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Abstract 

We consider the solution of one-dimensional linear and nonlinear 
Klein-Gordon equations by first transforming them into bi-dimensional 
integral equations which are then handled as bi-dimensional moment 
problems. The integral equations are obtained by either Laplace 
transforming the linear PDE or by using Green identity for the linear 
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as well as the nonlinear cases. The discretization of the so obtained 
integral equations results, for the linear and nonlinear problems, 
respectively, into a bi-dimensional Hausdorff problem and into a 

generalized moment problem (in which the kernel set { }nm
mn yx  

has  been replaced by sets ( ){ }mm yxg ,  of more general linearly 

independent functions). In both cases, the corresponding inverse 
problem is numerically solved by approximating the associated finite 
moment problem by a truncated expansion. 

I. Introduction 

The Klein-Gordon (K-G) equation has been proved to be very useful in 
many scientific fields such as solid state physics, quantum field theory, 
chemical kinetics, nonlinear optics, fluid dynamics, mathematical biology 
and so on. In its more general (nonlinear and nonhomogeneous) version, it 
can be written (for just a one spatial dimension) as 

 ( ) ( ) ( )[ ] ( ),,,,, txfbtxuagtxcutxu xxtt =−−  (1.1) 

where ( )txuu ,≡  represents a wave displacement at position x and time t 

with ,0>x  ;0>t  ( )ug  is a dispersive contribution, ( )txf ,  is an external 

force and 0>c  and b are constants. The particular case ( )[ ] ( ),,, txutxug ≡  

where a is a constant, gives the nonhomogeneous linear Klein-Gordon 
equation 

 ( ) ( ) ( ) ( ).,,,, txfbtxautxcutxu xxtt =−−  (1.2) 

If we take 0=b  in both equations, then the corresponding homogeneous 
versions are recovered. 

We assume that the function ( )txu ,  is subjected to initial conditions: 

 ( ) ( ) ( ) ( )xtxuxtxu t 21 0,,0, ϕ==ϕ==  (1.3) 

and mixed (Cauchy) boundary conditions at the origin: 

 ( ) ( ) ( ) ( ).,0,,0 43 ttxuttxu x ϕ==ϕ==  (1.4) 

Also, without lost of generality, we will consider 1=c  throughout. 
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These PDE’s have been numerically solved for diverse expressions of 
( )[ ],, txug  ( ),, txf  ( ),1 xϕ  ( ),2 xϕ  ( )t3ϕ  and ( )t4ϕ  by using a variety of 

techniques which include decomposition method [1, 2], iterative variational 
method [3], discrete difference approximation [4], Legendre spectral method 
[5, 6], the use of radial basis functions [7] and many others schemes [8, 9]. 

In this paper, we consider a different way to numerically solve the 
problem given by equation (1.1) or (1.2) with conditions (1.3) and (1.4): we 
first transform it into an integral equation which we then handle as a bi-
dimensional moment problem. This approach was already suggested by Ang 
et al. [10] in relation with the heat conduction equation. 

The work is organized as follows: In principle, we consider separately 
the linear and the nonlinear equations. Next section is devoted to the first 
one. There we transform equations (1.2), (1.3) and (1.4) into an integral 
equation by using Laplace transformation. The resulting integral equation      
is considered as a bi-dimensional Hausdorff moment problem which is 
regularized by solving a related finite problem as we did in [11] and also 
discuss in Appendix A. In Section III, the nonlinear Klein-Gordon equation 
is considered. There we use the Green identity to transform the PDE into the 
integral equation. Now we view the resulting equation as a bi-dimensional 
generalized moment problem of the type, we have discussed in [12] for just 
one-dimension and that we extend to involve two-dimension integrals in 
Appendix B. We also consider again the linear K-G equation as a particular 
case ( )( )auug ≡  and show how the generalized moment problem transforms 

into the Hausdorff problem already seen in Section II. In all the cases, we 
illustrate the method with several examples. 

II. Linear K-G Equation 

We start considering the nonhomogeneous linear Klein-Gordon equation 
as given by equation (1.2) together with the conditions established by 
equations (1.3) and (1.4). This equation has a lot of applications in 
mathematical physics. For example, the homogeneous case ( )0=b  describes 

correctly a spinless pion. 
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The PDE is transformed into an integral equation by means of Laplace 
transform in the next subsection. 

A.  Laplace transform 

Let us first assume 0>a  and define the Laplace transform: 

 ( ) ( )[ ] ( )∫
∞ ξ−=≡ξ
0

,:,,~ dxetxutxuLtu x
x  (2.1) 

so [13], 

( )[ ] ( ) ( ),,0,~, tututxuL xx −ξξ=  

( )[ ] ( ) ( ) ( ).,0,0,~, 2 tutututxuL xxxx −ξ−ξξ=  

Thus, applying Laplace transform to equation (1.2), we have 

 ( ) ( ) ( ) ( ),,,~,~ 2 tGtuatutt ξ=ξξ+−ξ  (2.2) 

where 

 ( ) ( ) ( ) ( )tfbtttG ,~, 43 ξ+ϕ−ξϕ−=ξ  (2.3) 

with ( ) ( )[ ].,,~ txfLtf x=ξ  

Equations (2.2) and (2.3) define a second order ordinary differential 
equation in the variable t. To solve it, let us consider the associate 
homogeneous equation 

( ) ( ) ( ) 0,~,~ 2 =ξξ+−ξ tuatutt  

whose characteristic function is ( ) ,022 =ξ+− ar  so it has the general 

solution 

( ) ,,~ 22
21

tata
c ecectu ξ+−ξ+ +=ξ  

thus the general solution of equation (2.2) is of the form 

 ( ) ( ),,~,~ 22
21 tuecectu p

tatat ξ++=ξ ξ+−ξ+  (2.4) 



Klein-Gordon Equation as a Bi-dimensional Moment Problem 205 

where ( )tu p ,~ ξ  is a particular solution of equation (2.2), which will depend 

in any particular case of the expression for ( ),, tG ξ  and 1c  and 2c  are 

constants which are determined from the system of algebraic equations 
derived by Laplace transforming the initial conditions (equation (1.3)): 

 
( ) ( )

( ) ( )⎩
⎨
⎧

ξϕ=ξ

ξϕ=ξ

.~0,~
,~0,~

2

1

tu

u
 (2.5) 

Here ( ) ( )[ ];0,0,~ xuLu x=ξ  ( ) ( )[ ]0,0,~ xuLu txt =ξ  and ( ) ( )[ ]xL ixi ϕ=ξϕ~  

( ).2,1=i  The direct way to obtain the desired solution is to apply, when it 

is possible, the inverse Laplace transform to ( ) ( ) ( )[ ].,~,:,~ 1 tuLtxutu x ξ=ξ −  

Note that if ,0<a  we can consider the Laplace transform with respect 
to the variable t: 

( ) ( )[ ] ( )∫
∞ τ−=≡τ
0

,:,,ˆ dtetxutxuLxu t
t  

and, instead of equations (2.2), (2.3), we obtain the ODE 

( ) ( ) ( ) ( ),,,ˆ,ˆ 2 τ=ττ−+τ xGxuaxuxx  

where 

( ) ( ) ( ) ( )τ+ϕ−τϕ−=τ ,ˆ, 21 xfbxxxG  

and the general solution of the ordinary differential equation is 

( ) ( ).,ˆ,~ 22
21 τ++=τ −τ−−τ xuececxu p

axax  

B. Hausdorff moment problem 

In both cases, 0>a  or ,0<a  if the inversion ( ) ( )[ ]tuLtxu x ,~, 1 ξ= −  or 

( ) ( )[ ],,ˆ, 1 τ= − xuLtxu t  respectively, can be done analytically, then a closed 

expression for ( )txu ,  is reached. Here we show a variant that allows, in 

general, for numerical solutions. To do this, we first consider a bi-
dimensional integral equation by Laplace transforming ( )tu ,~ ξ  or ( )τ,ˆ xu  
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with respect to the other variable. So, for ,0>a  we obtain a bi-dimensional 
first kind Fredholm like integral equation for ( ):, txu  

 ( ) ( )∫ ∫
∞ ∞ τ−ξ− τξ=
0 0

,~̂, udxdteetxu tx  (2.6) 

with 

 ( ) ( ) .,~,~̂
0∫
∞ τ−ξ=τξ dtetuu t  (2.7) 

Here we show how the integral equation (2.6) can be solved by viewing 

it as a Hausdorff moment problem. Define ;1
xez −=  tez −=2  and change 

variables ( ) ( ).,, 21 zztx →  We obtain 

( ) ( )∫ ∫ τξ=−−−τ−ξ1

0

1

0 2121
1

2
1

1 .,~̂ln,ln udzdzzzuzz  

We can write for ξ and τ natural numbers: 

 ( )∫ ∫ =μ=
1

0

1

0 212121 ...,,2,1,0,,, nmdzdzzzwzz mn
nm  (2.8) 

where ( )21 1,1~̂ α++α++≡μ nmumn  and 

 ( ) ( ).ln,ln, 212121
21 zzuzzzzw −−= αα  (2.9) 

Here, 1α  and 2α  are conveniently chosen numbers so that the moments 

mnμ  are well defined. Equations (2.8) and (2.9) represent a bi-dimensional 

Hausdorff moment problem for ( )., 21 zzw  We have studied this problem in 

[11]. There we first consider the relative finite moment problem, say 
equation (2.8) but with ;...,,2,1,0, Nnm =  ( )N∈N  whose solution is 

expanded 

( ) ( )∑∑
∞

=

∞

=

λ=
0 0

2121 ,,,
i j

ijij zzPzzw  
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where ( ) ( ) ( )2121, zPzPzzP jiij =  with ( ) ( )...,2,1,0=izPi  the Legendre 

polynomials defined in [ ]1,0  and the coefficients ijλ  are 

( ) ( ) ( )∫ ∫ ==λ
1

0

1

0 212121 ....,2,1,0,,, jidzdzzzPzzw ijij  

Then we estimate ( )21, zzw  by truncating the expansion: 

 ( ) ( ) ( )∑∑
= =

λ=≈
N

i

N

j
ijijN zzPzzwzzw

0 0
212121 ,,,,  (2.10) 

where the coefficients ijλ  are explicitly given by 

 ( )∑ ∑
= =

=μ=λ
i

k

j

k
kkjkikij Njicc

0 01 2
2121 ...,,2,1,0,  (2.11) 

with 

 ( ) .112 ⎟
⎠
⎞

⎜
⎝
⎛ +
⎟
⎠
⎞

⎜
⎝
⎛−+=

k
ki

k
i

ic k
ik  (2.12) 

In order that this method of truncated expansion [14] is valid, we require 

[11] that ( ) [ ) [ )[ ]∞×∞∈τξ ,0,0,~̂ 2Lu  and 

 [ ( ) ( )] ( )∫ ∫
∞ ∞ + ∞<+
0 0

22 .,, dxdtetxtutxxu tx
tx  (2.13) 

In Appendix A, we prove the following theorem, which adapts some of 
the results of [11] to the present context: 

Theorem 1. Define ( ) ( ).,, 21 tx
N

tx
N eeweetxu −−αα=  If ( )txu ,  verifies 

( ) ( ),, 222
1

2
1

+
−

∈ RLeetxu
tx

 

( ) ( ),, 222
1

2
1

+
−

∈ RLeetxu
tx

x  



María B. Pintarelli and Fernando Vericat 208 

( ) ( ),, 222
1

2
1

+
−

∈ RLeetxu
tx

 

( ) ( )222
1

2
1

, +
−

∈ RLeetxu
tx

t  

and the norm ( ) 2, wtxf  is defined as 

( ) ( ) ( ) ( )∫ ∫
∞ ∞ α+−α+−≡
0 0

212122 ,,, 21 dxdteetxftxf tx
w  

then 

 ( ) ( )
( )

( ),
14

1,, 212
2 II

N
txutxU wN +

+
≤−  (2.14) 

where 

( )

( ) ( )

∫ ∫
∞ ∞ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−α−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+α−

γγ

γγ

α=
0 0

2
122

12
22

21
, dxdteetxuI

tx
 

[ ( ) ( ) ]
( ) ( )

∫ ∫
∞ ∞ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−α−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+α−
−γγ−

γγ

++
0 0

2
122

12
212

21
,, dxdteetxutxu

tx

tx  

 (2.15) 

with .2,1=γ  Moreover, if the moments ( )21 1,1~̂ α++α++≡μ nmumn  

have an error such that ( ) ∑ ∑= = ε≤μ=μμ N
m

N
n mn

TTr 1 1
2,  then 

 ( ) ( )
( )

( ) 22
212

2

14
1,, cII

N
txutxu wN ε++

+
≤−  (2.16) 

with ( ) ( ) .
12

22112 6

8
62

−
++= NNNc  

Example 1. Here we consider an example of the linear K-G equation as 
given by equation (1.2), with initial and boundary conditions given by (1.3) 
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and (1.4), respectively, 

( ) ( ) ( ) ( ) ( ) ( )[ ];sincos12,;1;1 xtxxxtetxfba tx −−−=== +−  

( ) ( ) ( ) ( ) ( ) .0;0;sin;0 4321 =ϕ=ϕ=ϕ=ϕ − ttexxxx x  

The known exact solution is: ( ) ( ) ( ).sin, txexxttxu +−=  

By Laplace transforming, we calculate 

( ) ( ) ( )
( )

,
22

212,~
22

2

ξ+ξ+

ξ+ξ+=ξ
− tetf

t
 

so equation (2.3) gives 

( ) ( ).,~, tftG ξ=ξ  

We propose 

( ) ( )BtAetu t
p +=ξ −,~  with ( )

( )2222
12;0

ξ+ξ+

ξ+
== BA  

as a particular solution of equation (2.3), introduce this expression into the 
general solution (2.4) and determine the constants 1c  and 2c  by solving the 

system (2.4) with 

( ) ( ) ( )
( )

.
22
12~;0~

2221
ξ+ξ+
ξ+=ξϕ=ξϕ  

We find ,021 == cc  so the general solution is  

( ) ( ) ( ) .2212,~ 22ξ+ξ+ξ+=ξ −ttetu  

By Laplace transforming ( )tu ,~ ξ  with respect to the variable t, we have 

( ) ( )
( ) ( )222 122

12,~̂
τ+ξ+ξ+

ξ+=τξu  



María B. Pintarelli and Fernando Vericat 210 

and the moments are 

( ) ( )
( ) ( )

.
245

221,1~̂
22221

nmm
mnmumn

+++
+=α++α++≡μ  

We observe that for ,021 =α=α  the moments are already well defined, 

and it is enough to solve the finite Hausdorff moment problem 

( )∫ ∫ μ=
1

0

1

0 212121 , mn
nm dzdzzzwzz  

with the moments 

( )[( ) ( ) ] ( )....,,2,1,0,24522 1222 Nnmnmmmmn =++++=μ −  

Also, it should be remarked that we have verified that the function ( )txu ,  

( ) ( )txexxt +−= sin  fulfills condition (2.13). 

In Figure 1, we show the solution we have obtained for ( ) =txu ,  

( )tx eew −− ,  with ( )21, zzw  approximate by ( )21, zzwN  as given by equations 

(2.10)-(2.12) for .5=N  We also compare our numerical solution with the 
known exact solution. 

III. Nonlinear K-G Equation 

In this section, we consider the nonlinear K-G defined in general           
by equation (1.1) with the initial conditions (1.3) and Cauchy boundary 
conditions (1.4). 

A. Green identity 

Let us take the auxiliary function 

 ( ) ( ) ( )11,;, +−+−= strx eesrtxh  (3.1) 

that verifies 

 ( ) ( ) ( ) ( ).,;,,;,,;, 22 srtxhtxsrtxhsrtxh ssrr −=−  (3.2) 
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In the region [ ] [ ],,0,0 MMD ×=  we apply the planar Green identity 

 ( )∫∫ ∫∫ ∫∂ ⋅∇=∇⋅∇+∇
D D D

dnhudAhuhdAu ,2 ˇ  (3.3) 

where ∂D is the contour of the region D. 

Replacing here expression (3.1) for h and using equation (3.2) together 
with equation (1.1), we obtain 

[( ) ( ) ( ) ( )( ) ( )] ( ),,,;,,,,;,
0 0

22 txdrdssrtxhsruagsrusrtxhtx
M M

φ=−−∫ ∫  

 (3.4) 

where 

( ) ( ) ( ) ( )[ ]∫ +≡φ
M

s drMrtuMruMrtxhtx
0

,,,;,,  

( ) ( ) ( )[ ]∫ +−
M

r dssMxusMusMtxh
0

,,,;,  

( ) ( ) ( )[ ]∫ +−
M

s drrtururtxh
0

0,0,0,;,  

( ) ( ) ( )[ ]∫ ++
M

r dssxusustxh
0

,0,0,0;,  

( )∫ ∫+
M M

drdssrfb
0 0

.,  (3.5) 

B. Generalized moment problem 

From here on we take ∞→M  in such a way that 

( ) ( ) ( )[ ] ,0,,,;,lim
0∫ →+

∞→

M
r

M
dssMxusMusMtxh  

( ) ( ) ( )[ ] .0,,,;,lim
0∫ →+

∞→

M
s

M
drMrtuMruMrtxh  
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If in equations (3.4)-(3.5), we let ,tx =  then we have 

 ( )( ) ( ) ( )∫ ∫
∞ ∞

φ−=
0 0

,1,;, ttadrdssrtKsrug  (3.6) 

with 

 ( ) ( ) .,; 2 tsresrtK ++−=  (3.7) 

Using a basis ( ){ } ,0
∞
=Ψ mm t  we transform this bi-dimensional Fredholm 

integral equation of the first kind into a bi-dimensional generalized moment 
problem of the type, we study in [12]: 

 ( )( ) ( ) ( )∫ ∫
∞ ∞

=μ=
0 0

,...,2,1,0,, mdrdssrKsrug mm  (3.8) 

where 

 ( ) ( ) ( )∫
∞

Ψ=
0

,;, dttsrtKsrK mm  (3.9) 

and the moments mμ  are 

 ( ) ( )∫
∞

Ψφ−=μ
0

.,1 dtttta mm  (3.10) 

If the functions ( ){ }mm srK ,  are linearly independent, then the problem 

of generalized moments defined by equations (3.8)-(3.10) can be solved as 
we did in [12]: finding the solution ( ) ( )( )srugsr ,, =ψ  to the corresponding 

finite problem, say with Nm ...,,2,1,0=  ( ).N∈N  Thus, if ( )ug  has 

continuous inverse, then ( )[ ]srg ,1 ψ−  will be an estimation of ( )., sru  

Let us consider the basis ( ){ }∞=ϕ 0, ii sr  obtained by applying the Gram-

Schmidt orthonormalization process on ( ){ }N
mm srK 0, =  and then adding to 

the resulting set the necessary functions until an orthonormal basis is 
achieved. Thus 
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( ) ( ) ( ) ( ) ( )∫ ∫
∞ ∞

=δ=ϕϕ=ϕ|ϕ
0 0

...,2,1,0,,,,, jidrdssrsrsrsr ijjiji  

and the solution ( )sr,ψ  can be expanded: 

( ) ( )∑
∞

=

ϕλ=ψ
0

,,,
i

ii srsr  

but we approximate it by truncating the expansion [12]: 

 ( ) ( ) ( )∑
=

ϕλ=ψ≈ψ
N

i
iiN srsrsr

0
,,,,  (3.11) 

where 

 ( )∑
=

=μ=λ
i

j
jiji NiC

0
...,,2,1,0  (3.12) 

with the coefficients ijC  verifying the linear system 

( ) ( ) ( )
( ) ⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

ϕ

ϕ|
−= ∑

−

=

1

2,
,,1

i

jk
kj

k

ki
ij C

sr
srsrKC  

( ) ( ).1;1, 1 ijNisri <≤≤<ϕ⋅ −  (3.13) 

The diagonal terms are ( ) ( )NixC iii ...,,1,01 =ϕ= −  and ( ) ( )srvsru ,, |  

denotes the inner product in the Hilbert space. 

In Appendix B, we extend to the bi-dimensional case the arguments used 
in [12] to demonstrate the 

Theorem 2. Let the set of real numbers { }N
kk 0=μ  and let ε and E be two 

positive numbers such that 

 ( ) ( ) 2

0

2

0 0
,, ε≤μ−ψ∑ ∫ ∫

=

∞ ∞N

k
kk drdssrsrK  (3.14) 
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and 

 ( )∫ ∫
∞ ∞

≤ψ+ψ
0 0

222 ,Edrdseesr sr
sr  (3.15) 

if besides 

( ) 0, →ψ srrk  for ,,, N∈∀∞→ ksr  

( ) 0, →ψ srsk  for ,,, N∈∀∞→ krs  

then 

( )∫ ∫
∞ ∞

ψ
0 0

2, drdssr  

 ( ) ,...,,1,0;12
1min 222

⎭⎬
⎫

⎩⎨
⎧ =

+
+ε≤ NnEnn

CC†  (3.16) 

where C is the lower triangular matrix with elements ( )ijNiCij <≤≤< 1;1  

(equation (3.13)) and †C  is its transpose. Moreover, the truncated solution 
( )srN ,ψ  given by equation (3.11) verifies 

( ) ( ) ( )∫ ∫
∞ ∞

+
+ε≤ψ−ψ

0 0
2222 .12

1,, ENdrdssrsrN CC†  (3.17) 

If ( )xg 1−  is Lipschitz in ,2R  say if ( ) ( ) xxxgxg ′−λ≤′− −− 11  

for some λ and ,, 2R∈′∀ xx  then according to the previous theorem, 

( ) ( ) ( )∫ ∫
∞ ∞

⎭⎬
⎫

⎩⎨
⎧

+
+ελ≤−

0 0
2222 .12

1,, ENdrdssrusruN CC†  

C. The linear K-G again 

If in equation (3.4), we take ( )( ) ( ) ( ),assuming,, ∞→= Msrusrug  

then we have 

 ( ) ( ) ( ) ( )∫ ∫
∞ ∞

φ=−−
0 0

22 .,,,;, txdrdssrusrtxhatx  (3.18) 
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Defining 

( ) ( ) ( )srtxhatxsrtxK ,;,,;, 22 −−=  

and setting mx =  and ( ),, N∈= nmnt  we obtain using expression (3.1) 

for ( ),,;, srtxh  

 ( )∫ ∫
∞ ∞ −− =μ=
0 0

...,,2,1,0,,, nmdrdssruee mn
nsmr  (3.19) 

where 

 ( )
( )

.,
22 anm
enm nm

mn
−−

φ
=μ

+
 (3.20) 

This can be viewed as a bi-dimensional generalized Stieltjes moment 

problem. By changing variables ( ) ( ),,, 21 zzsr →  where ;1
rez −=  ,2

sez −=  

we recover the Hausdorff moment problem given by equation (2.8) with 
( )21, zzw  defined by (2.9). As before, the parameters 1α  and 2α  are chosen 

so that ( ) ( )anmenm mn −−φ + 22,  will be well defined. 

D. Examples 

1. Linear K-G 

Example 2. We consider again Example 1; say, equations (1.2), (1.3) 
and (1.4) with ;1=a  ;1=b  

( ) ( ) ( ) ( ) ( ) ( )[ ];sincos12, xtxxxtetxf tx −−−= +−  

( ) ;01 =ϕ x  ( ) ( ) ;sin2
xexxx −=ϕ  ( ) ;03 =ϕ t  ( ) 04 =ϕ t  whose exact solution, 

we know, is ( ) ( ) ( ),sin, txexxttxu +−=  but now we will transform it into the 

bi-dimensional generalized Stieltjes moment problem given by equations 
(3.19)-(3.20). Equation (3.5) gives with ∞→M  and conditions (1.3) and 
(1.4): 
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( ) ( ) ( )
( ) ( )222

22

122
112,
txx

txttx
+++

+−+
=φ  

so the moments (equation (3.20)) are 

( ) ( )
( ) ( ) ( )

....,,2,1,0,;
1122

112
22222

22
Nnm

nmmmm
enmn nm

mn =
−−+++

+−+=μ
+

 

Thus we orthonormalize the basis { ( )}mn
srnm esr +−  and follow the procedure 

of [11] to obtain ( )., sruN  In particular, in Figure 2, we show the result for 

.5=N  There we also display the exact solution ( )sru ,  for comparison. The 

accuracy, estimated by 

 ( ) ( ) ,,,
21

0 0
2

⎥⎦
⎤

⎢⎣
⎡ −∫ ∫

∞ ∞
drdssrusruN  (3.21) 

gives 0.000553422 in the present case. 

Example 3. We numerically solve equations (1.2), (1.3) and (1.4) with 

;1=a  ;1=b  ( ) ( ) ( );, txetxtxf +−+−=  ( ) ;1
xxex −=ϕ  ( ) ( );12 xex x −=ϕ −  

( ) ;3
ttet −=ϕ  ( ) ( ).14 tet t −=ϕ −  The exact closed solution is ( ) =txu ,  

( ) ( ).txetx +−+  The function ( )tx,φ  is 

( )
( ) ( ) ( ) ( )2222 111

2
1

,
t
tx

tx
tx

x
txtx

+
+−

++
++−

+
+=φ  

and the moments to be considered in the Stieltjes problem are 

( ) ( ) ( ) ( )
( );

111
2

11
1

222222
nm

mn e
n
nm

nm
nm

m
nm

nm
+

⎥
⎦

⎤
⎢
⎣

⎡

+
+−

++
++−

+
+

−−
=μ  

....,,2,1,0, Nnm =  

Using the same basis and also ,5=N  we obtain the curve shown in Figure 

3. The estimated accuracy is 0.00157485. 
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2. Nonlinear K-G 

Here we give two examples of the solution of equation (1.1) with 
conditions (1.3) and (1.4) using the procedure outlined in Section III. 

Example 4. 

;1=a  ;1=b  ( ) ( ) ;,
21 txeetxf +−−=  ( )[ ] ( ) ( );,184, 2 txutttxug ++=  

( ) ( ) ( );1 1
1

xexx +−+=ϕ  ( ) ( ) ( );12 1
2

xexx +−+−=ϕ  ( ) ( ) ;
21

3
tet +−=ϕ  

( ) .04 =ϕ t  

The exact closed solution is ( ) ( ) ( ) .1,
21 txeextxu +−−+=  In equation (3.6), 

we have 

( )
( )

( ) ( )
( )ttt

e
t
t

t
ttterfcett 21

2

2244
1

1
4

12
2

212
1, +−+−

+
−+⎥

⎦

⎤
⎢
⎣

⎡
+
−+

⎟
⎠
⎞⎜

⎝
⎛ +π=φ  

with erfc the complementary error function. From equations (3.7) and (3.9), 

using the basis ( ){ } { } ,m
tm

mm ett −=Ψ  we obtain 

 ( ) ( )
( )

Nm
sr

msrK mm ...,,2,1,
3

!1, =
++
−=  (3.22) 

and from equation (3.10), the corresponding moments .mμ  Here we take 

.5=N  Then according to equations (3.11)-(3.13), we have the truncated 

solution ( )srN ,ψ  and the estimation of ( ) ( ) ( ).,184:, 12 srsssru Nψ++ −  

In Figure 4, we compare our results with the exact solution. In this case, the 
accuracy (expression (3.21)) is 0.0603017. 

Example 5. ;1=a  ;1=b  ( )
( )

;, 2
1 tx

etxf
+−

=  ( )[ ] ( );,, txutxug =  

( ) ;1
xex −=ϕ  ( ) ;2

xex −−=ϕ  ( ) ;3
tet −=ϕ  ( ) .4

tet −−=ϕ  The exact closed 

solution is ( ) ( )., txetxu +−=  We calculate 
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( )
( )2

2

21
4,

t
ett

t

+
=φ

−
 

and the moments are as given by equation (3.10). Using the previous 
algorithm, with ( )srKm ,  as in equation (3.22), we have ( )srN ,ψ  in the 

form of the truncated expansion (3.11) and so ( ) ( )[ ] .,, 2srsru NN ψ=  Figure 

5 displays ( )sruN ,  for 5=N  and also the exact solution ( ) ( )txetxu +−=,  

for comparison. The calculated accuracy is 0.0521479. 
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Appendix A: Proof of Theorem 1 

Taking into account the definitions of ( )txuN ,  and of the norm ,2
w•  

we have 

( ) ( ) ( ) ( ) ,,,,, 2
2121

2 zzwzzwtxutxu NwN −=−  

where 

( ) ( )∫ ∫≡
1

0

1

0
22 .,, dxdtyxfyxf  

But it is proved [11] that 

( ) ( )
( )

( )212
2

2121
14

1,, II
N

zzwzzwN +
+

≤−  
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with 

( ) ( ) ( ).2,1,,
1

0

1

0 21
2

21
2

21 ∫ ∫ =γ=≡
γγγ dzdzzzwzzwI zz  

Derivating ( )21, zzw  in equation (2.9) with respect to ( )2,1=γγz  and 

affecting the double integral, we obtain for γI  expression (2.15) of the text. 

Besides, if noise is considered such that ( ) ,2ε≤μμTTr  since in this case is 

[11], 

( ) ( )
( )

( ) ( )T
N TrcII

N
zzwzzw μμ++

+
≤− 2

212
2

2121
14

1,,  

with ( ) ( ) ,
12

22112 6

8
62

−
++= NNNc  then equation (2.16) is recovered.  

Appendix B: Proof of Theorem 2 

We closely follow the demonstration given in [12] for the one-
dimensional moment problem which in turn is based in Talenti work [14] for 
the Hausdorff problem. Here we just introduce the necessary modifications 
for the general bi-dimensional problem. 

Without lost of generality, we take ( )Nkk ...,,2,1,00 ==μ  in 

equation (3.14). Let us write ( )sr,ψ  in the form 

( ) ( ) ( ),,,, srtsrhsr NN +=ψ  

where ( )srhN ,  is the orthogonal projection of ( )sr,ψ  on the linear space 

generated by the set ( ){ }N
mm srK 0, =  and ( ) ( ) ( )srhsrsrt NN ,,, −ψ=  the 

orthogonal projection of ( )sr,ψ  onto the orthogonal complement. The 

functions ( )srhN ,  and ( )srtN ,  can be expanded in the basis ( ){ } :, 0
∞
=ϕ ii sr  

( ) ( ) ( ) ( )∑ ∑
=

∞

+=

ϕλ=ϕλ=
N

i Ni
iiNiiN srsrtsrsrh

0 1
,,;,,  
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with 

( ) ( ) ( )∫ ∫
∞ ∞

=ψϕ=λ
0 0

....,2,1,, idrdssrsrii  

The relation between the coefficients iλ  and the moments 

( ) ( ) ( )∫ ∫
∞ ∞

=ψ=μ
0 0

...,2,1,, idrdssrsrKii  

reads 

( )∑
=

=μ=λ
i

j
jiji iC

0
,...,2,1,0  

where the matrix components ijC  are given by equation (3.13) in the text. 

Thus we have 

( ) ( ) ( )∑
=

=ϕ=
i

j
ijij isrsrgC

0
...,2,1,0,,  

or, in matricial form, ,μ=λ C  where 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

μ

μ
μ

=μ

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

λ

λ
λ

=λ

NN

1

0

1

0

,  

and 

.

10

1110

00

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

NNNN CCC

CC
C

C  

Taking into account the previous equations, the orthonormalization 

condition of the set ( ){ }∞=ϕ 0, ii sr  and the condition given by equation (3.14), 
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we have 

( )∫ ∫
∞ ∞

μ|μ=λ|λ=
0 0

2, CC†drdssrhN  

.222 ε=μ⋅≤ CCCC ††  

In order to estimate the norm of ( ),, srtN  we observe that each element 

of the orthonormal set ( ){ }∞=ϕ 0, ii sr  can in turn be expanded in terms of the 

elements of another orthonormal basis, in particular, the set ( ){ } ,, 0
∞srPkl  

with ( ) ( ) ( ),, sLerLesrP l
s

k
r

kl
−−=  where ( )rLk  denotes the Laguerre 

polynomials: 

( ) ( ).,,
0 0

;∑∑
∞

=

∞

=

γ=ϕ
k l

klklii srPsr  

Then, defining ∑∞
+= γλ=λ 1 ; ,Ni kliikl  it follows 

( ) ( )∫ ∫ ∑∑
∞ ∞ ∞

=

∞

=

λ
+
+≤

0 0
0 0

22
1
1,

k l
klN N

kdrdssrt  

and also 

( ) ( )∫ ∫ ∑∑
∞ ∞ ∞

=

∞

=

λ
+
+≤

0 0
0 0

22 .1
1,

k l
klN N

ldrdssrt  

Therefore, 

( ) ( ) ( )∫ ∫ ∫ ∫
∞ ∞ ∞ ∞

ψ+ψ
+

≤
0 0 0 0

222 .12
1, drdseesrNdrdssrt sr

srN  

By adding these expressions for the two norms ( ) 2, srhN  and 

( ) ,, 2srtN  the result (3.16) in the text is obtained. In a similar way, 

inequality (3.17) is proved.  
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Figure 1. Comparison of the exact solution ( )txu ,  with the estimate 

( )txu ,5  for Example 1. The function ( )txu ,5  is a truncated solution to the 

bi-dimensional finite Hausdorff moment problem obtained by Laplace 
transforming the linear K-G. Dark grey: exact; light grey: estimation. 

 

Figure 2. Comparison of the exact solution ( )sru ,  with the estimate 

( )sru ,5  for the example as in Figure 1. The function ( )txu ,5  is a truncated 

solution to the bi-dimensional finite generalized Stieltjes moment problem 
obtained by transforming the linear K-G by means of Green identity. Dark 
grey: exact; light grey: estimation. 
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Figure 3. Comparison of the exact solution ( )sru ,  with the estimate 

( )sru ,5  for Example 3. The function ( )txu ,5  is a truncated solution to the 

bi-dimensional finite generalized Stieltjes moment problem obtained by 
transforming the linear K-G by means of Green identity. Dark grey: exact; 
light grey: estimation. 

 
Figure 4. Comparison of the exact solution ( )sru ,  with the estimate 

( )sru ,5  for Example 4. The function ( )txu ,5  is a truncated solution to the 

bi-dimensional finite generalized Stieltjes moment problem obtained by 
transforming the nonlinear K-G by means of Green identity. Dark grey: 
exact; light grey: estimation. 
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Figure 5. Comparison of the exact solution ( )sru ,  with the estimate 

( )sru ,5  for Example 5. The function ( )txu ,5  is a truncated solution to the 

bi-dimensional finite generalized Stieltjes moment problem obtained by 
transforming the nonlinear K-G by means of Green identity. Dark grey: 
exact; light grey: estimation. 
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