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Abstract

A. G. Zavadskij called completion to one of the algorithms of
differentiation introduced by him to classify equipped posets of finite
growth. In this paper, we describe the categorical properties of such an
algorithm.

1. Introduction

This paper is the third part of a series of works written by the first author
concerning the investigation of categorical properties of some algorithms of
differentiation for equipped posets [3, 4]. Such algorithms are functors whose

main goal is to reduce the dimension of the initial category.
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The first algorithm of differentiation (with respect to maximal point) was
introduced by Nazarova and Roiter in 1972 [7]. The categorical properties of
such an algorithm were given by Gabriel in 1973 [5]. We note that, the
algorithm with respect to a maximal point was used successfully by Kleiner
in 1972 to classify ordinary posets of finite representation type [6]. Soon
afterwards, Zavadskij defined the algorithm of differentiation with respect to
a suitable pair of points. This algorithm allows to Nazarova and Zavadskij in
1982 to give a criterion for the classification of ordinary posets of finite
growth [8, 12, 17].

In the 1980’s, the main goal of the investigation of the poset
representation theory was to classify posets with additional structures. For
example, Bondarenko and Zavadskij gave criteria to classify posets with an
equivalence relation. Actually, they gave criteria for tame and finite growth
representation type for this kind of posets. Such criteria were obtained with
the help of the algorithms of differentiation DII-DV introduced previously by
Bondarenko and Zavadskij [1, 14].

At the end of the 1990’s, Zabarilo and Zavadskij introduced equipped
posets and gave criteria to classify equipped posets of one parameter giving a
complete description of their indecomposables [11]. The reader is referred to
[3, 4, 10] to more precise historical details of the investigation of the
algorithms of differentiation.

We recall that the main problem in the theory of the algorithms of
differentiation for posets ordinary or with additional structures consists of
describing its categorical properties. Such descriptions allow to investigate in
more efficient way the Gabriel quiver and the Auslander-Reiten quiver of the
corresponding categories. For example, Zavadskij obtained in 1990 the
categorical properties of his algorithm of differentiation with respect to a
suitable pair of points. Those results allowed him to analyze the structure of
the Auslander-Reiten quiver of the category of representations of posets of
finite growth representation type [13, 17]. In the same line of work, the first
author and Zavadskij in 2006 gave in [2] the categorical properties of the
algorithm of differentiation Il for posets with involution [2]. More recently,
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the first author gave the categorical properties of the algorithm of
differentiation VI1I for equipped posets [3]. However, in order to describe the
structure of the Auslander-Reiten quiver for equipped posets of finite growth,
it is also necessary to obtain such properties for algorithms VIII, IX and
completion introduced by Zavadskij in 2003 (recall that, Zavadskij defined
differentiations VII-XVII to classify equipped posets of tame and of finite
growth representation type) [15, 16]. For this reason, in this paper, we have
chosen the completion to investigate its categorical properties.

This paper is organized as follows: Basic notation and definitions
concerning some suitable category of representations of equipped posets are
included in Section 2. Actually, since the main definitions, notation and
properties of morphisms are given by the first author in [3, 4], in this paper,
we only give definitions and notation concerning the completion for
equipped posets. Finally, in Section 3, we give the definition of the
completion for equipped posets and describe its categorical properties.

2. Preliminaries
In the present section, we introduce equipped posets and categories of
representations of this kind of posets.

2.1. The category of representations of equipped posets

In this subsection, we define equipped posets and the category of
representations of this kind of posets [3, 4, 9, 15, 16].

A poset (P, <) is called equipped if all the order relations between its
points x <y are separated into strong (denoted x < y) and weak (denoted
X =< y) insuch a way that

X<y<zorx<y<zimplies x <z, Q
i.e., a composition of a strong relation with any other relation is strong.

In general, relations <0 and =< are not order relations. These relations are
antisymmetric but not reflexive. In particular, < is not reflexive (meanwhile
< is transitive) [9].
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We let x <y denote an arbitrary relation in an equipped poset (P, <).

The order < on an equipped poset P gives raise to the relations < and < of
strict inequality: x <y (respectively, x < y) in P if and only if x <y
(respectively, x < y) and x # y.

A point x € P is called strong (weak) if x < x (respectively, x < x).
These points are denoted o (respectively, ®) in diagrams. We also denote
P° < P (respectively, P® < P) the subset of strong points (respectively,

weak points) of P. If P® = @, then the equipment is trivial and the poset
P is ordinary.

Remark 1. Note that if x <y in an equipped poset (P, <) and there

exists t € P such that x <t <y, then x,yefP®, X<t and t=<y.
Otherwise, if x <t or t<y, then by definition, it is obtained the
contradiction x < .

If P is an equipped poset and a € P, then the subsets of P denoted

a¥, a,, a’, a,, a', a,, a' and a, are defined in such a way that:

a¥ ={xe?Pla<x}, a,={xeP|x<a},
a’ ={xePladx}, a,={xeP|x<dal},
a' =a’\a, a, =a,\a,

a’ ={xePla<x}, a, =i{xeP|x=al

Subset a¥ (respectively, a,) is called the ordinary upper (respectively,

lower) cone, associated to the point a € P and subset a”(a, ) is called the
strong upper (lower) cone associated to the point a € P, whereas subsets

a’ and a, are called truncated cones (respectively, upper and lower)

associated to the point a € P. In general, subsets a and a L are not cones.

Note that, if x € P°, then x" = x, = @.
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The diagram of an equipped poset (P, <) may be obtained via its Hasse
diagram (with strong () and weak points (®)). In this case, a new line is
added to the line connecting two points x, y € P with x < y if and only if

such relation cannot be deduced of any other relations in P. In Figure 1, we
show an example of this kind of diagrams:

7% 8 @ 1" ={1,3,4,8} 1V = {7}
2" ={2,4,7} 2" = {5,6,8}
3Y ={3,7} 3 =g
3 5 6 47 —{4,7,8) A
5 =2 57 = {5,8}
N 6" = {6,8} 6" =@

7 = {7} V=g
8Y = {8} 8" =

Figure 1

For an equipped poset (P, <) and A P, we define the subsets, NG

A" and AY in such a way that

AV:Uav, AY:UaY, AV:UaV.

acA acA acA

Subsets A,, A, and A, are defined in the same way.

If P isan equipped poset, then a chain C = {¢; e P|1<i<n, ¢j_1 <
if i >2} < P isaweak chain if and only if cj_y < c; for each i> 2. If
C; < Cp, then we say that C is a completely weak chain. Moreover, a subset
X < P is completely weak if X = X® and weak relations are the only
relations between points of X. Often, we let {¢; < ¢, <---<c,} denote a
weak chain which consists of points ¢, ¢y, ..., ¢,. An ordinary chain C is

denoted in the same way (by using the corresponding symbol <).

For an equipped poset P and A, B — P, we write A< B if a<b for
each a e A and b € B. Notation A< B and A < B are assumed in the

same way.
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Let F < G be an arbitrary quadratic field extension with G = F(u) for
some fixed element u e G. Then each element x € G can be written
uniquely in the form o + uf with a, B € F in this case (analogously to the

case (F, G) = (R, C))a is called the real part of x and  is the corresponding

imaginary part of x.

The complexification of a real vector space can be generalized to the
case (F, G), where G = F(u) is a quadratic extension of F. In this case, we

assume that u is a root of the minimal polynomial t2 +ut+A, A =0

(A, u € F). In particular, if Uy is an F-space, then the corresponding
complexification is the G-vector space also denoted U& = L]o. As in the case
(R, C), we write U3 = Ug + uUg = Uj.

To each G-subspace W of GO, it is possible to associate the following

F-subspaces of U,

W* = ReW = ImW and W~ = gen{o e Ug|(a, 0)' eW} c W,

For a G-space W, we let W* = F(W) denote the F-hull of W such that
W < E(W).

IfY is an F-subspace of Uy and X =Y, then X = X~ =Y. Therefore,
Y is an F-form of X.

Remark 2. Any G-subspace W of UO can be written as a direct sum
of G-subspaces, W W~ @ H, where H is a complement of W™ in W.
Therefore, H =W ™ /W™,

For each x € P, we let U, denote the radical subspace of U, such that

Uy= > FU)+ X UZ._

24X Z<X
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If the field G is a quadratic extension of a field F, then a representation
of an equipped poset over the pair (F, G) is a system of the form

U = (Ugi Uyl x e P), @

where Ug is a finite dimensional F-space and for each x e P, U, is a

G-subspace of Jo such that
x<y=U, c Uy,

xdy=FUy)cU,.

Remark 3. Note that, since x < x whenever x € P°, U, < F(Uy)
< Uy. Therefore, if x € P°, then F(Uy) =U,.

We let rep P denote the category whose objects are the representations
of an equipped poset P over a pair of fields (F, G). In this case, a morphism
¢ :(Ug; Uy|x eP)— (Vg; Vi |x € P) between two representations U and
Visan F-linear map ¢ : Uy — Vg such that

oUy) c Vy, foreach x € P,

where Fp:ljo —>\70 is the complexification of ¢, i.e., the application
G-linear induced by ¢ and defined in such a way that if z=x+uy e GO,

then §(z) = 92(z) = ¢(X) + ug(y). The composition between morphisms of
rep P is defined in a natural way and the sum U @V e rep? is defined as
for ordinary posets. Therefore, rep P is a Krull-Schmidt category.

If P is an equipped poset and U,V erep?P, then U is a sub-

representation of V if and only if spaces Uy, Vy, Uy and V, satisfy the

inclusions Uy <V and U, < V, for each x € P.

Two representations U,V e rep P are said to be isomorphic if and only
if there exists an F-isomorphism ¢ :Uq — V; such that ¢(U,) =V,, for
each x € P.
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The main problem dealing with equipped posets consists of classifying
its indecomposable representations up to isomorphisms.

Each equipped poset P naturally defines a matrix problem of mixed type
over the pair (F, G). Consider a rectangular matrix M separated into vertical

stripes My, x e P, with M, being over F (over G) if the point X is strong

(weak):
X—>Yy
M=® ® O O,
G|G|F|F

such partitioned matrices M are called matrix representations of P over
(F, G). Their admissible transformations are as follows:

(@) F-elementary row transformations of the whole matrix M;

(b) F-elementary (G-elementary) column transformations of a stripe M

if the point x is strong (weak);

(c) In the case of a weak relation x <y, additions of columns of the

stripe M to the columns of the stripe M with coefficients in G;

(d) In the case of a strong relation x <1y, independent additions both
real and imaginary parts of columns of the stripe M, to real and
imaginary parts (in any combinations) of columns of the stripe M

with coefficients in F (assuming that, for y strong, there are no
additions to the zero imaginary part of M,).

Two representations are said to be equivalent or isomorphic if they can
be turned into each other with help of the admissible transformations. The
corresponding matrix problem of mixed type over the pair (F, G) consists
of classifying the indecomposable in the natural sense matrices M, up to
equivalence.



Completion for Equipped Posets 181

Remark 4. The matrix problem for representations (a)-(d) occurs
naturally in the classification of the objects U € rep® up to isomorphisms.

In this case, it is associated to the representation U its matrix presentation
My = (My; x € P) defined as follows:

If a point x e PP (respectively, %), then the columns of the stripe

M, consist of coordinates (with respect to a fixed ordered basis B of Ug)
of a system of generators G of Uy (respectively, G-subspace U,) modulo

its radical subspace U (respectively, U, ). Problem (a)-(d) may be obtained

by changing basis B and the system of generators G.

If X P, U e rep?, then the subspaces of U denoted U,, U%, Uy

and (Uy )~ are defined in such a way that:

xeX xeX
Ux = [UYx Ux) =[x ®)
XxeX XeX
We also assume that
Ug =0, Ug =U,. (4)

The dimension of a representation U < repP is a vector d such that d =
dimU = (dg; dy|x € P), where dg =dimg Uy and dy = dimg U, /Uy.
A representation U e rep?® is sincere if dy #0 and dy, =0 for each

x € P. In other words, the vector d of a sincere representation U has not null
coordinates.

2.2. Some indecomposable objects

In this subsection, we give some examples of indecomposable objects in
the category rep P, where P is an equipped poset.
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If P is an equipped poset and A c P, then P(A)=P(minA)=

(F; Py |xe®), P,=G if xe AY and P, =0 otherwise. In particular,
P(@)=(F;0, .., 0).

If a,beP®, then T(a) and T(a, b) denote indecomposable objects

with matrix representation of the following form:

T(a) = , acP® T(ab)=

If we consider the notation (2) for objects in rep P, then the object T(a)

jsb}

, with a < b.

[EEN
(=
= O|T

c

may be described in such a way that T(a) = (To; Ty |X € P), where Ty = F2

and
To = G2, if xea’,
T, =<G{L u)}, ifxea",
0, otherwise,

where (1, u)! is the column of coordinates with respect to an ordered basis of
To.
On the other hand, representation T(a, b) may be described in such a

way that T(a, b) = (To; Ty |X € P), where Ty = F2 and

G{@ u)t}, ifa=<x<b,
T, =4To =G2, if xea’ UbY,
0, otherwise.

If aecP® and B < P is a subset completely weak such that a < B,

then we let T(a, B) denote the representation of P which satisfies the

following conditions with Tp = F2;
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G{@ u)t}, if xea"\B,
T, =4To =G?%, if xea’ +BY,
0, otherwise.

In particular, T(a, &) =T(a).

Remark 5. In [15], it is proved that P(@), P(c;), T(c;) and T(c;, c;),
for 1<i< j<n are the only indecomposable representations (up to
isomorphisms) over the pair (R, C) of a completely weak chain C =
{oy <+ <cph. Infact, if U = (Ug; Ug, [L<i<n) is a representation of C
over (R, C), then in the corresponding matrix representation each block
Ug. 1<i<n, may be reduced via admissible transformations to the

following standard form:

where the columns consist of generators of Ug modulo its radical subspace

lﬁ =Ug with respect to a fixed basis of Uy (in this case, empty cells

indicate null coordinates). This result can be generalized in a natural way to
the case (F, G) by using a suitable scalar u € G instead of the constant

i € C in the matrix presentation of U, showed above.

If X cUg, Y cVy are corresponding subspaces of the finite
dimensional k-vector spaces Uy and Vg, then [X, Y] is a subspace of
Hom (Ug, V) such that

o e[X,Y]ifandonlyif X — Kerg and Imo V.
Note that if X' = X and Y < Y/, then [X, Y] < [X', Y'].
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The following results concerning linear maps and morphisms of
categories of representations of equipped posets were proved in [2] and
[3]. In this case, for a category A, we let (Uj|i e I)A denote the ideal

consisting of all morphisms passed through finite direct sums of the objects
Uj. That is, if ¢:U =V e U;liel),, then there exist morphisms

f o9
f,geA suchthat g =U - ®U™ -V with m; = 0 for almost all i.
1

Lemma®6. If ¢ € [X, Y] and o(X') < Y’, then
eel[X+X,Y]+[X,YNYT]
Lemma 7. Let U and V be two representations of an equipped poset
P=a’+b, +{a< X <c}, where a,ce P® be P is a strong point
incomparable with a and ¢, {a < X < c} is a completely weak set containing

an arbitrary set X (eventually empty). Then for an F-linear map ¢ :Uqy — V,
we have the following equivalences:

(@ ¢ € uT@)y < ¢ elUp+Uc) V5l §Uc) < Va,

(b) oey(T@ cy < 9ellUp+Uax), Vd NVE] #U) < Vo
NVe, §Uaix) < Va NVg,

© ¢ cu(P@)y < eelUp, Val

Corollary 8. Let U and V be representations of an equipped poset
P=a’+h, +{a<c; <<y}, where {a <c; <---<c,} is a completely
weak chain incomparable with the strong point b. Then for an F-linear map,
¢ :Ug — Vp, we have the following equivalencesif 1< i <n (Ug =Uy):

(a)
¢ u(T(@cy < @ellUp+Ug ) Va NVg ],

Uc,) = Vo, ®U ) < Vo NVg, #Ug ) < Va NV,
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(b) 9 € y(P(@)y < ¢ e[Up + Ue,) Val, (~P(Ucn) < Va.

Remark 9. Note that if ¢ € [(Uy +U¢ )7, A NVg ] in Corollary 8,
item (a), then the condition (T)(Ucn)c\./; ﬂ\7ci‘ =V, ﬂ\7i‘, follows if
V, = F(V4). In the same way, the condition Eﬁ(Ucn)cVa in item (b)
follows if V, = F(V3) and ¢ € [(Up +Uc )7, Va |-

Remark 10. If a finite dimensional F-space Uy = {g;|t € J} and an
F-subspace K < Ug are such that for a fixed ordered basis subspace K has

the form K =F{e/|te | < J}, then we let a = ;K denote to a vector

o € K such that o = ) aye;. Indices for scalar numbers o depend of the
tel

order given to the basis of the subspace K.

If a G-subspace H GO, is such that H™ = 0 and for a fixed ordered
basis, we have that H = G{ej +uej [, ej €Ug, tel iel’ jel,

I, 1" and 1" suitable sets of indices, then we write:
HY = Fle ltel,icl’,
2 _ H "
He ={ejltel, jel"
Therefore, F(H) = H! @ H?2. Thus, if a vector o e F(H), then a = ocitl-~|1
+ octh:|2, where aj, oj € G. In particular, if aj =aj, foreach tel,
then the vector 8 = o, HY + uoL j, H? e H, may be also written in the forms
B =aiH =aj (H" +uH?).
3. The Completion

In this section, we give the categorical properties of the completion for
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equipped posets which is a special differentiation introduced by Zavadskij in
order to classify equipped posets of finite growth [15, 16].

If P is an equipped poset, then a pair of comparable weak points (a, b)

with a < b is special provided P can be written in the form ? = a" + b
+ %, where T is the interior completely weak of the interval [a, b] =

{xePla<x<blc P

The completion of poset P with respect to the special pair (a, b) is the
transition from P to an equipped poset ﬂ?a,b) = P obtained from P by

strengthening relation a < b in P. In such a case, it is obtained a new strong

relation of the form a < b. Figure 2 shows a diagram for this differentiation.

b

CW@&C?

y

R
Figure 2

Note that, if U is a representation of an equipped poset P (over the pair

of fields (F, G)), then the corresponding subspace U, can be written in the

formU, =U; ® R, and R, = M, ® Ny, where U; ® M} =U; NU;.

We let C(@2) denote the first version of the completion functor defined
in such a way that c(ab). repP — rep? in this case, each object U < repP

is applied to the object U e rep P such that

&l

o = U,

Up + NI =Up + F(U,),

=
(e
I
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U, = U, for remaining points x € P,
@ = ¢, for alinear map-morphism ¢ : Ug — V. (5)
For example, T(a, b) = T(a) = T(a).
The following lemma was proved by Zavadskij in [15].

Lemma 11. Category rep UT(a,b) is a full subcategory of the category

rep P which consists of objects without direct summands in the class [T (a)]

of the indecomposable T(a), therefore

Ind P = Ind P\[T(a)].

The following theorem allows to obtain an equivalence between quotient
categories of rep® and rep P.

Theorem 12. The completion functor c@b) induces the following
equivalence between quotient categories

repP/(T(a), T(a, b)) > rep? /(T (a)).

Proof. We let R, R denote categories rep® and rep P, respectively. In

the same way, we let ® =(T(a), T(a, b))z, © =(T(a))g denote the ideals

consisting of morphisms of the corresponding categories passing through
direct sums of indecomposable T(a), T(a,b) and T(a), respectively.

Therefore, for each pair of objects U, V e R, the following inclusions hold,

®U,V)c ®U,V)cRU,V), ©U,V)c RU,V)cR(U,V). Thus,

in order to obtain the result, it is enough to prove the following identities:
RU,V)NOU,V)=06U,V) and RU,V)+06U,V)=R(U,V).

Note that, Lemma 7 (applied to poset P) allows to conclude that for

each pair of morphisms f, g € RU,V) and h € R(U, V), it holds:
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felUp, Vil fUp)cVa e fe(T@)y,
gelUp.Va NVy ], GUp) < Va Ny,
g(UaY\b) cV, ﬂ\7b_ = g€ <T(a: b»R’

helUp,Val hUp) Vi, hU_)cV,a < he(T(@)g.

On the other hand, if ¢ € RU,V)NOU,V), then ¢Uy)cV, if
x € P, in particular o(Up ) < V5 NVp . If we apply Lemma 6 to morphism
¢, then ¢ e[Up,Vy NVy ]+ [Up +Up, V5] Since [Up +Up, Vo=
[Up.Va'] ¢ €Up,Va NVy ]+[Up, Va |. Therefore, ¢ € ©(U, V). Because,
it is possible to write ¢ in the form ¢ = @1 + @5, With @1, ¢, € OU, V).

If v eR(U,V), then y(U,)cV, forall xeP\b and y(Up) <V,
+ NZ. Furthermore, §(Uy, HLE)C \TI([E)C\E — V. Since the inclusion
F(U,) <V, for x e b, NP does not hold in general, y € R(U, V) is not
always true.

The following notation and definitions are necessary to define a
morphism w € ®(U, V) such that y —w € R.

For each XEbAﬂfp®, it holds Uy =U, ® Dy, where Dy is a
complementary of U, in U,. Furthermore, Dy = If; @ Hy,, Hy =M,

® Ny, with My = >’ My < Ug. Subspaces My, < M, are such that

yex"
M,y = Hy MUy, for some y e x*. Moreover, if Z,, = {z e x'[M,, cU;},

then y e minZ,,. Actually, Uy NUy = U ® My,
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If Ub:Gg @ Ty, then for each xeb,, we have Ny cT, =

> Ng®Ny and N NUp =0.
xeb, NP®

Uy =|Ux NUy + D Uy +zy @Yy,

yex) \x
where a vector a e Zy if ae M;,X, for some y e x, \x and Y, is a
complementary in U,. Therefore, U, may be written in the form;
Up = Uy +Zp) @Yy, with Z, = Zy N U, @ Zp, . Same notation, we use

in representation V, by replacing for each x € P the symbol H, instead
of Gy. Also, by replacing notation M’, N, T', Y', Z' instead of M, N, T,
Y, Z, respectively.

We write V, =Vy ® Ly, with V' =V, + Lg*. In fact, we suppose
|- | — [ - [ - [ — + + + +
Ly, = Lb;;j1 @ ng DGy, Ly, = Lb;':‘ @ Lb* , Lb,? =V, N L, » further ng N

V) = Gg* NV5 = 0. Therefore, V" = N @ Gt’):, with Gt’): =V, ® M}

+
@ ng @ Gb*'
We consider Vo =Vy @ Xy and subspace Wg =L @ Xq, for a

complementary X, in such a way that the pair of subspaces, (N5", Wg) is

a (Vg Lg*)—cleaving in V. Furthermore, since Ty = N;A @ Ny, Nb+A

NMy =0, forall x eb,. If Uy =Uy ® Xg, with X, a complementary,

Uy = UgA @Y, ® Np and Ul')*A =Zp, ® Xy, Xp acomplementary. Thus,

Uf =2y, ®Xp ®Y, ®Ng and Ug = Z, @ X, ® Y, @ Nf @ X
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If Xy=2p, Xp=Yy, Xz= Np and e € X; is a basic vector for
some i e {1, 2, 3}, then by using adequate notation for linear combinations

in subspaces N, Gp, (see Remark 10), we write

r+

y(es) = ag, Na + g, Gp,

If the basic vectors e;, ej € Tb+, o =g +uej e Ny and
+ r+
y(e) = oq N3~ + g, Gy

' r+ ' +
y(ej) = ap Ng + g, G, s

then (oig, + ua’gm)ég €Vp. On the other hand, if o e M, NUy, for
some x € by, then (ag + U%m)ég eVy.
If w; :Ug —> Vg is the F-linear map such that w(eg) = aanNgf, if

es € X¢, W =0 otherwise for each t € {1, 2, 3} and we write w = w; + W,

+w, then w e Uy, Vy ] Infact, w e (T(a))g.
Furthermore,
(¥ - W) Up) = Vy,
(F = W) Uy N Xp) = §U N Xp) = §(Uy) = Vy, i x e by Ny,
in this case, if o = e + uej € My,, with g, e; € Xg, then (y —W)(a) =

(og, +Uog )ég eVy NVy < V,. Therefore, (j — W)(Uy) < V,.

If x ea”, then we have ( — W) (Uy) < Vy + F(V,) c Vy. If x e b,,
then (y — W) (Uy) = y(Uy) < Vy.
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If e,ejeXs and o =¢ +uejeNp, then (y-w)(a)=(ag +
Ua'gm)é{): € Vp. Thus, (y —W)(Up) = Vp and y —w € R(U, V).

Since morphism w € ©(U, V'), we conclude v € RU,V)+ ®U, V)

and with this fact, we are done. O
Corollary 13. If I'(R) and T'(R) are Gabriel quivers of categories R =
rep? and R =rep?P, respectively, then T(R)\[T(a), T(a, b)]=T(R\[T(a)].

The second version of the completion functor C, ) for an equipped

poset with a special pair of points (a, b) is defined in the following form:

Ca,b) i repP — repP assigns to each object U e rep P, the object

U e rep? such that

Uy = Uy,

2 =Up NU, =U; ® M,,

(-

U, = U, for remaining points x € rep P,

@ = ¢, for alinear map-morphism ¢ : Ug — V. (6)

For example, T(a) =T(a¥) =T(a"), where T(a") is the representation of
P (over (F, G)) such that:

T@") = (T, Tgx € P), Ty = F2, T, = G{(L, u)t}
if xea\a and (1, u)t is a vector of coordinates with respect to an ordered
fixed basis of Ty, Ty = 'FO = GZ, if xXe av, Ty = 0 otherwise.

Lemma 11 and the following theorem allow us to obtain a relationship
between categories rep P and rep P via the functor C(a,b):
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Theorem 14. The functor C, 1,y induces the following equivalence

between quotient categories:
repP/(T(a), T(a")) = rep® /(T(a")).

Proof. Let R=repP, R=repP, A=(T(a)T@"))r and A=
(T(a'))§. Thus, for each pair of objects U,V erep®, the following
inclusions hold, A(U,V)c A(U,V)cRU,V), AU,V)cRU,V)c
R(U, V). Therefore, it is enough to prove:

RU,V)NAU,V)=AU,V) and RU,V)+AU,V)=R(U,V).

Lemma 7 allows to conclude the following identities for linear maps

f,geRU,V), heRU,V) and D\ja[ N v;}m{ﬂ vy]:

xea\a yea”
fe(T@g & felUp,Val FlUp)cVy,

ge(T@)g @ gelUs +Up. O) 1. §U) = (] Vy

xea'\a

he(T@)g < helly, D) ] hUp) e [] Y

xea\a
If e RU,V)NAU,V), then ¢Uy)cV, if xeP. In particular,
¢(Ua) cVa'.
: - + [t — N+ +
Lemma 6 allows us to write ¢ € [Uy +Ug, Dva]+ Uy, DVa NVy ]
Since [Up, Dy NVy ]=[Up,Val 9 €[Up, Vi ]+[Uy +Ug, Dy | Since
a a

there exist morphisms ¢, ¢, € A(U, V) such that ¢ = @; + @5, we conclude

¢ eAU,V).
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If weR(U,V), then y(Uy)cV,, for all xeP\a. Furthermore,

F(Up NU,) =V, NV, < V,, since in general, §(U,) & V, not necessarily
v e R(U,V).

For each xea’, we can write Uy, =Uy ® Ky, Ky =Ky ® Hy,
Hy =M, @ Ny, where aoe M, if aeU;, Up NU; =U; ® M,
Ny NUg =0,

Uy =Uy @ P with P, =Y, ®Z, and a € Z, if a e My NUy, for
some y e X, \x, we write Uy =U3 +Up @Yy and Wy = Uy @Y,

For the representation V, we have N Y% (N N \7y_ =
\

xea'\a yea
Va ® Xq, Va =Vg ® My @ Ny, Xq = X3 ® Xg ® Gy With Xi = X
® Xg, Xa < Xi" NV, Xg NV4 =G NV4 =0 and Xo = Xg ® Gy,

Vo =(X{ +V5)®Y) and Wy =V, @Yy, Yo and Y{ are corresponding

complementary subspaces in Uy and V.

Let (NJ,Wy) be a (UF,Up)-cleaving in Uy and (Xg, W) be the

(X1, V3") -cleaving in V.
If e, € N is a basic vector, then by definition
w(es) = ocliaV; + ocqtj,XaL.
If e;, ej are basic vectors of N, , with a = ¢ + uej € Ny and

w(e) = (xliaVa+ + ocqﬁ,XJ, y(ej) = aiiaV; + oc:qtj,Xar,
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then

v(a) = (ocIia + Ua;ia Vg + (ocq? + uaa?)xo eV, ® Xp.

Therefore, if w:Ug — V; is the F-linear map such that w(Wg) = 0 and for

es € Ny, w(e) = ap Xg, according with the notation for the image under
]
- Nt + + +

vy of N(a). Thus, w e [Uy, Dva] because X{ +V5 < Dva. In fact, w e
(T@*)z-

It holds that if o = ¢ +uej e Ny, then (y —W)(a) = (al_a + Ut WVa

I I

e V;,.

If xea, then (y —W)(U,) < 5\}; +V, cV,, incase xeh,, we
have (§ — W)(Uy) = §(Uy) =V, by definition (§ — W)Uy NU,) < Vg
Vg < V,.

If xe(a"\a), then we can write U, in the form U, =U, euU,,
conu;(f* NNz =0, thus (y —W)(Uy) =V, +Vy <V, because WU, )=0,
since U, is a complementary of U, in U,. Since ¢ =y —w e R(U, V),

we conclude y =9 +we RU,V)+ AU, V) and with this fact, we are
done. O

Remark 15. Morphism w in the proof of Theorem 14 may be constructed

in such a way that if e, , € EndgUg = Ende (N7 @ W), &g © EndgVy
a

= Endg(Xg ®@WS) are the corresponding splitting idempotents of

summands N of Ug and Xg of V. Then w =, e ..
0 a

As in the case for Theorem 12, we have the following corollary for the
second version of the completion functor:
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Corollary 16. If I'(R) and I'(R) are Gabriel quivers of categories R =

rep® and R = rep P, respectively, then T(R)\[T(a), T(@¥)]=T(R)\[T(a")].
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