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Abstract 

This paper addresses a family of probability models for the failure 
time process known as Non-Homogeneous Poisson Process (NHPP) 
models. Conventional NHPP models make rather strong distributional 
assumptions about the detection times: typically they assume that these 
come from some parametric family of distributions. Recently non-
parametric models were developed in an attempt to relax these 
assumptions and - generally, in the tradition of non-parametric 
statistics - ‘allow the data to speak for themselves’. We present a new 
non-parametric model for reliability prediction, which is based upon 
the use of the half folded kernel density estimators. The predictive 
accuracy of the model, using real data sets, is compared with that of 
Gaussian fix width and Gaussian adaptive kernel density estimators. 
The initial results are encouraging. 
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1. Introduction and Background 

The problem with which this paper deals is the common one of assessing 
the current reliability, and predicting the future reliability, of some software 
that is undergoing fault removal. The program is assumed to be executing in 
a real or simulated operational environment. It starts its life with a number of 
faults, each of which eventually manifests itself by causing a failure. We 
shall assume here that time is continuous and truly represents the extent to 
which the software is used (see, for example, [10, 13] for discussions of the 
use of ‘execution time’). At each failure it will be assumed that an attempt is 
made to remove the cause of the failure (the fault), whereupon the program is 
put back into operation. Let fault i (in an arbitrary labelling) be detected after 
a time ,ix  which is a realisation of a random variable .iX  The { }iX  are 

assumed to be independently identically distributed, i.i.d, random variables. 
The order statistics 

( ) ( ) ( ) ≤≤≤≤ 3210 XXX  

of the { }iX  represents the successive times of fault detection. 

The inter-failure times …,, 21 TT  are the spacing between the order 

statistics, i.e., 

( ),11 XT =  

( ) ( ),122 XXT −=  

 

( ) ( ).1−−= iii XXT  

The successive inter-failure times 121 ...,,, −ittt  will therefore tend to show 

reliability growth as time passes, and will form the data upon which the 
reliability predictions will be based. This problem has been addressed by 
many authors over the past twenty years or so (see, for example, [1-5, 12, 22, 
24]). 
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2. NHPP Software Reliability Models 

Among the many software reliability models developed over the years 
several NHPP models have been proposed [1, 2, 9, 20, 24]. These models 
consider the debugging process as a count process characterised by its 
intensity function λ(τ) or, equivalently, its mean function ( )τM  given by 

( ) ( ) ,∫
τ
λ=τ dxxM  

where ∑
−

=
− =τ

1

1
1 .

i

j
ji t  

Once the intensity function (or mean function) of the process is defined, 
the inter-failure time distribution can be obtained by applying 

( ) ( ) ( ) ( ){ }.exp 1111 −−−− τ−τ+−τ+λ=τ| iiiiiii MtMttf  

Let the probability density function, pdf, and the cumulative distribution 
function, cdf, of the time to detection of a fault be denoted by ( )Xg  and 

( ),XG  respectively. Assuming that the total number of initial faults in the 

program is Poisson distributed with mean µ, the intensity function for the 
NHPP is given by [17] 

( ) ( )τµ=τλ g  

with mean function 

( ) ( ).τµ=τ GM  

The conditional distribution for iT  given 1−τi  is 

( ) ( ) ( ) ( )[ ]{ }.exp 1111 −−−− τ−τ+µ−τ+µ=τ| iiiiiii GtGtgtf  

Estimates of the parameters are made at each stage i using previous failure 
data ....,, 11 −itt  These estimates are then substituted in the cdf and pdf in 

order to make predictions about the yet unobserved ,iT  

( ) ( ) { [ ( ) ( )]}.ˆˆˆexpˆˆˆ
1111 −−−− τ−τ+µ−τ+µ=τ| iiiiiii GtGtgtf  
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The importance of the above general form is that it expresses the distribution 
of the independent and non-identical inter failure-times as a function of the 
distribution of the i.i.d times to detection of faults and µ, the expected 
number of failures [17]. 

In general NHPP software reliability models can be classified into two 
categories; parametric and non-parametric models. All the parametric models 
make rather strong distributional assumptions about the detection times: 
typically they assume that these come from some parametric family of 
distributions. In attempt to relax the parametric assumptions about the 
detection time distribution some authors considered non-parametric 
estimation methods for software reliability [16-19, 23, 25]. 

2.1. Non-parametric NHPP models 

Sofer and Miller, as cited in [23], assumed a polygonal line estimator of 
the software intensity function for the usual Non-Homogeneous Poisson 
Process (NHPP)-based software reliability models and proposed a smoothing 
algorithm based on the common quadratic programming. Gandy and Jensen, 
as cited in [23], used the well-known Nelson-Aalen multiplicative estimator 
for the NHPP-based software reliability models. Recently, Wang et al. [25] 
applied the kernel intensity estimation method to develop a non-parametric 
NHPP-based software reliability models and proposed a quite different 
approach from the existing ones. Barghout [17] suggested a generalized 
NHPP software reliability model and proposed a non-parametric method 
based on the well-known kernel density estimation. Instead of assuming a 
distribution for the detection times a non-parametric kernel density 
estimation method was used to estimate this distribution. Three different 
kernel functions were chosen, namely, the Gaussian, double exponential and 
the log-normal kernel. The performances of these three kernel functions were 
investigated and compared on a number of data sets. In general, the analysis 
revealed poor performance of the Gaussian kernel function [17]. 

The performance of a kernel estimator is expected to be influenced by 
the choice of the kernel function, on one hand, and the smoothing parameter 
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(bandwidth), on the other hand. In attempt to improve the performance of the 
model a non-parametric density estimation model that is based on an 
adaptive kernel estimator was proposed [16]. The rationale behind the 
adaptive kernel is to allow the bandwidth to vary from one point to another 
and thus, using a broader kernel in regions of low densities. The preliminary 
results revealed an improvement in the predictive accuracy of the adaptive 
kernel estimator compared with its fixed width kernel variant on the data sets 
analysed. 

An alternative approach is to focus on the kernel function itself. The use 
of the Gaussian kernel function has been criticized for being defined on the 
whole real line, and thus gives an estimated density on the whole real line - 
in fact the true density is known to be defined on the positive real line       
[16, 17]. An alternative function, the folded normal function, which is 
defined only on the positive half of the real line, is, herein, proposed. 

2.2. The folded normal NHPP model 

Details of kernel estimation can be found elsewhere [6] but the basic idea 
is a simple one. Assume that we have a sample of n real observations 

nxxx ...,,, 21  whose underlying density is to be estimated. The kernel 

estimate assumes that around each observation, ix  a kernel function 

( )ih xxK −  is centred. The kernel density estimator is then obtained by 

averaging over these kernel functions in the observation, i.e., 

( ) ( ),1ˆ
1
∑
=

−=
n

i
ih xxK

n
xg  

where ( ) 




= h

xKhxKh
1  for any general kernel ( )xK  and h is a smoothing 

parameter. The kernel density estimator coincides with the characteristic 
function estimator when the kernel function is the inverse Fourier 
transformation of the characteristic function [8, 14]. 

Clearly, the choice of the mathematical form of the kernel function here 
will be very important. 
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The folded normal distribution has been widely used in a variety of 
applications such as quality control [7] and dealing with measurement errors 
[15]. In general, the distribution of ,ZX =  where Z is distributed as 

( ),σ,µN  is a folded normal distribution. The normal probability function is 

folded at .0=Z  The density function of the folded normal distribution is 
given by 

( ) [ ( ) ( ) ] .0,
2

1 2222 22 ≥+
πσ

= σµ+−σµ−− xeexf xx  

In the special case when Z is a standard normal random variable the density 
function of X reduces to 

( ) 0,
2
2 2

≥
π

= − xexf x  

which is known as the half-normal distribution [7, 15, 21] and is to be 
considered as the kernel function in this paper. 

Finally, it is necessary to consider the estimation of the parameter h in 
the kernel estimator. The most common approach is the likelihood cross 
validation method. This is a natural development of the idea of using 
likelihood to judge the adequacy of fit of a statistical model. The rationale 
behind the method, as applied to density estimation, is as follows. One 
observation ( )jx  from the sample used to construct the density estimate is 

omitted. The non-parametric estimate of ( ( ) ) ( ( ) ),, jjj xgxg −  is the density 

estimate constructed from all the ( )1−i  data points except ( ),jx  that is to 

say, 

( ( ) ) ( ) { ( ( ) ( ) )}∑
≠

−−−
− −−=

jk
kjjj xxhKhixg .2 111  

The non-parametric estimate of ( ) ( )jjjj tftf −,  is given by, 

( ) ( ) { [ ( ) ( )]}.~~exp~
1111 −−−−−−−− τ−τ+µ−τ+µ=τ| ijiijiijjjj GtGtgtf  
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Since there is nothing special about the choice of which observation to leave 
out, the log likelihood is averaged over each choice of omitted ( ),jx  to give 

( ) ( )∑
−

=
−

−−=
1

1

1 .log1
i

j
jj tfiCV  

The likelihood cross validation choice of the parameters is the value of these 
parameters which maximise the function CV for the given data. 

Once the parameters of a model are estimated, at any stage i using the 
previous data, these estimates are then used to estimate the distribution of iT  

and to make further ahead predictions of reliability. 

3. Brief Resume of Tools for Analysing Predictive Accuracy 

Typically models are used to make a sequence of predictions as i 

increases; thus a sequence of successive one-step-ahead predictions, ( ),ˆ tFi  

of the random variables iT  is generated. The accuracy of models’ predictions 

will solely depend on its estimate, ( ),ˆ tFi  of the true ( ).tFi  The true ( )tFi  is 

not known, even at later stages of analysis, hence it is difficult to analyze the 

closeness of ( )tFî  to the true ( ).tFi  However, ,it  the realisation of ,iT  is 

later observed and all the analysis of the predictive quality of a model is 

based upon these pairs { ( ) }.,ˆ ii ttF  There has been considerable progress in 

using the { ( ) }ii ttF ,ˆ  sequence to assess the accuracy of a particular method 

of prediction upon a particular data source [1, 2, 22]. These tools will be used 
to compare the accuracy of the new model with that of the Gaussian fixed 
width and Gaussian adaptive models. Basically there are two main tools: the 
u-plot and the prequential likelihood ratio (PLR). 

3.1. The u-plot 

The u-plot is a technique for detecting systematic ‘bias’ in a series of 
model predictions. It is well known that if the random variable iT  truly had 
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the distribution ( ),ˆ tFi  then the random variable ( )iii TFU ˆ=  would be 

uniformly distributed on ( ).1,0  If we were to observe the realisation it  of 

,iT  and calculate ( ),ˆ iii tFu =  then the number iu  will be a realisation of a 

uniform random variable. When we do this for a sequence of predictions, 
then, we should get a sequence { },iu  which looks like a random sample from 

a uniform distribution. Any departure from such uniformity will indicate 

some kind of deviation between the sequence of predictions, { ( )}tFî  and the 

truth ( ){ }.tF  One way of looking for departure from uniformity is by plotting 

the sample distribution function for the { }iu  sequence. If the { }iu  sequence 

were truly uniform, then this plot should be close to the line of unit slope. 
Any serious departure of the plot from this line indicates that the predictions 
are inaccurate: one way of testing whether such a departure is statistically 
significant is via the Kolmogorov, K-S, distance [1, 2, 20]. 

3.2. The prequential likelihood ratio (PLR) 

The PLR is a very general and powerful means of comparing the 
accuracy of sequences of predictions coming from two competing prediction 
systems A and B. For the one-step-ahead predictions of iT  that we are 

considering here, the PLR compares the successive probability density 

function estimates ( )i
A

i tf̂  and ( ),ˆ
i

B
i tf  each evaluated at the later observed 

.it  The PLR is a running product of the ratio of these over many successive 

predictions: 

( )
( )∏

=

=

=
ji

si i
B

i

i
A

iAB
j

tf
tfPLR ,ˆ

ˆ
 

where s is the starting sample size. 

There is a sophisticated asymptotic theory underpinning the use of the 
PLR, which is beyond the scope of the present paper, but the following is an 
intuitive explanation of how it works. Let us assume that the A predictions 
actually are accurate, and the B predictions are not: i.e., the predictive 
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densities from A are always close to the true ones. The observation it  will 

tend to take a value where the true density (and hence the accurate A 
prediction) is large (e.g., rather than in the tail of the true density), and where 
the B predictive density is not so large. Thus, if the predictions from A are 
more accurate than those from B,  

( ) ( )i
B

ii
A

i tftf ˆˆ  

will tend to be larger than 1. The PLR, which is a running product of such 
terms, will therefore tend to increase with i if the A predictions are better than 
the B predictions: if we detect such a clear trend upwards we shall have 
evidence of the superiority of the A predictions [1, 2, 20]. 

4. Application of the Model to Real Software Failure Data 

The predictive accuracy of the new model is examined on four real data 
sets using the techniques previously described. The performance of the 
folded normal kernel predictor is compared with both the Gaussian fixed 
width kernel and the adaptive kernel. For convenience these models will be 
referred to by folded, fix width and adapt, respectively. 

Due to space constraints it is necessary to limit the number of plots 
shown: a detailed analysis will be carried out on the first data set while the 
results on the other three data sets will be summarised. 

The first data set Musa system 1 is a set of 136 failures collected by 
Musa [11]; this data set has been widely used in the software reliability 
community for model comparison. The second and third data sets are part of 
a larger data set collected at the Centre for Software Reliability at the City 
University of London. The original data set USBAR consists of 397 inter-
failure times recorded on a single-user workstation. The set was subdivided 
according to different categories, such as the usage under which the failures 
occurred or the type of fault that caused the failure. The second data set, 
USPSCL consists of 104 failures which occurred when compiling and 
running Pascal programs. The third data set TSW includes 129 software 
failures which occurred when the system software did not behave as 
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required, e.g., incorrect output, operating system crash etc. The models will 
then be applied to the original data set USBAR. 

The analyses for all data sets are conducted in the same manner. If the 
data set contains n inter-failure times, ns <  is chosen as a starting sample 
size where s is a number suitably large for making the first prediction and 
small enough so that the remaining data is sufficient to obtain a sequence of 
predictions of reasonable size to allow a proper analysis. In all data sets 
considered s was taken equal to 35. At stage i, a model is used to predict for 
the yet unobserved iT  based upon observations ....,,, 121 −ittt  The sample is 

thereafter increased by it  and the observations ittt ...,,, 21  are used to 

predict for .1+iT  As the data evolves we can repeatedly make one step ahead 

predictions from each model. 
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Figure 1. Successive one-step ahead median predictions from the models, of 
the time to next failure ,iT  i  = 36 to 136, plotted against i, for data set Musa 

system 1. 

Figure 1 shows plots of the successive current median times to next 
failure for Musa system 1 Data as calculated by the models. Thus, in the plot 
at stage i the predicted median of iT  is calculated based upon all the data that 

has been observed prior to this stage, i.e., inter-failure times ....,,, 121 −ittt  

The actual data is superimposed upon the median predictions for comparison. 
Figure 1 shows that there is great disagreement between the different 
predictors in how they predict the medians. 
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The median predictions from the folded model exhibit less noise and are 
in general lower than the predictions obtained from both the fix width and 
adapt models. Moreover, they are lower than the real inter-failure times. This 
suggests that the predictions of the folded model are in general too 
pessimistic. 

The bias of the 3 predictors is investigated by studying their u-plots, 
Figure 2. The u-plots indicate that although all the models are optimistic for 
predictions associated with the left hand tail of the distribution of time to 
next failure they differ when predicting for the right hand tail: the folded 
predictions are pessimistic as evident by their plots crossing the line of unit 
slope from the right. The u-plots for the fix width and adapt models are 
everywhere above the line of unit slope, i.e., the predictions are too 
optimistic, as suspected from the earlier median plots. 
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Figure 2. u-plots for predictions ,iT  i  = 36 to 136 from the models for Musa 

system 1 data. 

Table 1 shows summarized results for the K-S distances of the u-plots. 
Although a substantial improvement is noticed in the K-S distance of the 
u-plot of the folded model all the predictors are biased in their predictions 
with u-plots significant at 1%. 
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Table 1. u-plot K-S distances for the different predictors and data sets 

 Fix width Adapt Folded 

Musa system 1 0.269 0.261 0.164 

USPCL 0.246 0.251 0.136 

TSW 0.273 0.237 0.114 

USBAR 0.268 0.268 0.083 

The predictions of the folded model are not only less biased than those 
obtained from both the fix width and adapt models but are in general more 
accurate as indicated by the PLR plots.  

Figure 3 shows the PLR plot for the fix width and adapt predictors 
against the folded predictor. The folded predictor is chosen as the reference 
model. Any downward trend (notice that the plot is of the log of PLR) 
indicates the superiority of the folded model. 
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Figure 3. log (PLR) plots for predictions ,iT  i = 36 to 136 from the fix width 
and adapt models versus the folded model, for data set Musa system 1. 

The jump exhibited by the adapt predictor near the end of the data set 
occurred when predicting for an inter-failure time which is far higher than 
the highest previously observed inter-failure time. Excluding this jump, the 
plots for the fix width and adapt predictions show a downward trend 
discrediting these predictors in favour of the folded predictor.  
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Figure 4 shows the u-plots of the different predictors for USPSCL data. 
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Figure 4. u-plots for predictions ,iT  i = 36 to 104 from the models for 

USPCL system 1 data. 

As for Musa system 1 data, the u-plots for both the fix width and adapt 
models are everywhere above the line of unit slope suggesting that these 
predictors are optimistic in their predictions. On the other hand, the folded 
plot crosses the line of unit slope from the right indicating that its predictions 
are optimistic for predictions associated with the left hand tail of the 
distribution of time to next failure and pessimistic when predicting for the 
right hand tail. This is more obvious on this data set compared to Musa 
system 1 data. In general the u-plot for the folded predictions is in close 
agreement with the line of unit slope as evident by its K-S distance shown in 
Table 1. While both the fix width and adapt plots are significant at 1% the 
K-S distance for the folded plot is insignificant at 20%. 

Figure 5 shows the PLR plot for the fix width and adapt predictors 
against the folded predictor. Once again, the folded predictor is chosen as the 
reference model and any downward trend (notice that the plot is of the log of 
PLR) indicates the superiority of the folded model. There is a clear 
downward trend in the fix width and adapt plots, indicating that the folded 
model is producing more accurate predictions than both the fix width and 
adapt model. 
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Figure 5. log (PLR) plots for predictions ,iT  i = 36 to 104 from the adapt 

and folded models versus the fix width model, for data set USPSCL. 
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Figure 6. u-plots for predictions ,iT  i = 36 to 129 for TSW data. 

The u-plots, Figure 6 and Figure 7, for the TSW and USBAR data, 
respectively, support the previous analysis. The u-plots for the fix width and 
adapt predictors are in close agreement with one another and are entirely 
above the line of unit slope indicating that their predictions are too 
optimistic. The folded model predictions are optimistic when predicting for 
the left hand tail of the distribution and pessimistic when then right hand tail 
is considered. In general, the folded plots are closer to the line of unit slope 
as evident from the K-S distances reported in Table 1. While the K-S 
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distances for both the fix width and adapt plots are significant at 1% for both 
data sets the K-S distances for the folded plot are insignificant at 5% level 
and 1% level for TSW and USBAR data sets, respectively. 
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Figure 7. u-plots for predictions ,iT  i = 36 to 397 for USBAR data. 

Figures 8 and 9 show the PLR plots for the fix width and adapt models 
predictions versus the folded predictions for TSW and USBAR data sets, 
respectively. Both the fix width and adapt plots exhibit a clear downward 
trend discrediting these models in favour of the folded model. This is evident 
for both data sets. 
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Figure 8. log (PLR) plots for predictions ,iT  i = 36 to 129 from the fix width 

and adapt models versus the folded model, for data set TSW. 
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Figure 9. log (PLR) plots for predictions ,iT  i = 36 to 397 from the adapt 

and folded models versus the fix width model, for data set USBAR. 

5. Summary and Conclusions 

Earlier non-parametric density estimation models used kernel estimators 
to estimate the distribution for the detection of failure times [16-19]. The 
performances of different kernel functions were compared on a number of 
real data sets [16-19]. Previous studies reported poor performance of the 
Gaussian kernel function with a fixed bandwidth [17]. In attempt to improve 
the performance of the model an adaptive kernel estimator was proposed 
[16]. The initial results were not as promising as desired. An alternative 
approach is to focus on the kernel function itself. One disadvantage of the 
Gaussian kernel is that it is a symmetric function defined on the whole real 
line, and thus gives an estimated density on the whole real line - in fact the 
true density is known to be defined on the positive real line. To overcome 
this disadvantage a half folded normal function is proposed as the kernel 
function. 

As for the earlier non-parametric models the performance of the new 
model, folded, is investigated and compared with the Gaussian fixed width 
and the adaptive Gaussian models on four real data sets. 

The predictions of the folded model are not only less biased than those of 
the fix width and adapt models, as indicated by their K-S distance, but the 
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nature of the biased is different. While the fix width and adapt predictions are 
too optimistic the folded predictions are optimistic for predictions of the left 
hand tail of the distribution and pessimistic for predictions of the right hand 
tail. This is evident from the u-plots crossing the line of unit slope from the 
right. 

The PLR plots suggest that, in general, the predictions of the folded 
model are more accurate than the predictions of both the fix width and adapt 
models. The plots of both the fix width and adapt predictions versus the 
folded predictions exhibited a clear downward trend, in all data sets, 
discrediting both the fix width and adapt models in favour of the folded 
model on all data sets. Although the preliminary results are encouraging it is 
evident that more research and analysis of software failure data is required to 
obtain more conclusive results. 
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