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Abstract 

The purpose of this work is to develop algorithms for controlling 
multiple autonomous mobile robots, in dynamic environments. In such 
environments, the robots can do several complex tasks. One of the 
main tasks, for example, is to move to another region of the 
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environment without colliding with obstacles, which can be static or 
dynamic. 

In general, this task has been done with path planning algorithms. In a 
dynamic environment, such as in versions of soccer for robots [2], it is 
crucial that the robot makes decisions in a short time. Therefore, the 
path planning algorithms cannot spend much run-time, because they 
can reduce the efficiency of the robot operations. 

Locally Oriented Potential Fields (LOPF), proposed by [6], is a path 
planning technique that is applicable to multiple robots. This is based 
on numerical solutions of Boundary Value Problems which generate a 
given trajectory of a particular Elliptic Partial Differential Equation. It 
will be shown that this method is able to find a path (if it exists) from 
actual robot position to the goal, and can control multiple autonomous 
mobile robots, each one with distinct behaviors, by using the same 
environment grid. 

1. Introduction 

Robots have been used for industrial production processes automation. 
Such robots do not need to deal with dynamic environments (and unforeseen 
situations), and instead just perform well defined repetitive tasks. So, it was 
possible to program all the possible actions of the robotic agent for it to 
perform satisfactorily. 

However, with technological developments, robots have begun to be 
used for other purposes in dynamics environments, as with entertainment 
(games), medicine (surgery), and performing tasks in dangerous or 
inaccessible environments to human (space and underwater). In this context, 
autonomous mobile robots are under development for a great number of 
complex tasks, which their predecessors (industrial robots) could not 
accomplish. 

The main limitation on work with these robots is on how to control them, 
i.e., how to develop algorithms able to operate these complex machines. 
Complexity grows even more when takes in account, not just one robot but, a 
robot team. Then techniques are required to enable them to interact 
(effectively) with their environment. An essential part of this interaction is 
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the path planning algorithm utilized, that allows each robot to know their 
own way (based on their behavior) into environment. 

Oriented Potential Fields (proposed by [10]) (equation (1)) and Locally 
Oriented Potential Fields (proposed by [6]) (equation (2)) are path planning 
techniques, in which the second (equation (2)) is applicable to control of 
multiple robots. These are based on numerical solutions of Boundary Value 
Problems (a BVP generates a given trajectory) of a particular Elliptic Partial 
Differential Equation [5]. As shown in [11], these techniques have a 
limitation in crucial part of PDE, that, in fact, tunes the behavior that robots 
will have 
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where RR →⊆Ωε 2:,P  and 2: R→Ωv  with ( ) ( ( ),,, yxvyx x=v  

( )),, yxvy  and ( ) ( ) 1,, 22 =+ yxvyxv yx  for all ( )., yx  

In this work, an upwind scheme is proposed for discretization of 
equations (1) and (2). In this way, it becomes possible to create new 
behaviors (independently of the value adopted for ε) to robots. These 
behaviors will be evaluated and tested. 

2. Discretization 

In this section, the stability of the Jacobi-Richardson and Gauss-Seidel 
numerical methods will be investigated [3, 7-9] when applied to solving 
linear systems obtained from HPF, OPF and LOPF. Although the proof will 
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be done only for LOPF, it is valid for the methods HPF and OPF since they 
are particular cases of LOPF. When ( ) 0, ≡ε yx  and ( ) ,0, ≡yxv  one 

obtains HPF and when ( ) R∈=ε cyx,  and ( ) ,, 2R∈= wv yx  one obtains 

OPF. The grid on which we work consists of points ( ),, ji yx  where =+1ix  

hxi +  and hyy jj +=+1  for all i and j. We use ( ),,:, jiji yxε=ε  

( )jixjix yxvv ,:,; =  and ( ).,:,; jiyjiy yxvv =  The discretized system of 

equations is for the unknowns jip ,  which are approximations to the true 

solution: ( ).,, jiji yxPp ≈  

2.1. Central differences 

Applying the finite difference method with central differences in 
equation (2) for a discrete domain represented by a grid with equally spaced 
cells, one obtains equation (3): 
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We assume that the grid is composed by equally spaced cells, i.e., =Δx  

δ=Δy  and defining the parameter ,2εδ=λ  one obtains equation (4): 
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2.2. Upwind differences 

The idea of upwinding is to use the values of P that are upwind from 
( )ji yx ,  for updating ,ijp  as values of P at downwind from ( )ji yx ,  will 

not have much effect on ijp  [1, p. 162-163]. For a general case, one obtains: 
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Adding these approximations for xPvx ∂∂  and yPvy ∂∂  to the center 

difference approximation for P2∇  gives the equation 
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Solving for ijp  in terms of jip ,1±  and 1, ±jip  gives 
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3. Convergence Analysis 

The following propositions are necessary for obtaining the numerical 
solution. 

Proposition 1. Let RR →⊆Ω 2:P  be as in equation (2), in which Ω 

is discretized and path connected and that ( ) .2, hyx <ε  Applying the 

finite difference method with central differences for discretization of equation 
(2), the Gauss-Seidel and Jacobi-Richardson methods converge when 
applied to resulting linear system. 

Proposition 2. Let RR →⊆Ω 2:P  be as in equation (2), in which Ω 
is discretized and path connected. Applying the finite difference method with 
central differences, by using upwind scheme for discretization of equation 
(2), the Gauss-Seidel and Jacobi-Richardson methods converge when 
applied to resulting linear system. 

Before we demonstrate the proof of Proposition 1, guaranteeing the 
convergence of LOPF, some definitions and theorems are presented because 
they are essential for understanding the proof. 

Definition 3. A graph is strongly connected if and only if for any pair of 
nodes ji PP ,  there is a path between them 

jiiiii PPPPPP m...,,, 21  

connecting iP  and jP  [9, 4]. 

Definition 4. A matrix ( )nA RL∈  (where ( )nRL  is the space constituted 

by linear operators from nR  to )nR  is diagonally dominant if 

∑
≠
=
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n

ij
j

ijii niaa
0

...,,1,  (8) 

a strictly diagonally dominant if strict inequality holds in equation (8) for all 
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i. A matrix is irreducible and dominant diagonally if it is irreducible and 
dominant diagonally and at least for some index i in equation (8) the 
inequality is strict [9]. 

Definition 5. Given a matrix ,nnA ×  there is an associated graph: Let n be 

distinct points: the vertices are points ,...,,1 nPP  and for each element non 

zero ija  of A there is an edge from iP  to .jP  As a result, one obtains a 

digraph (directed graph) associated to matrix A [9]. If A is symmetric, then 
the graph associated with A is undirected. 

Theorem 6. The matrix ( )nA RL∈  is irreducible if and only if its 

associated graph is strongly connected [9]. 

Theorem 7. Let nb R∈  be arbitrary and ( )nA RL∈  be either strictly 

diagonally dominant or dominant diagonally and irreducible. Then the 

Jacobi-Richardson and Gauss-Seidel methods converge to bA 1−  for some 

0x  [9]. 

Now, based on the presented definitions, Proposition 1 can be proved. 

Proof of Proposition 1. From equation (3), we have 
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( ),, yx  the coefficients of jip ,1±  and 1, ±jip  are all non-negative. Then 

summing the absolute values of the coefficients of jip ,1±  and 1, ±jip  is the 

same as the sum without absolute values, which is .4 2−h  This is the negative 
of the coefficient of jip ,  in equation (3). If one or more of the points 

( )ji yx ,1±  and ( )1, ±ji yx  are outside the interior of Ω, this will remove 

some off-diagonal coefficients, and thus reduce the sum of off-diagonal 
entries for the equation for ., jip  Thus, the inequality equation (8) is satisfied 

for all rows of the linear system for the jip , ’s with strict inequality if 

( ) Ω∈ji yx ,  but one of ( )ji yx ,1±  or ( )1, ±ji yx  is not in the interior of Ω. 

Therefore, Theorem 7 guarantees the convergence of Gauss-Seidel and 
Jacobi-Richardson methods when applied to equation (3). ~ 

Using upwind differences, however, removes the restriction that 
( ) .2, hyx <ε  

Proposition 8. Let RR →⊆Ω 2:P  be as in equation (2), in which Ω 
is discretized and path connected. Applying the finite difference method with 
upwind differences for discretization of equation (2), the Gauss-Seidel and 
Jacobi-Richardson methods converge when applied to resulting linear 
system. 

Proof. The proof of this starts with equation (6): 
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Note that all the coefficients of jip ,1±  and 1, ±jip  are non-negative and the 
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coefficient of jip ,  is always negative. Assuming that ( ) Ω∈ji yx ,  and 

( ) ( ) ,,,, 11 Ω∈±± jiji yxyx  the sum of the off-diagonal coefficients in the 

above equation is ( ) ,4 1
,;,;,

2 −− +ε+ hvvh jiyjixji  while the absolute 

value of the coefficient of jip ,  is also ( ) .4 1
,;,;,

2 −− +ε+ hvvh jiyjixji  

Thus equation (8) is satisfied in this case. If one of ( ) ( )11 ,,, ±± jiji yxyx  

,interior Ω∉  then this reduces the sum of the off-diagonal coefficients, and 

so equation (8) becomes a strict inequality. Then Theorem 7 guarantees the 
convergence of Gauss-Seidel and Jacobi-Richardson methods. ~ 

4. Experiments 

In Figure 1, the convergence of the CPO equations with Gauss-Seidel, 
both using sequential implementation and a parallel implementation in 
CUDA is shown using centered versus upwind differences for various 
constant values of ( ).1=ε h  The grid used as ,6585 ×  as this is suitable for 

the robot soccer challenge. 

It can be seen that all the methods converge for ,2<ε  as was shown 
theoretically through the results of the previous section. In this experiment, 
only when 4.3>ε  do we see divergence for the centered difference 
discretization, while the upwind version does not have any problems with 
convergence. 

Tables 1 and 4 show the execution times (in milliseconds) of the solution 
methods for the boundary value problems for LOPF (Locally Oriented 
Potential Fields) using central differences and upwinding, respectively. 
Several different iterative methods were compared: JR (Jacobi-Richardson), 
WJR (Weighted Jacobi-Richardson), GS (Gauss-Seidel) and SOR 
(Successive Over-Relaxation) [3, 9, 12]. For SOR, optimal over-relaxation 
parameters ω were computed ( optω  was in the range 1.8 to 1.9). Taking the 

time for sequential Gauss-Seidel as a base (29.19 ms), the speedups were 
calculated in Tables 2 and 5. The number of iterations are shown in Tables 3 
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and 6. It can be seen that upwind differences are the fastest for both the total 
execution time, and the number of iterations per millisecond. 

 
Figure 1. Gauss Seidel-ε. 

Table 1. Execution time-centered differences 

 Sequential/CPU Parallel/GPU 

 Average Range Average Range 

JR - - 0.88 [0.73, 1.02] 

WJR - - 0.75 [0.63, 0.86] 

GS 29.18 [22.89, 35.48] 1.16 [0.99, 1.34] 

SOR 21.30 [18.88, 23.72] 0.70 [0.64, 0.77] 

Table 2. Speedup-centered differences 

 Sequential/CPU Parallel/GPU 

JR - 33.16 

WJR - 38.91 

GS 1 25.16 

SOR 1.37 41.69 
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Table 3. Number of iterations-centered differences 

 Sequential/CPU Parallel/GPU 

 Average Range Average Range 

JR - - 49.13 [40.50, 57.76] 

WJR - - 40.78 [33.85, 47.70] 

GS 20.43 [22.48, 34.38] 32.46 [27.31, 37.60] 

SOR 20.52 [18.20, 22.83] 18.32 [16.82, 20.84] 

Table 4. Execution time-upwind differences 

 Sequential/CPU Parallel/GPU 

 Average Range Average Range 

JR - - 0.83 [0.67, 0.98] 

WJR - - 0.68 [0.57, 0.80] 

GS 28.41 [22.41, 34.39] 1.07 [0.90, 1.25] 

SOR 16.92 [14.50, 19.35] 0.85 [0.76, 0.93] 

Table 5. Speedup-upwind differences 

 Sequential/CPU Parallel/GPU 

JR - 35.17 

WJR - 42.91 

GS 1.03 27.27 

SOR 1.73 34.33 

Table 6. Number of iterations-upwind differences 

 Sequential/CPU Parallel/GPU 

 Average Range Average Range 

JR - - 49.13 [40.50, 47.76] 

WJR - - 40.78 [33.85, 47.70] 

GS 28.44 [22.54, 34.37] 27.42 [22.72, 37.12] 

SOR 17.16 [14.72, 19.61] 21.30 [19.07, 23.52] 
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5. Conclusions 

Following the results presented in the previous section, it can be seen 
that the use of the GPU strongly reduces the time for the execution of the 
method (with up to 40x the speed of the CPU), in spite of the transfer times 
between CPU and GPU. In the current implementation, the error calculation 
is performed on the CPU rather than GPU; future versions of the code will 
solve this problem. Furthermore, by using upwind differencing, we can treat 
problems with ( ) hyx 2, >ε  without difficulty. 

The number of iterations remains essentially the same between the CPU 
and GPU versions. This indicates that the execution of the methods can be 
greatly sped up using massive parallelism of the type supplied by the GPU 
and CUDA architecture. No individual method is better than all the others, 
but it can be said that the SOR/CUDA and WJR/CUDA are faster and more 
efficient than the others. There is little to distinguish between the 
SOR/CUDA and WJR/CUDA methods. 

The execution time using upwind differences with WJR/CUDA is only 
0.68 milliseconds as shown in Table 4 allows over 1,400 executions per 
second. This is more than sufficient for real time execution, even for path 
planning for rapidly moving situations like robot soccer 
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