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Abstract

We consider the solution of one-dimensional linear and nonlinear
Klein-Gordon equations by first transforming them into bi-dimensional
integral equations which are then handled as bi-dimensional moment
problems. The integral equations are obtained by either Laplace
transforming the linear PDE or by using Green identity for the linear
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as well as the nonlinear cases. The discretization of the so obtained
integral equations results, for the linear and nonlinear problems,
respectively, into a bi-dimensional Hausdorff problem and into a

generalized moment problem (in which the kernel set {x"y™} -
has been replaced by sets {gm(x, y)},, of more general linearly

independent functions). In both cases, the corresponding inverse
problem is numerically solved by approximating the associated finite
moment problem by a truncated expansion.

l. Introduction

The Klein-Gordon (K-G) equation has been proved to be very useful in
many scientific fields such as solid state physics, quantum field theory,
chemical kinetics, nonlinear optics, fluid dynamics, mathematical biology
and so on. In its more general (nonlinear and nonhomogeneous) version, it
can be written (for just a one spatial dimension) as

Uit (X, 1) — CUyy (X, t) —aglu(x, t)] = bf(x, t), (1.1)

where u = u(x, t) represents a wave displacement at position x and time t
with x >0, t > 0; g(u) is a dispersive contribution, f(x, t) is an external
force and ¢ > 0 and b are constants. The particular case g[u(x, t)] = u(x, t),

where a is a constant, gives the nonhomogeneous linear Klein-Gordon
equation

Uit (X, ) — Cuyy (X, t) —au(x, t) = bf(x, t). (1.2)

If we take b =0 in both equations, then the corresponding homogeneous
versions are recovered.

We assume that the function u(x, t) is subjected to initial conditions:

u(x, t =0) = @(x), u(x, t=0)=gz(x) (1.3)
and mixed (Cauchy) boundary conditions at the origin:
U(x =0, 1) = p3(t), Ux(x =0,1)=qqy(t). (1.4)

Also, without lost of generality, we will consider ¢ = 1 throughout.
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These PDE’s have been numerically solved for diverse expressions of
glu(x, )], f(x t), @1(x), @2(x), @3(t) and @4(t) by using a variety of
techniques which include decomposition method [1, 2], iterative variational
method [3], discrete difference approximation [4], Legendre spectral method
[5, 6], the use of radial basis functions [7] and many others schemes [8, 9].

In this paper, we consider a different way to numerically solve the
problem given by equation (1.1) or (1.2) with conditions (1.3) and (1.4): we
first transform it into an integral equation which we then handle as a bi-
dimensional moment problem. This approach was already suggested by Ang
et al. [10] in relation with the heat conduction equation.

The work is organized as follows: In principle, we consider separately
the linear and the nonlinear equations. Next section is devoted to the first
one. There we transform equations (1.2), (1.3) and (1.4) into an integral
equation by using Laplace transformation. The resulting integral equation
is considered as a bi-dimensional Hausdorff moment problem which is
regularized by solving a related finite problem as we did in [11] and also
discuss in Appendix A. In Section Ill, the nonlinear Klein-Gordon equation
is considered. There we use the Green identity to transform the PDE into the
integral equation. Now we view the resulting equation as a bi-dimensional
generalized moment problem of the type, we have discussed in [12] for just
one-dimension and that we extend to involve two-dimension integrals in
Appendix B. We also consider again the linear K-G equation as a particular
case (g(u) = au) and show how the generalized moment problem transforms

into the Hausdorff problem already seen in Section Il. In all the cases, we
illustrate the method with several examples.

I1. Linear K-G Equation

We start considering the nonhomogeneous linear Klein-Gordon equation
as given by equation (1.2) together with the conditions established by
equations (1.3) and (1.4). This equation has a lot of applications in
mathematical physics. For example, the homogeneous case (b = 0) describes

correctly a spinless pion.
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The PDE is transformed into an integral equation by means of Laplace
transform in the next subsection.

A. Laplace transform

Let us first assume a > 0 and define the Laplace transform:
0(& 1) = Llu(x 0] = [ "utx t)e > ox (2.1)
so [13],
Lylux(x, ] = ET(E, 1) - u(O, 1),
L[u(x, )] = E20(E, 1) — £u(0, ) — uy (0, 1).
Thus, applying Laplace transform to equation (1.2), we have
G (& 1) - (a+E2)T(E 1) = G(&, 1), (2.2)
where
G(E, 1) = ~Ega(t) - @a(t) + b (&, 1) (2.3)
with f(&, t) = L [f(x, t)].

Equations (2.2) and (2.3) define a second order ordinary differential
equation in the variable t. To solve it, let us consider the associate
homogeneous equation

Oe( t) - (@a+E2)0(E 1) =0

whose characteristic function is r? — (a+ &2) =0, so it has the general

solution

2 2
UC(E» t) = cie a+g t+02e— a+g t,

thus the general solution of equation (2.2) is of the form

(g, t) = g6t are? | cze_t‘“’”{?2t +p(E 1), (2.4)
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where Up(a, t) is a particular solution of equation (2.2), which will depend

in any particular case of the expression for G(&, t), and ¢ and c, are

constants which are determined from the system of algebraic equations
derived by Laplace transforming the initial conditions (equation (1.3)):

{U(é, 0) = ¢1(8),
U (&, 0) = 92(8).

Here U(E, 0) = Lg[u(x, 0)]; T(&, 0) = Ly[ur(x, 0)] and ;(€) = Ly[gi(x)]
(i =1, 2). The direct way to obtain the desired solution is to apply, when it

(2.5)

is possible, the inverse Laplace transform to T(&, t): u(x, t) = L[T(E, t)].

Note that if a < 0, we can consider the Laplace transform with respect
to the variable t:

a(x, 1) = Lfu(x, t)] = I:u(x, t)e "dt

and, instead of equations (2.2), (2.3), we obtain the ODE

Gy (X, 1) + (@ = 2)d(x, ) = G(X, 1),
where

G(x, ) = ~101() ~ p2(x) + bT (x, 7)
and the general solution of the ordinary differential equation is

WZoa g grla

a(x, 1) = ¢e* +Up(X 7).

B. Hausdorff moment problem

In both cases, a > 0 or a < 0, if the inversion u(x, t) = L [T (&, t)] or

u(x, t) = Le[d(x, )], respectively, can be done analytically, then a closed
expression for u(x, t) is reached. Here we show a variant that allows, in

general, for numerical solutions. To do this, we first consider a bi-
dimensional integral equation by Laplace transforming u(§, t) or U(x, t)
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with respect to the other variable. So, for a > 0, we obtain a bi-dimensional
first kind Fredholm like integral equation for u(x, t):

I : j :u(x, t)e S Mdxdt = (5, 1) (2.6)
with
i, ) = J’ : (e, t)e . 2.7)

Here we show how the integral equation (2.6) can be solved by viewing
it as a Hausdorff moment problem. Define z =e™; z, = et and change

variables (x, t) — (z;, zp). We obtain

Tel e11 2
Jojo 27723 u(=Inzy, =In z,)dz;dz, = U(E, 7).
We can write for & and t natural numbers:

1e1 o
jojo 4 25W(zq, 27)dz4dz5 = uyyy, M, N=0,1, 2, .., (2.8)

where ppn = ﬁ'(m +1+o0q,Nn+1+0y)and
W(zy, 25) = 1252u(-In 7, —In 2,). (2.9)

Here, oy and a, are conveniently chosen numbers so that the moments
Umn are well defined. Equations (2.8) and (2.9) represent a bi-dimensional
Hausdorff moment problem for w(z;, z,). We have studied this problem in
[11]. There we first consider the relative finite moment problem, say
equation (2.8) but with m,n=0,1, 2,.., N; (N € N) whose solution is
expanded

0

Wz, 22) = YD kiR 2),
i-0 j=0

]
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where Rj(z, z3) = R(z)Pj(z2) with R(z)(i=0,1 2,..) the Legendre

polynomials defined in [0, 1] and the coefficients %;; are

1p1 o
Ajj = J.OJ.O W(zy, 25)Rj(z1, 2p)dzdzy (i, j=0,1,2,..).

Then we estimate w(z;, z,) by truncating the expansion:

W(zy, 23) = Wy (2, 22) = Z AijRj (2, 22), (2.10)

N N
=0 j=0

where the coefficients Aj; are explicitly given by

i
Ajj = Z Z Cik, CikoMigk, (1 1=0,1,2, .., N) (2.11)
k1=0 kp=0
with
-
¢y = i +1(—1)"(l'<j['1: j 2.12)

In order that this method of truncated expansion [14] is valid, we require

[11] that U(E, t) € L2[[0, o) x [0, o0)] and
I: j: [xu2(x, t) + tu?(x, t)]e*+dxdt < oo, (2.13)

In Appendix A, we prove the following theorem, which adapts some of
the results of [11] to the present context:

agX oot X

Theorem 1. Define uy (x, t) = e®Xe®2'wy (7%, e™*). If u(x, t) verifies
1.1

Zx =t
u(x, t)e2 e 2 e L%(R?),

lx _lt
ug(x, t)e2 e 2 e L%(R?),
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_lx lt
u(x, te 2 e2 e L?(R?),

1.1
-=x =t
ue(x, t)e 2 e2 e L®(R?)

and the norm || f(x, t) ||€V is defined as

[0l = | : | :| £(x, t) [2e~1+200)xg~(+2a2)t gy

then
U (X 1) = u(x, t)[3, Smer ), (2.14)
where
P for )
© ~oo o +—— -2 o9 t
l :-[0 jo oc%u(x, t)%e [ e ? dxdt

o +( )Y o D ol t
0 o0 2y 172 1 2 2
+ IO IO [uy(x, 1) +ug(x, t) ] e dxdt

(2.15)

with y =1, 2. Moreover, if the moments pn, = ﬁ“(m +14+aq, n+1+ay)

have an error such that Tr(pu' ) = Zmzlzr’:‘:wmn < €2, then

1

m(|l +1,) + &%c? (2.16)

Jun (x, ) —u(x, t) |2 <

8
with ¢ = (2N +1)(N +1)228N 612—
2° —

Example 1. Here we consider an example of the linear K-G equation as
given by equation (1.2), with initial and boundary conditions given by (1.3)
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and (1.4), respectively,
a=1Lb=1 f(xt)=2e"Vt(x - 1)cos(x) - (x — t)sin(x)];
e1(X) = 0; @p(x) = xsin(x)e™; @3(t) = 0; @4(t) = 0.
The known exact solution is: u(x, t) = xtsin(x)e"**Y).
By Laplace transforming, we calculate

~ C2et 1+ E)(2+ 1E?)
N P S

S0 equation (2.3) gives

G t) = (5 t).

We propose

u - i : 20+ ¢
up(& t)y=e Y(A+Bt) with A=0; B =m

209

as a particular solution of equation (2.3), introduce this expression into the

general solution (2.4) and determine the constants ¢; and ¢, by solving the

system (2.4) with

o e 204
B(E) =0 Bale) = 5

We find ¢; = ¢, = 0, so the general solution is
(e t) = 2te” (L +£)/(2 + 2¢ + £2)2,
By Laplace transforming U(€, t) with respect to the variable t, we have

e o) = 21+¢)
iE o) (2 + 28 + E2)?(L+ 1)
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and the moments are

2(2+m)
(5+ 4m + m?)2(2 + n)*

Kmn Eﬁ(m+1+oc1, Nn+l+ap)=

We observe that for oy = ap, = 0, the moments are already well defined,
and it is enough to solve the finite Hausdorff moment problem

el o
_[0 _[0 71 2;W(zy, 22)dz025 = ppy
with the moments
_ 2\2 21-1 _

Umn = 22+ m)[(5 + 4m + m“)“(2 + n)“] (mn=0,12 .. N).
Also, it should be remarked that we have verified that the function u(x, t)
= xtsin(x)e"**Y) fulfills condition (2.13).

In Figure 1, we show the solution we have obtained for u(x,t) =

X

w(e™, e™t) with w(zy, z,) approximate by wy (z;, z,) as given by equations

(2.10)-(2.12) for N = 5. We also compare our numerical solution with the
known exact solution.

I11. Nonlinear K-G Equation

In this section, we consider the nonlinear K-G defined in general
by equation (1.1) with the initial conditions (1.3) and Cauchy boundary
conditions (1.4).

A. Green identity
Let us take the auxiliary function
h(x, t; r, s) = e X(T)gt(s+D) (3.1)
that verifies

hee(X, t; 1, 8) = hes(X, t; 1, 8) = (x2 - t2)h(x, t;r,s). (3.2)
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In the region D = [0, M]x [0, M ], we apply the planar Green identity

-”D uVZhdA+”D (Vu .Vh)dA=§aD uvh-n de, (3.3)

where oD is the contour of the region D.

Replacing here expression (3.1) for h and using equation (3.2) together
with equation (1.1), we obtain

M oM
jo Jo [(x2 —t2)h(x, t;r, s)u(r, s)—ag(u(r, s))h(x, t; r, s)]drds = ¢(x, t),

(3.4)
where
M
o(x, 1) = jo h(x, t; r, M)[us(r, M)+ tu(r, M)]dr
— J'OM h(x, t; M, s)[u (M, s) + xu(M, s)]ds
M
_ IO h(x, t; r, 0)[us(r, 0) + tu(r, 0)]dr
M
+ .[0 h(x, t; 0, s)[u (0, s) + xu(0, s)]ds
+bj0M IOM £(r, s)drds. (3.5)

B. Generalized moment problem

From here on we take M — oo in such a way that

lim . h(x, t; M, s)[u,(M, s)+ xu(M, s)]ds — 0,

M—>wd0

lim OM h(x, t; r, M)[ug(r, M)+ tu(r, M)]dr — 0.

M -
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If in equations (3.4)-(3.5), we let x = t, then we have

I;O I: g(u(r, s))K(t; r, s)drds = —%¢(t, t) (3.6)
with
K(t; r, s) = e (T+s+2)t, (3.7)

Using a basis {¥p(t)},_,. we transform this bi-dimensional Fredholm

integral equation of the first kind into a bi-dimensional generalized moment
problem of the type, we study in [12]:

L:O IOOO gu(r, 8))Ky(r, s)drds = pyy  (M=0,12,..), (3.8)

where
Kn(r, s) = J': K(t; r, s) % (t)dt (3.9)

and the moments p,, are

b = —%J': o(t, t) W (t)dlt. (3.10)

If the functions {Kp(r, s)j,, are linearly independent, then the problem

of generalized moments defined by equations (3.8)-(3.10) can be solved as
we did in [12]: finding the solution wy(r, s) = g(u(r, s)) to the corresponding
finite problem, say with m=0,1, 2,.., N (N € N). Thus, if g(u) has

continuous inverse, then g [y(r, s)] will be an estimation of u(r, s).
Let us consider the basis {;(r, s)};-, obtained by applying the Gram-

Schmidt orthonormalization process on {Ky(r, s)}m:0 and then adding to

the resulting set the necessary functions until an orthonormal basis is
achieved. Thus
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(i(r, $)loj(r,s) = [ Coilr s)oj(r, s)drds =5 G j=0.12,.)
and the solution w(r, s) can be expanded:
(e 0]
w(r, s) =D %iei(r, s),
i=0

but we approximate it by truncating the expansion [12]:

N
y(r, s) = yn(r, s) = ZM(Pi(r, s), (3.11)
i=0
where
M= Ciuj (i=0,12..,N) (3.12)
j=0

with the coefficients Cj; verifying the linear system

i-1
Cij - Z(_D(Ki(r' S)|(Pk(r! S)> Cui
k=i

Kj
| oi(r, s)|?
Jei(r,s)[t @<i<N;1<j<i) (3.13)
The diagonal terms are Cjj =|| (pi(X)"_l (i=0,1,..,N) and (u(r, s)|v(r, s))

denotes the inner product in the Hilbert space.

In Appendix B, we extend to the bi-dimensional case the arguments used
in [12] to demonstrate the

Theorem 2. Let the set of real numbers {pk}ll(\lzo and let ¢ and E be two
positive numbers such that

N
2.
k=0

o0 o0 2
Io .[o Ky (r, s)y(r, s)drds — p | < &2 (3.14)
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and

I;O I:(rw? +sy2)e"eSdrds < E2, (3.15)
if besides

rkw(r, s) > 0 forr -» o, Vs, k eN,

sk\u(r, s)—> 0 for s > o, Vr, k eN,
then

I: I:| y(r, s) |2drds

< min{|| clc|?e? + EZn=01 .. N}, (3.16)
n

1
2(n+1)
where C is the lower triangular matrix with elements Cj; (1<i<N;1< j <i)

(equation (3.13)) and clisits transpose. Moreover, the truncated solution
wn (r, s) given by equation (3.11) verifies

i 3 2 t 2.2 1 2
Jo .[0 | wn(r,s)—wy(r,s)|"drds <||C'C [“e“ + 2N +1)E . (3.17)

If g7(x) is Lipschitz in R?, say if | g™(x)— g7X(x') | < A x = X

for some & and Vx, X' e R?, then according to the previous theorem,

®re B 2 t (2.2 1 2
Io .[0 lun(r, s)—u(r, s)| drdsSk{"C Cl%e” + 20N +1)E }

C. The linear K-G again

If in equation (3.4), we take g(u(r, s)) = u(r, s) (assuming M — ),

then we have

I: j:(xz _t2 _ a)h(x, t; r, s)u(r, s)drds = ¢(x, t). (3.18)
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Defining
K(x, t;r,s)= (x2 _t2 —a)h(x, t; r, s)

and setting x =m and t =n (m, n € N), we obtain using expression (3.1)

for h(x, t; r, s),

o8] [o0]
.[0 Io e ™e ™ u(r, s)drds = ppy, M N=0,1 2, ..., (3.19)
where
m, n)em*n
i = S (3.20

(m®—-n“-a)

This can be viewed as a bi-dimensional generalized Stieltjes moment

r S

problem. By changing variables (r, s) — (z, z,), where zy =™ ; z, =e ™,

we recover the Hausdorff moment problem given by equation (2.8) with
W(zq, zp) defined by (2.9). As before, the parameters oy and o, are chosen

so that ¢(m, n)e"*™M/(m? — n? — a) will be well defined.

D. Examples
1. Linear K-G

Example 2. We consider again Example 1; say, equations (1.2), (1.3)
and (1.4)witha=1 b =1

f(x, t) = 26" U[t(x - 1) cos(x) - (x — t)sin(x)];

01(X) = 0; @y(x)=xsin(x)e™; @3(t) =0; @4(t) =0 whose exact solution,

we know, is u(x, t) = xtsin(x)e‘(x”), but now we will transform it into the
bi-dimensional generalized Stieltjes moment problem given by equations
(3.19)-(3.20). Equation (3.5) gives with M — o and conditions (1.3) and
(1.4):
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_ 20+ —t? +1)
2+ 2x+ X221+ 1)

¢(x, 1)

so the moments (equation (3.20)) are

2(L+ n)(m? = n? +1)eM*"

. mn=01 2, .. N.
(2 +2m+ m?’@L+ my>(m? —n? —1)

Hmn =

Thus we orthonormalize the basis {r™s"e("**)} and follow the procedure
of [11] to obtain uy(r, s). In particular, in Figure 2, we show the result for
N = 5. There we also display the exact solution u(r, s) for comparison. The

accuracy, estimated by

U: j:| up (r, s)—u(r, s)|2drdsT/2, (3.21)

gives 0.000553422 in the present case.

Example 3. We numerically solve equations (1.2), (1.3) and (1.4) with
a=1Lb=1 f(x t)=-(x+1)e *: o(x) = xe™*; @n(x) = e ¥ (1 - x);
pg(t) =te™h @u(t) =e'(1—t). The exact closed solution is u(x,t) =

(x +t)e~**Y The function ¢(x, t) is

_ox+t o 24+x+t x+t
o1 @L+x)°2  @+x)P2Q+1)?  (@+t)?

and the moments to be considered in the Stieltjes problem are

1 m+n 2+m+n m+n e(m”‘)'

Hmn = - -
™ m2on? -1 @+myP @+mP@+n)®  (@L+n)

mn=0,1 2, .. N.

Using the same basis and also N =5, we obtain the curve shown in Figure
3. The estimated accuracy is 0.00157485.
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2. Nonlinear K-G

Here we give two examples of the solution of equation (1.1) with
conditions (1.3) and (1.4) using the procedure outlined in Section IlI.

Example 4.
2
a=1b=1 f(xt)=e%e V" glu(x t)] = (42 + 8t + Du(x, 1);

e1(x) = L+ x)e); g, (x) = —2(1+ x)e T ga(t) = gLt

@4(t) = 0.

2
The exact closed solution is u(x, t) = (1+ x)e‘xe‘(l+t) . In equation (3.6),
we have
1 2 2
_ 1 (=4t ( l) tC+t-2| 4-t° @20
ot t) = 5e Jrerfc 1+ ey +(1+t)2e

with erfc the complementary error function. From equations (3.7) and (3.9),
using the basis {¥,(t)},, = {t"e™},,, we obtain

(m—1)

Km(r, s) = m

=12 ., N (3.22)

and from equation (3.10), the corresponding moments p,,. Here we take

N = 5. Then according to equations (3.11)-(3.13), we have the truncated
solution y(r, s) and the estimation of u(r, s): (4s% +8s +1)_1\|/N(r, s).

In Figure 4, we compare our results with the exact solution. In this case, the
accuracy (expression (3.21)) is 0.0603017.

1
—=(x+t
Example 5. a=1 b=1 f(x,t)=¢e 2 ); glu(x, t)] = Ju(x, t);
e(x) =% ga(x) = —e7%; @g(t) =t @4(t) = —et. The exact closed

solution is u(x, t) = e"**Y). We calculate
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4o~

ot, t) = m

and the moments are as given by equation (3.10). Using the previous
algorithm, with K,,(r, s) as in equation (3.22), we have yy(r, s) in the

form of the truncated expansion (3.11) and so up(r, s) = [wp(r, s)]z. Figure
5 displays up(r, s) for N =5 and also the exact solution u(x, t) = g~ (X+0)

for comparison. The calculated accuracy is 0.0521479.
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Appendix A: Proof of Theorem 1

Taking into account the definitions of uy (x, t) and of the norm | e "5\/

we have
2 2
Tun (%, ) =u(x, O, = [ wn (z, 22) =Wz, 22) [,

where

| £(x y)|? = j;j(ﬁ f(x, y) Paxd

But it is proved [11] that

| wiy (21, 22) — W(zg, 25) | < M(Il +1p)
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with
2 1t 2
Ly =lw, (. 22) |° = jojowzy(zl, 2p)"dydz; (v =1 2).

Derivating w(zy, z) in equation (2.9) with respect to z, (y =1, 2) and
affecting the double integral, we obtain for I, expression (2.15) of the text.
Besides, if noise is considered such that Tr(uuT) < €2, since in this case is
[11],

1

m('l + 1)+ c?Tr(up’ )

| wy (21, 22) = W(z, 25)[* <

8
with ¢ = (2N +1)(N +1)?28N 262— then equation (2.16) is recovered. [J
1

Appendix B: Proof of Theorem 2

We closely follow the demonstration given in [12] for the one-
dimensional moment problem which in turn is based in Talenti work [14] for
the Hausdorff problem. Here we just introduce the necessary modifications
for the general bi-dimensional problem.

Without lost of generality, we take p, =0(k=0,12,..,N) in
equation (3.14). Let us write y(r, s) in the form
w(r, s)=hy(r, s)+ty(r, S),
where hy(r, s) is the orthogonal projection of w(r, s) on the linear space
generated by the set {K(r, S)}mzo and ty(r, s) = wy(r, s)—hy(r, s) the
orthogonal projection of w(r, s) onto the orthogonal complement. The

functions hy (r, s) and ty (r, s) can be expanded in the basis {¢;(r, s)}i-:

N )
h(r, $) =Y hgi(r,s) tu(r s)= D Awi(r, s)

i=0 i=N+1
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with

Ai = J.;OJ.:J @i(r, s)w(r, s)drds (i=1 2, ..).
The relation between the coefficients A; and the moments

Wi = J.o .[o Ki(r, s)wy(r, s)drds (i =1 2,...)

reads
i
M= Ciuj (=012,
j=0

where the matrix components Cj; are given by equation (3.13) in the text.

Thus we have

D Cijgj(r,s)=gi(r,;s) (=012 .)

i=0

or, in matricial form, A = Cu’ where

Ao Ho
- 7»_1 Coa=|M
AN HN
and
Coo
c=|@0 “u
Cno Cni - Cww

Taking into account the previous equations, the orthonormalization

condition of the set {;(r, s)};-, and the condition given by equation (3.14),
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we have
[, ], Itw(r.s)Pdrds = u[2) = C'Culn)

< cfc|-[ul? =| c'c P
In order to estimate the norm of ty(r, s), we observe that each element
of the orthonormal set {g;(r, s)};-, can in turn be expanded in terms of the
elements of another orthonormal basis, in particular, the set {Rq(r, s)}y,

with P (r, s) = e "L (r)e L (s), where L (r) denotes the Laguerre
polynomials:

oi(r, )= D" viwPa(r, s).

k=01=0
Then, defining &g = >\ ., Aivi:k, it follows
© o 2 (K +1 2
Io J.o |t (r, s)|“drds < ZZ(N +1)kk|
k=01=0
and also
© o 2 o (1 +1 2
.[o Jo |tn (r, s)|“drds < ZZ(N +1)kk|.
k=01=0
Therefore,

©re 2 1 PO 2 2\l S
.[o Io [ty (r, s)|“drds S—Z(N +1).[o .[o (ryr + sys)e' e>drds.

By adding these expressions for the two norms | hy(r, s)|* and

Itn(r, s)[?, the result (3.16) in the text is obtained. In a similar way,

inequality (3.17) is proved. O
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Figure 1. Comparison of the exact solution u(x, t) with the estimate
ug(x, t) for Example 1. The function ug(x, t) is a truncated solution to the

bi-dimensional finite Hausdorff moment problem obtained by Laplace
transforming the linear K-G. Dark grey: exact; light grey: estimation.

u(r, s) 0.12
’U,5(7“, S)
0
0.00
5
-
. 0

Figure 2. Comparison of the exact solution u(r, s) with the estimate
us(r, s) for the example as in Figure 1. The function us(x, t) is a truncated

solution to the bi-dimensional finite generalized Stieltjes moment problem
obtained by transforming the linear K-G by means of Green identity. Dark
grey: exact; light grey: estimation.
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0.35

50
Figure 3. Comparison of the exact solution u(r, s) with the estimate
us(r, s) for Example 3. The function us(x, t) is a truncated solution to the

bi-dimensional finite generalized Stieltjes moment problem obtained by
transforming the linear K-G by means of Green identity. Dark grey: exact;
light grey: estimation.

0 s 5

Figure 4. Comparison of the exact solution u(r, s) with the estimate

ug(r, s) for Example 4. The function us(x, t) is a truncated solution to the
bi-dimensional finite generalized Stieltjes moment problem obtained by
transforming the nonlinear K-G by means of Green identity. Dark grey:
exact; light grey: estimation.
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Figure 5. Comparison of the exact solution u(r, s) with the estimate

us(r, s) for Example 5. The function us(x, t) is a truncated solution to the

bi-dimensional finite generalized Stieltjes moment problem obtained by
transforming the nonlinear K-G by means of Green identity. Dark grey:
exact; light grey: estimation.
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