 0w  denotes the intercept, ( )nww ...,,1=w  the vector consisting of all 
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synaptic weights without intercept, and ( )nxx ...,,1=x  the vector of all 

covariates. The activation function σ regulates the output of the neural 
network. If the response variable is binary, σ should be chosen as the logistic 
function, so that the output is converted to the interval [0, 1]. In this case, the 
neural network is equivalent to the logistic regression model and all trained 
weights are identical to the estimates of the regression parameters. In 
particular, the output ( )xµ  of the neural network can also be interpreted as 

conditional probability of being a case given the covariates x. 

So-called hidden layers of neurons can be included to increase the 
flexibility of the modeled function. Subsequent layers are fully connected, 
i.e., each neuron is connected by a synapse to each neuron of the following 
layer. However, one hidden layer is sufficient to model any piecewise 
continuous function [12]. The related MLP calculates the following function: 

( ) 

























⋅+σ⋅+σ=µ ∑ ∑

j i
iijjj xwwww 00x  

( ) ,00 












⋅+σ⋅+σ= ∑

j

T
jj www xwj  (5) 

where 0w  denotes the intercept of the output neuron and jw0  the intercept of 

the jth hidden neuron. In addition, jw  denotes the synaptic weight 

corresponding to the synapse starting at the jth hidden neuron and leading to 
the output neuron, ( )njj ww ...,,1=jw  the vector of all synaptic weights 

corresponding to the synapses leading to the jth hidden neuron, and 
( )nxx ...,,1=x  the vector of all covariates. This MLP calculates a weighted 

and transformed sum of all incoming signals twice: first, the covariates are 
weighted, added up and transformed by σ at each hidden neuron; second, this 
is done again for the resulting sums at the output neuron. Therefore, artificial 
neural networks can be regarded as direct generalizations of generalized 
linear models (GLM). Although the weights cannot be interpreted as 
regression parameters of a GLM, the output ( )xµ  can still be interpreted as 
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conditional probability of being a case given x, if σ is chosen as logistic 
function. 

Artificial neural networks are fitted to the underlying data by a learning 
algorithm. By adjusting all synaptic weights, this algorithm minimizes an 
error function that for each observation depends on the given response 
variable and the related output of the neural network. In this paper, the 
resilient backpropagation algorithm is used that is based on an iterative 
gradient descent [22]. In the case of binary output, cross-entropy should be 
used as error function to ensure equivalence to maximum likelihood 
estimation. In addition, this allows that criteria based on the likelihood can 
easily be calculated as transformations of the error function. 

2.3. Approach for identifying biological interaction 

Starting from the additive model by Risch, we pursue the aim to identify 
biological independence from a fitted neural network with a reduced 
topology. This implies that two neural networks have to be fitted to a data set 
and their model fits have to be compared where we assume that a reduced 
topology is sufficient to represent the additive independence model (see 
Figure 1). Both network topologies consist of three input neurons - two loci 
and one constant variable belonging to the intercepts of the hidden layer –, 
one output neuron and one hidden layer with two hidden neurons and one 
constant variable belonging to the intercept of the output neuron. On the one 
hand, neural networks with complete topology are fitted to the data (see 
Figure 1(a)), where subsequent layers are fully connected. On the other hand, 
a reduced topology is assumed, where two synapses are deleted, namely the 
two synapses that allow interconnections between the two involved loci (see 
Figure 1(b)). The idea behind is that the flexibility to model statistical 
associations should be in general higher for a neural network with complete 
topology than for one with reduced topology due to the higher number of 
parameters. Thus, it is expected that the model fit is in general better for a 
neural network with complete topology. Given that the additive model is a 
disease model of biological independence, it is of interest to learn whether 
the reduced topology without interconnections is as powerful as the fully 
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connected network to describe this disease model. If this were the case, 
complete and reduced topology would lead to identical model fits and the 
additive model could be characterized based on missing interconnections, 
i.e., based on an identical model fit to the underlying data by a neural 
network with reduced topology. 

 

(a) Complete topology              (b) Reduced topology 

Figure 1. Comparison of both network topologies. 

Following the notation introduced in equations (4) and (5), the neural 
network with complete topology calculates 

( ) ,
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= =j i
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where the one with reduced topology calculates 

( ) ( ) .
2

1
00 













⋅+σ⋅+σ=µ ∑

=j
jjjjj xwwwwx  (7) 

3. Simulation Study 

3.1. Design 

The proposed idea to identify biological independence by an nearly 
identical model fit of the reduced topology is investigated in a simulation 
study where first the design of the study is chosen in a very idealized way to 
check whether the new approach is able to detect the biological independence 
in this optimal situation. If the approach is successful, then more realistic 
designs will be considered. 
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Neural networks with both topologies are fitted to simulated data that 
represent the two-locus disease models introduced in Subsection 2.1. All 
samples are generated via a two-step procedure. In a first step, a population is 
generated that consists of 1,000,000 observations. This population contains 
the genetic information of two marginally independent and biallelic loci, 
which are coded by the genotype, and a related case-control status. Both loci 
have a minor allele frequency (MAF) of 30% to ensure a sufficient frequency 
of all genotype combinations. The case-control status is randomly allocated 
with the probabilities of the given penetrance matrix f. The penetrance matrix 
is obtained from the three models given in equations (1)-(3). The following 
two risk scenarios concerning the genotype relative risks are considered for 
the additive and the multiplicative model 

Scenario 1: 01 2 aa ⋅=  Scenario 01 5 aa ⋅=  

02 4 aa ⋅=                02 10 aa ⋅=  

01 5 bb ⋅=                  01 5 bb ⋅=  

02 10 bb ⋅=               .10 02 bb ⋅=  

This yields, for instance, the following penetrance matrix for the additive 
model as introduced in equation (1) in the first risk scenario 

( )
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 (8) 

The epistatic model is considered in two situations with 5=r  (scenario 1) 
and 10=r  (scenario 2). The penetrance summands 0a  and ,0b  the 

penetrance factors 0a  and 0b  as well as the baseline risk c in the epistatic 

model are determined such that the prevalence in the population is equal to 
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1%. As already mentioned, we first consider such risk scenarios with high 
genotype relative risks to investigate whether our approach works in extreme 
and well distinguishable situations. 

In a second step, case-control samples with 1,000 cases and 1,000 
controls are randomly drawn from the simulated population. Neural networks 
with both network topologies are fitted to the data with starting weights 
randomly drawn from a standard normal distribution. Ten repetitions are 
calculated for both network topologies to enhance the chance to find a global 
minimum of the error function. For both network topologies, the best model 
is selected based on Akaike’s information criterion (AIC [1]). In addition, we 
fit neural networks with identical starting weights for both topologies to 
ensure that the results are not affected by the choice of the starting weights, 
i.e., instead of twenty sets of starting weights  ten for the complete and ten 
for the reduced topology  only ten are drawn and used for both network 
topologies. The two best models  one for each network topology  are 
again selected based on the AIC. Resilient backpropagation is appropriate to 
train neural networks with both network topologies since it is mainly based 
on the chain rule for differentiating composite functions [25] and missing 
edges can be completely ignored. Thus, the learning algorithm does not 
affect our results. For each situation, one hundred repetitions are calculated 
and the mean output is determined. 

The population and case-control samples differ in all characteristic 
probabilities like penetrance matrix and allele frequencies due to the different 
prevalences. Therefore, it is necessary to determine a theoretical penetrance 
matrix of the case-control sample as [11]. The theoretical penetrance matrix 
corresponds to the penetrance matrix of a perfect sample and can be used to 
assess the quality of the model fits. For this purpose, the mean output of the 
trained neural networks as an estimate of the penetrance matrix of the     
case-control sample is compared to the theoretical penetrance matrix. The 
deviation (D) between the mean estimated and the theoretical penetrances 
provides a measure for the quality of the average model fit: 
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( ) ( ) ji
s

ij
s

ijjiij ffD ,,
ˆ−==D  

( ( ) ) ,, , jiBA
s

ij jxixf ==µ−=  (9) 

{ },2,1,0, ∈ji  where { },2,1,0,, ∈jif s
ij  denote the theoretical penetrances 

for ixA =  and jxB =  and ( )jxixf BA
s

ij ==µ= ,ˆ  denote the related 

mean output of the neural network, i.e., the mean estimation of the 
conditional probability of being a case given x. Obviously, the smaller the 
values of ijD  are, the better the model fit is and a value of zero indicates a 

perfect model fit on average. 

All simulations are performed using the software R [21]. We use the 
package neuralnet that was implemented by our group and is published 
on CRAN as package for training neural networks [10]. 

3.2. Results 

Table 1 summarizes the simulation results that we obtained for the 
additive model. It compares the theoretical and estimated penetrance matrix 
in four cases, namely risk scenarios 1 and 2 as well as random and equal 
starting weights as described in Subsection 3.1. The sum of all absolute, 
elementwise differences between the estimated and the theoretical penetrance 

matrix, i.e., ∑ ijD  as defined in equation (9), is provided. It is obvious that 

for the additive model, a neural network with reduced topology has on 
average a worse model fit than a neural network with complete topology, 
since the sum is much smaller for the complete topology in each case. Using 
for example random starting weights, the sums obtained from the reduced 
topology are about six times as large as those obtained from the complete 
topology (0.223 vs. 0.035 in scenario 1 and 0.373 vs. 0.060 in scenario 2). 
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Table 1. Additive model: comparison of complete and reduced network 

topology. Sum of absolute elementwise differences 





∑ ij

D  

 Random starting weights Equal starting weights 

 Scenario 1 Scenario 2 Scenario 1 Scenario 2 

Complete topology 0.035 0.060 0.047 0.068 

Reduced topology 0.223 0.373 0.226 0.375 

The results for the multiplicative models are shown in Table 2. Reduced 
topology and complete topology have similar model fits with a tendency of 
the neural network with reduced topology to show somewhat better results, 
i.e., to show smaller values of the differences between the estimated and the 
theoretical penetrance matrix. Both topologies are well able to capture the 
multiplicative model since both network topologies obtain small sums of all 
absolute, elementwise differences between the estimated and the theoretical 

penetrance matrix ∑ .ijD  

Table 3 summarizes the results for the recessive epistatic model. These 
are similar to those of the additive model. The reduced topology has a worse 
model fit and is therefore not sufficient to model the penetrance matrix of the 
epistatic model. 

Table 2. Multiplicative model: comparison of complete and reduced network 

topology. Sum of absolute elementwise differences 





∑ ij

D  

 Random starting weights Equal starting weights 

 Scenario 1 Scenario 2 Scenario 1 Scenario 2 

Complete topology 0.025 0.052 0.028 0.042 

Reduced topology 0.014 0.024 0.019 0.025 
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Table 3. Recessive epistatic model: comparison of complete and reduced 

network topology. Sum of absolute elementwise differences 





∑ ij

D  

 Random starting weights Equal starting weights 

 Scenario 1 Scenario 2 Scenario 1 Scenario 2 

Complete topology 0.089 0.046 0.079 0.058 

Reduced topology 0.491 0.697 0.492 0.709 

4. Discussion 

The aim of the simulation study was to investigate the ability of our   
new approach to identify biological gene-gene interactions based on trained 
neural networks. For this purpose, the model fit of two neural networks 
differing in their network topology was compared. The idea was to 
characterize the two-locus disease model of independence by missing 
interconnections, i.e., by an identical model fit to the underlying data by a 
neural network with reduced topology. The simulations showed that this 
approach failed since the flexibility of the reduced topology does not seem  
to be sufficient to adequately describe the additive model. Although the  
additive model represents biological independence, neural networks need 
interconnections between both considered loci to capture this disease model. 
Additional analyses showed for the risk scenario 1 systematic deviations 
using the reduced topology, i.e., the reduced topology led to over- or 
underestimated penetrances, such that the structure of the additive model was 
ignored. The results were supported by the trained weights of the complete 
topology as there were no two weights that connected both loci in the hidden 
layer and that were simultaneously estimated as zero (data not shown). 

Even more surprisingly, the results for the multiplicative models 
indicated that the reduced topology was sufficient to capture the assumed 
biological interactions. Although the complete topology in general describes 
a more complex relationship than the reduced one, the reduced topology 
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yields slightly better results, i.e., the estimated penetrance of the reduced 
topology is closer to the theoretical penetrance matrix than that of the 
complete topology. This might be due to the fact that the activation function 
in this case is comparable to the one of the logistic regressions. This means 
that interaction effects on the additive scale might appear as non-interaction 
effects on the multiplicative scale and can therefore not be detected by our 
approach. 

The recessive epistatic model behaved like the additive model. Neural 
networks with reduced topology do not seem to be able to adequately capture 
this model. Since the epistatic model represents biological gene-gene 
interaction and the additive model represents biological independence, we 
can conclude that our approach in its present form is not able to distinguish 
biological gene-gene interaction from biological independence. Due to these 
unexpected results, no further simulations with alternative scenarios, like 
scenarios with a lower minor allele frequency or modeling other two-locus 
disease models were carried out. 

Nevertheless, neural networks should be further investigated regarding 
their capability to capture disease models of biological independence or 
interaction. Our current research is on the estimated synaptic weights instead 
of the whole topology of a fitted neural network where we try to derive 
statistical tests based on appropriate confidence intervals that may allow to 
decide on the presence of biological interactions. 
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