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Abstract 

In this study, daily average temperatures in Shanghai over the last 
twenty years are modelled with a view towards application to weather 
derivatives. For this purpose, a mean-reverting Ornstein-Uhlenbeck 
(OU) process driven by Fractional Brownian Motion (FBM) is used. 
The estimated Hurst parameter shows that temperature dynamics 
deviate from the assumptions of Brownian motion and that option 
prices using FBM are significantly higher compared to the model with 
an OU process driven by Brownian motion. The motivation for using 
FBM is the long-range temporal dependence and the normality of 
temperature fluctuations observed for Shanghai temperatures. Standard 
call and put options on a temperature index (Heating/Cooling Degree 
Days [HDDs/CDDs]) for Shanghai are priced using a Monte Carlo 
simulation of the proposed model with fitted parameters. 

I. Introduction 

Weather derivatives, which emerged in the US energy industry in 1997 
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and have since been adopted worldwide, are a new class of financial 
instrument that can be used for hedging against weather-related risks. The 
income-smoothing effect of weather derivatives is a major reason for the 
development of this new class of financial instrument. 

In a weather derivatives contract, the underlying variable is a weather-
related index, which is not a tradable asset. This means that pricing models 
are not based on no-arbitrage principles, as can be done with standard stock 
options. Therefore, the valuation of a weather derivative is generally carried 
out following the expected discounted value approach. 

Alaton et al. [1] gave the definitions of daily temperatures and 
Heating/Cooling Degree Days (HDDs/CDDs). Weather derivatives based on 
HDD and CDD indices, which are the most commonly traded weather 
indices on the Chicago Mercantile Exchange (CME), are priced in this study. 

The dynamic modelling of daily average temperatures is a popular 
approach in the literature on weather derivatives. Its major advantage is the 
flexibility to price the most general class of payoff functions based on daily 
temperatures. Due to the mean-reverting behaviour of temperature dynamics, 
the Ornstein-Uhlenbeck (OU) process is a natural choice. The first study on 
modelling and pricing weather derivatives in China is given by Göncü [4]. 
Benth and Šaltytė-Benth [2] proposed a more general model using a Fourier 
approximation to model seasonal volatility. Another study for modelling 
temperatures in China and Turkey is given by Göncü [5, 6] with the Greeks 
derived for standard call and put options. FBM is used for the first time in 
modelling and pricing weather derivatives in the study by Brody et al. [3]. To 
the best of the author’s knowledge, this article is the first study to apply FBM 
to modelling daily temperatures in a Chinese city. 

II. Temperature Data 

Our data consists of daily average temperatures observed in Shanghai 
during the period 1990 to 2009. Figure 1 shows a plot of these temperatures 
for the given twenty years. The same dataset is used in an earlier study by 
Göncü [4], in which the long-term mean temperature dynamics are given 



Modelling Temperatures in Shanghai … 253 

with the following fitted values: 
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The seasonal model given in equation (1) captures the deterministic 
component of the temperature dynamics. After removing the deterministic 
component, one can focus on the noise or so-called random fluctuations 
around the long-term temperatures. In Figure 2, a histogram of daily 
temperature fluctuations around the long-term mean is plotted. This figure 
shows that the ‘noise’ component of random fluctuations can be assumed to 
be normally distributed. 
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Figure 1. Daily average temperatures in Shanghai from 1990 to 2009. 
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Figure 2. Histogram of daily de-trended and de-seasonalized temperature 
fluctuations around long-term mean with fitted normal distribution. 
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III. Fractional Brownian Motion 

In probability theory, a normalized FBM is a continuous-time Gaussian 
process ( )tBH  on [ ]T,0  which starts at zero for all t in [ ]T,0  and has the 

following covariance function 

 ( ) ( )[ ] ( ) ,2222 HHH
HH ststsBtBE −−+=  (2) 

where H is a real number in ( ),1,0  called the Hurst parameter and associated 

with the FBM. It was introduced by Mandelbrot and van Ness [7]. The value 
of H determines the type of FBM process: (i) If ,5.0=H  then the process is 
in fact a Brownian motion or Wiener process; (ii) If ,5.0>H  then the 
increments of the process are positively correlated; (iii) If ,5.0<H  then the 
increments of the process are negatively correlated. 

In Figure 3, three sample paths are simulated with Hurst parameters 
equal to 0.25, 0.50 and 0.75, respectively. As can be seen, a very low H 
value, say 0.25, gives an anti-persistent process, whereas a Hurst parameter 
of 0.75 yields a persistent process. In simple terms, we can consider that 
positive correlation with previous values of the process makes it more 
difficult to return back to where it started. 
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Figure 3. Simulations of Fractional Brownian Motion (FBM) with Hurst 
parameters 0.25 (highly anti-persistent), 0.5 (standard Brownian Motion 
[BM]), and 0.75 (highly persistent). 
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IV. A Mean-reverting Model Driven by 
Fractional Brownian Motion 

As suggested by Brody et al. [3] and Syroka and Toumi [8], temperature 
exhibits long-range temporal correlations or so-called ‘long-memory’, which 
motivates the use of FBM as the driving process for temperature dynamics. 
Different methods have been developed for identifying the presence of long-
memory in temperature dynamics. In the present article, we use a simple and 
efficient method of identification known as the Surface Temperature (ST) 
method, introduced by Syroka and Toumi [8]. The underlying principle is          
to analyse the temperature fluctuations remaining after the deterministic 
components has been removed, and then to quantify how the variability of 
these fluctuations depends on time. The is done using the statistic 

 ( ) ,1

1

2∑
=

≡σ
N

i
iXNT  (3) 

which represents the root-mean-square fluctuation of iX  (see Brody et al. 

[3], for details). 

For completely random and uncorrelated fluctuations, we have ( ) ≈σ T  

.21−T  On the other hand, for a smooth fluctuation with little randomness, 

variability is constant. Hence, an exponent γ, in other words, ( ),γT  between 

0 and 21−  suggests the existence of temporal correlation between daily 

temperatures. 

After removing the deterministic component given in equation (1), we 
apply the ST method to our Shanghai temperature data. 

In Figures 4 and 5, the best-fit exponents are given as 32.0−=γ  for 

timescales from 5 to 30 days and 45.0−=γ  for timescales from 30 days to 

730 days, respectively. By the definition of FBM, if we have ,5.0=H  then 
FBM becomes equivalent to standard Brownian Motion (BM). Therefore,  
for comparison, we plotted the best-fit line corresponding to the standard 
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Brownian motion process with .5.0=H  The FBM process with 68.0=H  
corresponds to a strong temporal dependence compared to the BM process 
with .5.0=H  As given in the properties of FBM, if ,21>H  then the 

increments of FBM are positively correlated, suggesting that there exists 
temporal dependence in temperatures. Considering the same ST analysis for 
timescales from 5 to 730 days, we estimated the Hurst parameter to be equal 
to 0.56, as given in Figure 6. 

We observe two facts: (i) temperature fluctuations around the long-      
term mean temperatures follow approximately a normal distribution, (ii) 
temperature dynamics show long-range temporal dependence. These two 
facts motivate the use of FBM rather than BM as the driving process for     
the mean-reverting OU process for daily temperatures. Hence, we use the 
following model: 
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where ℜ∈a  determines the speed of mean reversion and H
tW  is an FBM. 

The term ( )φ+ϖω+= tCBdt
dT m

t cos  is used to ensure that the process 

reverts to the long-term mean temperatures. The long-term mean temperature 
dynamics for Shanghai temperatures are given in equation (1). 

The model in equation (4) is often used with standard Brownian motion 
instead of FBM as a basis for Monte Carlo simulations. Some examples can 
be found in Alaton et al. [1] and Göncü [4, 5]. However, using Brownian 
motion, which corresponds to ,21=H  does not take into account the low-

frequency variability of weather. 

V. Numerical Results and Conclusion 

We consider the most common type of weather derivatives for our 
numerical examples. HDD and CDD contracts are priced using a Monte 
Carlo simulation. The calibrated parameters and the definitions of HDD and 
CDD contracts can be found in the study by Göncü [4, 5]. 
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Figure 4. ST analysis of Shanghai temperatures from 1991 to 2010. The 
best-fit exponent for timescales from 5 to 30 days is −0.32, corresponding to 

.68.0=H  For comparison, a line with slope equal to −0.5, corresponding to 
increments of standard Brownian motion with ,5.0=H  is plotted. At shorter 
timescales (from 5 to 30 days), we observe strong short-term persistence of 
synoptic weather conditions. 
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Figure 5. ST analysis of Shanghai temperatures from 1991 to 2010. The 
best-fit exponent for timescales from 30 to 730 days is −0.45, corresponding 
to .55.0=H  For comparison, a line with slope equal to −0.5, corresponding 
to increments of standard Brownian motion with ,5.0=H  is plotted 
timescales from 5 to 730 days is −0.44, corresponding to .56.0=H  For 
comparison, a line with slope equal to −0.5, corresponding to increments of 
standard Brownian motion with ,5.0=H  is plotted. 
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Figure 6. ST analysis of Shanghai temperatures from 1991 to 2010. 

In Table 1, each of the price estimates are obtained by a Monte Carlo 
simulation of 100 000 sample paths. We see that prices are higher under     
the model given in equation (4), which is driven by an FBM. In particular, 
we see that at low price levels, the relative price difference is very large. 
These results show the importance of capturing the long-range temporal 
dependence in daily temperatures. 

Table 1. Pricing of Heating Degree Day (HDD) and Cooling Degree Day 
(CDD) options for Shanghai using a Monte Carlo simulation. The contract 
period for the HDD option is January 1-31, whereas for CDD option, the 
contract period is July 1-31 

 HDD Strike CDD Strike 

 375 400 425 325 350 375 
Call       

50.0=H  7.446 2.296 0.528 44.477 22.388 8.076 
56.0=H  9.521 3.667 1.151 46.173 24.108 9.858 

Put       
50.0=H  26.811 46.084 69.028 0.635 4.069 14.542 
56.0=H  28.996 47.540 71.278 1.234 5.586 15.771 
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In Figures 7 and 8, we plot the call and put option prices with respect         
to different Hurst parameter values. The model with Brownian motion 
corresponds to ,21=H  and any deviation from Brownian motion in the 

underlying dynamics causes significant pricing differences. 
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Figure 7. Price estimates of an HDD call option for Shanghai with strike 
level of 425 HDDs. 
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Figure 8. Price estimates of an HDD put option with strike level of 425 
HDDs. 
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In this study, we modelled daily average temperatures in Shanghai for a 
period of twenty years using a mean-reverting stochastic process driven by 
Fractional Brownian Motion (FBM). The use of FBM is motivated by two 
observations: (i) the fluctuations of temperatures around the long-term mean 
obey a Gaussian law, (ii) there exists long-term temporal dependence in 
temperatures. Motivated by these two facts, we use an FBM-driven OU 
process for pricing temperature-based weather derivatives for Shanghai. The 
results show that assuming a standard Brownian motion significantly 
underestimates the price of standard call and put options on HDDs and 
CDDs. In an incomplete market setting with limited hedging opportunities, 
capturing temperature dynamics properly is crucial. To the best of the 
author’s knowledge, this study is the first to propose the use of FBM for 
modelling weather derivatives in a Chinese city. 
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