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Abstract 

In this paper, we consider a two-components system in which the 
lifetimes have a bivariate Weibull distribution. We propose a Bayesian 
testing procedure for independence based on Bayes factor. We use a 
noninformative prior such as an improper prior for the parameters so 
that the prior is defined only up to arbitrary constant which affects the 
values of Bayes factors. Also, we compute the fractional Bayes factor 
(FBF) proposed by O’Hagan [13] to compensate for that arbitrariness. 
We compute the FBFs and select the highest posterior probabilities for 
the hypotheses, respectively. Additionally, we give a numerical 
example to illustrate our procedure. According to the results, FBF 
methodology for Bayesian independent testing is reasonable. 
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1. Introduction 

In many of the aforementioned studies of system component data, the 
component lifetimes were assumed to be statistically independent for the 
sake of simplicity in mathematical treatment. However, the assumption of 
independence is unrealistic because many systems of the component life 
lengths have a well-defined dependence structure. The reason is that a 
common cause failure or a similar environmental factor might cause 
statistical dependence between lifetimes of components (Esary and Proschan 
[7]). The usefulness of a bivariate Weibull (BVW) distribution can be 
visualized in many contexts, such as the times to the first and second failures 
of a repairable device, the breakdown times of dual generators in a power 
plant, or the survival times of the organs in a two-organ system (such as 
lungs or kidneys in the human body). Lu and Bhattacharyya [10, 11] 
considered some new construction of BVW distributions. Lu [8] derived 
Weibull extensions of the Freund and Marshall-Olkin bivariate exponential 
models. Lu [9] suggested Bayes parameter estimation for the BVW 
distribution and Cho et al. [5] derived independent test statistics for the BVW 
model. 

In this paper, we assume that lifetimes of two-components system have a 
BVW distribution. We focus only on independent testing of the BVW model 
based on Bayes factor but Bayesian testing depends rather strongly on the 
prior distributions. Many statistical analyses are often required to appear 
objective, so the research on noninformative priors has grown enormously 
over recent years. However, noninformative priors are typically improper, so 
that such priors are defined only up to arbitrary constants which affect the 
values of Bayes factors. San Martini and Spezzaferri [14] and Berger and 
Pericchi [1] have made efforts to compensate for that arbitrariness. In 
particular, O’Hagan [13] proposed the FBF for the Bayesian testing problem. 
FBF approaches for Bayesian testing were studied by many authors. Cho [2] 
proposed a multiple comparisons procedure based on FBF for negative 
binomial populations. Cho [4] and Cho and Joe [6] studied Bayesian testing 
and multiple comparisons procedure for a bivariate exponential model based 
on censored data, respectively. 
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The goal in this paper is to propose a Bayesian testing procedure for 
independence in BVW model based on FBF. We use a noninformative prior 
such as an improper prior for the parameters so that such prior is defined 
only up to an arbitrary constant, which affects the values of Bayes factors. 
We compute the FBF to compensate for that arbitrariness, also we compute 
the posterior probabilities for the hypotheses, respectively. Finally, we give a 
numerical example to illustrate our procedure. 

2. Preliminaries 

Let random variable ( )YX ,  be lifetimes of two components that follow 

a BVW distribution with parameter ( ).,,, 321 ψξξξ=Θ  Then the joint 

probability density function of ( )YX ,  is given as 

( )ψξξξ ,,,:, 321yxf  
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where 0,,, 321 >ψξξξ  and .321 ξ+ξ+ξ=ξ  Then random variables X 

and Y are independent if and only if .03 =ξ  Also, X and Y are symmetrically 

distributed if and only if .21 ξ=ξ  
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Then the likelihood function of the sample of size n is given by: 
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On the other hand, let ( )iN
i Θπ  be an improper prior distribution under 

2,1, =iHi  usually written as ( ) ( ),iii
N
i h Θ∝Θπ  where ih  is a function 

whose integral over the parameter space under iH  diverges. Formally, we 

can write ( ) ( ),iiii
N
i hc Θ=Θπ  although the normalizing constant ic  does not 

exist, but treating it as an unspecified constant. The posterior probability that 

iH  is true is given as: 
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where ip  is the prior probability of iH  being true and N
jiB  the Bayes factor 

of jH  to ,iH  is defined by 
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where ( )( )yxL i ,|Θ  is the likelihood function under ,iH  .2,1=i  The 

posterior probabilities in (3) are then used to select the most plausible 
hypothesis. 
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Hence, the corresponding Bayes factor N
jiB  is indeterminate. To solve 

this problem, O’Hagan [13] proposed the FBF for Bayesian testing problem 
as follows, the FBF of model jH  to model iH  is: 
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and b specifies a fraction of likelihood which is to be used as a prior density. 

3. Bayesian Hypothesis Test 

The goal here is to propose a Bayesian testing procedure for 
independence based on FBF. In this paper, we assume that 1ξ  is equal to ,2ξ  

that is, ( )021 ξ≡ξ=ξ  so that the lifetimes of two components have equal 

failure rates. In addition, we assume that ψ is fixed. Hence, we set the 
hypothesis 0: 31 =ξH  vs. .not: 12 HH  Here, let 01 ξ=Θ  and =Θ2  

( )., 30 ξξ  

In this paper, we set the noninformative priors for 0: 31 =ξH  vs. 

12 not: HH  by ( )
0

11
1
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=ΘπN  and ( ) .1
30

22 ξξ
=ΘπN  To test the hypothesis 

of independence based on FBF, we need to compute (5). The likelihood 
function under 0: 31 =ξH  is given by (6): 
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Then ( )yxbq ,,1  under 0: 31 =ξH  is given by (7): 
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On the other side, the likelihood function under 12 not: HH  is given by 

(8): 
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Then ( )yxbq ,,2  under 12 not: HH  is given by (9): 
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Therefore, the FBF of 2H  to 1H  is given by (10): 
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Using FBF by (10), the posterior probability for hypothesis 2,1, =iHi  

is computed by ( )( ) .,
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hypothesis with highest posterior probability based on FBF by (3). 

4. A Numerical Example and Concluding Remarks 

In this section, we present a numerical example to illustrate for the 
proposed Bayesian procedure for independence testing 0: 21 =ξH  vs. 
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12 not: HH  based on FBF. We take the prior probability of iH  being true, 

.2,1,5.0 == ipi  

The sample of size 15 is simulated from the bivariate Weibull model 
with the parameters ,0.30 =ξ  0.23 =ξ  and .1=ψ  Also, we set .152=b  

Then we note that the true hypothesis may be .2H  The generated BVW data 
is given as Table 1: 

Table 1. The generated data 

i ix  iy  i ix  iy  i ix  iy  

1 0.1505 0.1505 6 0.3641 0.3122 11 0.2365 0.2365 
2 0.1113 0.0125 7 0.0483 0.0483 12 0.2380 0.3842 
3 0.2108 0.4129 8 0.0781 0.0781 13 0.0225 0.0393 
4 0.0108 0.1677 9 0.8387 0.3974 14 0.0235 0.1141 
5 0.1483 0.1483 10 0.0604 0.0604 15 0.0727 0.0008 

For the above generated data, we can compute the FBF 3538.521 =FB  by 

(10). Also, we can obtain the posterior probability ( )( ) 8426.0,2 =| yxHP  

by (3). That is, there is strong evidence for 2H  in terms of the posterior 

probabilities based on FBF. Hence, we reject 1H  that the lifetimes of two- 

components system are independent. 

Until now, we suggested Bayesian testing procedure for independence  
of a bivariate Weibull model based on FBF. According to the results, FBF 
methodology for Bayesian independent testing is reasonable. Also, an 
extension of the method to Bayesian testing problems for the other model 
would be accomplished straightforwardly. The research topics pertaining to 
the examination of its performance are worthy of study and are left as a 
future subject of research. 
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