JP Journal of Algebra, Number Theory and Applications
Volume 26, Number 2, 2012, Pages 173-196
Published Online: October 2012
Available online at http://pphmj.com/journals/jpanta.htm Published by Pushpa Publishing House, Allahabad, INDIA

COMPLETION FOR EQUIPPED POSETS

Agustín Moreno Cañadas and Hernán Giraldo

Department of Mathematics
National University of Colombia
Colombia
e-mail: amorenoca@unal.edu.co
Institute of Mathematics
University of Antioquia
Colombia
e-mail: heragis@matematicas.udea.edu.co

Abstract

A. G. Zavadskij called completion to one of the algorithms of differentiation introduced by him to classify equipped posets of finite growth. In this paper, we describe the categorical properties of such an algorithm.

1. Introduction

This paper is the third part of a series of works written by the first author concerning the investigation of categorical properties of some algorithms of differentiation for equipped posets [3, 4]. Such algorithms are functors whose main goal is to reduce the dimension of the initial category.
© 2012 Pushpa Publishing House
2010 Mathematics Subject Classification: 16G20, 16G60, 16G30.
Keywords and phrases: Auslander-Reiten quiver, categorical equivalence, category, equipped poset, Gabriel quiver, matrix problem, \mathcal{P}-space, poset, quiver, representations of posets.

The first algorithm of differentiation (with respect to maximal point) was introduced by Nazarova and Roiter in 1972 [7]. The categorical properties of such an algorithm were given by Gabriel in 1973 [5]. We note that, the algorithm with respect to a maximal point was used successfully by Kleiner in 1972 to classify ordinary posets of finite representation type [6]. Soon afterwards, Zavadskij defined the algorithm of differentiation with respect to a suitable pair of points. This algorithm allows to Nazarova and Zavadskij in 1982 to give a criterion for the classification of ordinary posets of finite growth [8, 12, 17].

In the 1980's, the main goal of the investigation of the poset representation theory was to classify posets with additional structures. For example, Bondarenko and Zavadskij gave criteria to classify posets with an equivalence relation. Actually, they gave criteria for tame and finite growth representation type for this kind of posets. Such criteria were obtained with the help of the algorithms of differentiation DII-DV introduced previously by Bondarenko and Zavadskij [1, 14].

At the end of the 1990's, Zabarilo and Zavadskij introduced equipped posets and gave criteria to classify equipped posets of one parameter giving a complete description of their indecomposables [11]. The reader is referred to [3, 4, 10] to more precise historical details of the investigation of the algorithms of differentiation.

We recall that the main problem in the theory of the algorithms of differentiation for posets ordinary or with additional structures consists of describing its categorical properties. Such descriptions allow to investigate in more efficient way the Gabriel quiver and the Auslander-Reiten quiver of the corresponding categories. For example, Zavadskij obtained in 1990 the categorical properties of his algorithm of differentiation with respect to a suitable pair of points. Those results allowed him to analyze the structure of the Auslander-Reiten quiver of the category of representations of posets of finite growth representation type [13, 17]. In the same line of work, the first author and Zavadskij in 2006 gave in [2] the categorical properties of the algorithm of differentiation II for posets with involution [2]. More recently,
the first author gave the categorical properties of the algorithm of differentiation VII for equipped posets [3]. However, in order to describe the structure of the Auslander-Reiten quiver for equipped posets of finite growth, it is also necessary to obtain such properties for algorithms VIII, IX and completion introduced by Zavadskij in 2003 (recall that, Zavadskij defined differentiations VII-XVII to classify equipped posets of tame and of finite growth representation type) [15, 16]. For this reason, in this paper, we have chosen the completion to investigate its categorical properties.

This paper is organized as follows: Basic notation and definitions concerning some suitable category of representations of equipped posets are included in Section 2. Actually, since the main definitions, notation and properties of morphisms are given by the first author in [3, 4], in this paper, we only give definitions and notation concerning the completion for equipped posets. Finally, in Section 3, we give the definition of the completion for equipped posets and describe its categorical properties.

2. Preliminaries

In the present section, we introduce equipped posets and categories of representations of this kind of posets.

2.1. The category of representations of equipped posets

In this subsection, we define equipped posets and the category of representations of this kind of posets $[3,4,9,15,16]$.

A poset (\mathcal{P}, \leq) is called equipped if all the order relations between its points $x \leq y$ are separated into strong (denoted $x \unlhd y$) and weak (denoted $x \preceq y$) in such a way that

$$
\begin{equation*}
x \leq y \unlhd z \text { or } x \unlhd y \leq z \text { implies } x \unlhd z \text {, } \tag{1}
\end{equation*}
$$

i.e., a composition of a strong relation with any other relation is strong.

In general, relations \unlhd and \preceq are not order relations. These relations are antisymmetric but not reflexive. In particular, \preceq is not reflexive (meanwhile \unlhd is transitive) [9].

We let $x \leq y$ denote an arbitrary relation in an equipped poset (\mathcal{P}, \leq). The order \leq on an equipped poset \mathcal{P} gives raise to the relations \prec and \triangleleft of strict inequality: $x \prec y$ (respectively, $x \triangleleft y$) in \mathcal{P} if and only if $x \preceq y$ (respectively, $x \unlhd y$) and $x \neq y$.

A point $x \in \mathcal{P}$ is called strong (weak) if $x \unlhd x$ (respectively, $x \preceq x$). These points are denoted \circ (respectively, \otimes) in diagrams. We also denote $\mathcal{P}^{\circ} \subseteq \mathcal{P}$ (respectively, $\mathcal{P}^{\otimes} \subseteq \mathcal{P}$) the subset of strong points (respectively, weak points) of \mathcal{P}. If $\mathcal{P}^{\otimes}=\varnothing$, then the equipment is trivial and the poset \mathcal{P} is ordinary.

Remark 1. Note that if $x \preceq y$ in an equipped poset (\mathcal{P}, \leq) and there exists $t \in \mathcal{P}$ such that $x \leq t \leq y$, then $x, y \in \mathcal{P}^{\otimes}, x \preceq t$ and $t \preceq y$. Otherwise, if $x \unlhd t$ or $t \unlhd y$, then by definition, it is obtained the contradiction $x \unlhd y$.

If \mathcal{P} is an equipped poset and $a \in \mathcal{P}$, then the subsets of \mathcal{P} denoted $a^{\vee}, a_{\wedge}, a^{\nabla}, a_{\Delta}, a^{\vee}, a_{\mathbf{\Lambda}}, a^{\curlyvee}$ and a_{\curlywedge} are defined in such a way that:

$$
\begin{aligned}
& a^{\vee}=\{x \in \mathcal{P} \mid a \leq x\}, \quad a_{\wedge}=\{x \in \mathcal{P} \mid x \leq a\}, \\
& a^{\nabla}=\{x \in \mathcal{P} \mid a \unlhd x\}, \quad a_{\Delta}=\{x \in \mathcal{P} \mid x \unlhd a\}, \\
& a^{\vee}=a^{\vee} \backslash a, \quad a_{\mathbf{\Delta}}=a_{\wedge} \backslash a, \\
& a^{\curlyvee}=\{x \in \mathcal{P} \mid a \preceq x\}, \quad a_{\curlywedge}=\{x \in \mathcal{P} \mid x \preceq a\} .
\end{aligned}
$$

Subset a^{\vee} (respectively, a_{\wedge}) is called the ordinary upper (respectively, lower) cone, associated to the point $a \in \mathcal{P}$ and subset $a^{\nabla}\left(a_{\Delta}\right)$ is called the strong upper (lower) cone associated to the point $a \in \mathcal{P}$, whereas subsets $a^{\boldsymbol{V}}$ and $a_{\mathbf{\Delta}}$ are called truncated cones (respectively, upper and lower) associated to the point $a \in \mathcal{P}$. In general, subsets a^{\curlyvee} and a_{\curlywedge} are not cones. Note that, if $x \in \mathcal{P}^{\circ}$, then $x^{\curlyvee}=x_{\curlywedge}=\varnothing$.

The diagram of an equipped poset (\mathcal{P}, \leq) may be obtained via its Hasse diagram (with strong (\circ) and weak points (\otimes)). In this case, a new line is added to the line connecting two points $x, y \in \mathcal{P}$ with $x \triangleleft y$ if and only if such relation cannot be deduced of any other relations in \mathcal{P}. In Figure 1, we show an example of this kind of diagrams:

$1^{\curlyvee}=\{1,3,4,8\}$	$1^{\nabla}=\{7\}$
$2^{\curlyvee}=\{2,4,7\}$	$2^{\nabla}=\{5,6,8\}$
$3^{\curlyvee}=\{3,7\}$	$3^{\nabla}=\varnothing$
$4^{\curlyvee}=\{4,7,8\}$	$4^{\nabla}=\varnothing$
$5^{\curlyvee}=\varnothing$	$5^{\nabla}=\{5,8\}$
$6^{\curlyvee}=\{6,8\}$	$6^{\nabla}=\varnothing$
$7^{\curlyvee}=\{7\}$	$7^{\nabla}=\varnothing$
$8^{\curlyvee}=\{8\}$	$8^{\nabla}=\varnothing$

Figure 1
For an equipped poset (\mathcal{P}, \leq) and $A \subset \mathcal{P}$, we define the subsets, A^{∇}, A^{\curlyvee} and A^{\vee} in such a way that

$$
A^{\nabla}=\bigcup_{a \in A} a^{\nabla}, \quad A^{\curlyvee}=\bigcup_{a \in A} a^{\curlyvee}, \quad A^{\vee}=\bigcup_{a \in A} a^{\vee} .
$$

Subsets $A_{\Delta}, A_{\curlywedge}$ and A_{\wedge} are defined in the same way.
If \mathcal{P} is an equipped poset, then a chain $C=\left\{c_{i} \in \mathcal{P} \mid 1 \leq i \leq n, c_{i-1}<c_{i}\right.$ if $i \geq 2\} \subseteq \mathcal{P}$ is a weak chain if and only if $c_{i-1} \prec c_{i}$ for each $i \geq 2$. If $c_{1} \prec c_{n}$, then we say that C is a completely weak chain. Moreover, a subset $X \subset \mathcal{P}$ is completely weak if $X=X^{\otimes}$ and weak relations are the only relations between points of X. Often, we let $\left\{c_{1} \prec c_{2} \prec \cdots \prec c_{n}\right\}$ denote a weak chain which consists of points $c_{1}, c_{2}, \ldots, c_{n}$. An ordinary chain C is denoted in the same way (by using the corresponding symbol <).

For an equipped poset \mathcal{P} and $A, B \subset \mathcal{P}$, we write $A<B$ if $a<b$ for each $a \in A$ and $b \in B$. Notation $A \prec B$ and $A \triangleleft B$ are assumed in the same way.

Let $F \subset G$ be an arbitrary quadratic field extension with $G=F(\mathbf{u})$ for some fixed element $\mathbf{u} \in G$. Then each element $x \in G$ can be written uniquely in the form $\alpha+\mathbf{u} \beta$ with $\alpha, \beta \in F$ in this case (analogously to the case $(F, G)=(R, \mathbb{C})) \alpha$ is called the real part of x and β is the corresponding imaginary part of x.

The complexification of a real vector space can be generalized to the case (F, G), where $G=F(\mathbf{u})$ is a quadratic extension of F. In this case, we assume that \mathbf{u} is a root of the minimal polynomial $t^{2}+\mu t+\lambda, \quad \lambda \neq 0$ $(\lambda, \mu \in F)$. In particular, if U_{0} is an F-space, then the corresponding complexification is the G-vector space also denoted $U_{0}^{2}=\tilde{U}_{0}$. As in the case (\mathbb{R}, \mathbb{C}), we write $U_{0}^{2}=U_{0}+\mathbf{u} U_{0}=\tilde{U}_{0}$.

To each G-subspace W of \tilde{U}_{0}, it is possible to associate the following F-subspaces of U_{0},

$$
W^{+}=\operatorname{Re} W=\operatorname{Im} W \text { and } W^{-}=\operatorname{gen}\left\{\alpha \in U_{0} \mid(\alpha, 0)^{t} \in W\right\} \subset W^{+} .
$$

For a G-space W, we let $\tilde{W}^{+}=F(W)$ denote the F-hull of W such that $W \subset F(W)$.

If Y is an F-subspace of U_{0} and $X=\tilde{Y}$, then $X^{+}=X^{-}=Y$. Therefore, Y is an F-form of X.

Remark 2. Any G-subspace W of \tilde{U}_{0} can be written as a direct sum of G-subspaces, $W=\tilde{W}^{-} \oplus H$, where H is a complement of \tilde{W}^{-}in W. Therefore, $H^{+} \simeq W^{+} / W^{-}$.

For each $x \in \mathcal{P}$, we let $\underline{U_{X}}$ denote the radical subspace of U_{x} such that $\underline{U_{X}}=\sum_{z \triangleleft X} F\left(U_{z}\right)+\sum_{z \prec X} U_{z}$.

If the field G is a quadratic extension of a field F, then a representation of an equipped poset over the pair (F, G) is a system of the form

$$
\begin{equation*}
U=\left(U_{0} ; U_{x} \mid x \in \mathcal{P}\right), \tag{2}
\end{equation*}
$$

where U_{0} is a finite dimensional F-space and for each $x \in \mathcal{P}, U_{x}$ is a G-subspace of \tilde{U}_{0} such that

$$
\begin{aligned}
& x \leq y \Rightarrow U_{x} \subset U_{y}, \\
& x \unlhd y \Rightarrow F\left(U_{x}\right) \subset U_{y} .
\end{aligned}
$$

Remark 3. Note that, since $x \unlhd x$ whenever $x \in \mathcal{P}^{\circ}, U_{x} \subset F\left(U_{x}\right)$ $\subset U_{x}$. Therefore, if $x \in \mathcal{P}^{\circ}$, then $F\left(U_{x}\right)=U_{x}$.

We let rep \mathcal{P} denote the category whose objects are the representations of an equipped poset \mathcal{P} over a pair of fields (F, G). In this case, a morphism $\varphi:\left(U_{0} ; U_{x} \mid x \in \mathcal{P}\right) \rightarrow\left(V_{0} ; V_{x} \mid x \in \mathcal{P}\right)$ between two representations U and V is an F-linear map $\varphi: U_{0} \rightarrow V_{0}$ such that

$$
\tilde{\varphi}\left(U_{x}\right) \subset V_{x} \text {, for each } x \in \mathcal{P} \text {, }
$$

where $\tilde{\varphi}: \tilde{U}_{0} \rightarrow \tilde{V}_{0}$ is the complexification of φ, i.e., the application G-linear induced by φ and defined in such a way that if $z=x+\mathbf{u} y \in \tilde{U}_{0}$, then $\tilde{\varphi}(z)=\varphi^{2}(z)=\varphi(x)+\mathbf{u} \varphi(y)$. The composition between morphisms of rep \mathcal{P} is defined in a natural way and the sum $U \oplus V \in \operatorname{rep} \mathcal{P}$ is defined as for ordinary posets. Therefore, rep \mathcal{P} is a Krull-Schmidt category.

If \mathcal{P} is an equipped poset and $U, V \in \operatorname{rep} \mathcal{P}$, then U is a subrepresentation of V if and only if spaces U_{0}, V_{0}, U_{x} and V_{x} satisfy the inclusions $U_{0} \subset V_{0}$ and $U_{x} \subset V_{x}$ for each $x \in \mathcal{P}$.

Two representations $U, V \in \operatorname{rep} \mathcal{P}$ are said to be isomorphic if and only if there exists an F-isomorphism $\varphi: U_{0} \rightarrow V_{0}$ such that $\widetilde{\varphi}\left(U_{x}\right)=V_{x}$, for each $x \in \mathcal{P}$.

The main problem dealing with equipped posets consists of classifying its indecomposable representations up to isomorphisms.

Each equipped poset \mathcal{P} naturally defines a matrix problem of mixed type over the pair (F, G). Consider a rectangular matrix M separated into vertical stripes $M_{X}, \quad x \in \mathcal{P}$, with M_{X} being over F (over G) if the point x is strong (weak):

$$
\begin{gathered}
\begin{array}{c}
x \rightarrow y \\
M= \\
\otimes
\end{array} \begin{array}{|l|l|l|l|}
\hline G & G & F & F \\
\hline
\end{array}
\end{gathered}
$$

such partitioned matrices M are called matrix representations of \mathcal{P} over (F, G). Their admissible transformations are as follows:
(a) F-elementary row transformations of the whole matrix M;
(b) F-elementary (G-elementary) column transformations of a stripe M_{X} if the point x is strong (weak);
(c) In the case of a weak relation $x \prec y$, additions of columns of the stripe M_{x} to the columns of the stripe M_{y} with coefficients in G;
(d) In the case of a strong relation $x \triangleleft y$, independent additions both real and imaginary parts of columns of the stripe M_{X} to real and imaginary parts (in any combinations) of columns of the stripe M_{y} with coefficients in F (assuming that, for y strong, there are no additions to the zero imaginary part of M_{y}).

Two representations are said to be equivalent or isomorphic if they can be turned into each other with help of the admissible transformations. The corresponding matrix problem of mixed type over the pair (F, G) consists of classifying the indecomposable in the natural sense matrices M, up to equivalence.

Remark 4. The matrix problem for representations (a)-(d) occurs naturally in the classification of the objects $U \in \operatorname{rep} \mathcal{P}$ up to isomorphisms. In this case, it is associated to the representation U its matrix presentation $M_{U}=\left(M_{x} ; x \in \mathcal{P}\right)$ defined as follows:

If a point $x \in \mathcal{P}^{0}$ (respectively, \mathcal{P}^{\otimes}), then the columns of the stripe M_{X} consist of coordinates (with respect to a fixed ordered basis \mathcal{B} of U_{0}) of a system of generators \mathcal{G} of U_{x}^{+}(respectively, G-subspace U_{x}) modulo its radical subspace $\underline{U_{X}^{+}}$(respectively, $\underline{U_{X}}$). Problem (a)-(d) may be obtained by changing basis \mathcal{B} and the system of generators \mathcal{G}.

If $X \subset \mathcal{P}, U \in \operatorname{rep} \mathcal{P}$, then the subspaces of U_{0} denoted $U_{X}, U_{X}^{+}, \hat{U}_{X}$ and $\left(\hat{U}_{X}\right)^{-}$are defined in such a way that:

$$
\begin{align*}
& U_{X}=\sum_{x \in X} U_{x}, \quad U_{X}^{+}=\sum_{x \in X} U_{x}^{+}, \\
& \hat{U}_{X}=\bigcap_{x \in X} U_{x}, \quad\left(\hat{U}_{X}\right)^{-}=\bigcap_{x \in X} U_{x}^{-} . \tag{3}
\end{align*}
$$

We also assume that

$$
\begin{equation*}
U_{\varnothing}=0, \quad \hat{U}_{\varnothing}=U_{0} \tag{4}
\end{equation*}
$$

The dimension of a representation $U \in \operatorname{rep} \mathcal{P}$ is a vector d such that $d=$ $\underline{\operatorname{dim}} U=\left(d_{0} ; d_{x} \mid x \in \mathcal{P}\right)$, where $d_{0}=\operatorname{dim}_{F} U_{0}$ and $d_{x}=\operatorname{dim}_{G} U_{x} / \underline{U_{X}}$. A representation $U \in \operatorname{rep} \mathcal{P}$ is sincere if $d_{0} \neq 0$ and $d_{x} \neq 0$ for each $x \in \mathcal{P}$. In other words, the vector d of a sincere representation U has not null coordinates.

2.2. Some indecomposable objects

In this subsection, we give some examples of indecomposable objects in the category rep \mathcal{P}, where \mathcal{P} is an equipped poset.

If \mathcal{P} is an equipped poset and $A \subset \mathcal{P}$, then $P(A)=P(\min A)=$ $\left(F ; P_{x} \mid x \in \mathcal{P}\right), \quad P_{x}=G$ if $x \in A^{\vee}$ and $P_{x}=0$ otherwise. In particular, $P(\varnothing)=(F ; 0, \ldots, 0)$.

If $a, b \in \mathcal{P}^{\otimes}$, then $T(a)$ and $T(a, b)$ denote indecomposable objects with matrix representation of the following form:

$$
T(a)=
$$

If we consider the notation (2) for objects in rep \mathcal{P}, then the object $T(a)$ may be described in such a way that $T(a)=\left(T_{0} ; T_{X} \mid x \in \mathcal{P}\right)$, where $T_{0}=F^{2}$ and

$$
T_{x}= \begin{cases}\tilde{T}_{0}=G^{2}, & \text { if } x \in a^{\nabla}, \\ G\left\{(1, \mathbf{u})^{t}\right\}, & \text { if } x \in a^{\curlyvee}, \\ 0, & \text { otherwise },\end{cases}
$$

where $(1, \mathbf{u})^{t}$ is the column of coordinates with respect to an ordered basis of T_{0}.

On the other hand, representation $T(a, b)$ may be described in such a way that $T(a, b)=\left(T_{0} ; T_{X} \mid x \in \mathcal{P}\right)$, where $T_{0}=F^{2}$ and

$$
T_{x}= \begin{cases}G\left\{(1, \mathbf{u})^{t}\right\}, & \text { if } a \preceq x \prec b, \\ \widetilde{T}_{0}=G^{2}, & \text { if } x \in a^{\nabla} \cup b^{\vee}, \\ 0, & \text { otherwise. }\end{cases}
$$

If $a \in \mathcal{P}^{\otimes}$ and $B \subset \mathcal{P}$ is a subset completely weak such that $a \prec B$, then we let $T(a, B)$ denote the representation of \mathcal{P} which satisfies the following conditions with $T_{0}=F^{2}$:

$$
T_{x}= \begin{cases}G\left\{(1, \mathbf{u})^{t}\right\}, & \text { if } x \in a^{\curlyvee} \backslash B, \\ \tilde{T}_{0}=G^{2}, & \text { if } x \in a^{\nabla}+B^{\vee}, \\ 0, & \text { otherwise. }\end{cases}
$$

In particular, $T(a, \varnothing)=T(a)$.
Remark 5. In [15], it is proved that $P(\varnothing), P\left(c_{i}\right), T\left(c_{i}\right)$ and $T\left(c_{i}, c_{j}\right)$, for $1 \leq i<j \leq n$ are the only indecomposable representations (up to isomorphisms) over the pair (\mathbb{R}, \mathbb{C}) of a completely weak chain $C=$ $\left\{c_{1} \prec \cdots \prec c_{n}\right\}$. In fact, if $U=\left(U_{0} ; U_{c_{i}} \mid 1 \leq i \leq n\right)$ is a representation of C over (\mathbb{R}, \mathbb{C}), then in the corresponding matrix representation each block $U_{c_{i}}, \quad 1 \leq i \leq n$, may be reduced via admissible transformations to the following standard form:

$$
U_{c_{i}}=\begin{array}{|l|l|}
\hline I & \\
\hline & I \\
\hline & \mathbf{i} I \\
\hline & \\
\hline
\end{array}
$$

where the columns consist of generators of $U_{c_{i}}$ modulo its radical subspace $\underline{U_{c_{i}}}=U_{c_{i-1}}$ with respect to a fixed basis of U_{0} (in this case, empty cells indicate null coordinates). This result can be generalized in a natural way to the case (F, G) by using a suitable scalar $\mathbf{u} \in G$ instead of the constant $\mathbf{i} \in \mathbb{C}$ in the matrix presentation of $U_{c_{i}}$ showed above.

If $X \subset U_{0}, \quad Y \subset V_{0}$ are corresponding subspaces of the finite dimensional k-vector spaces U_{0} and V_{0}, then $[X, Y]$ is a subspace of $\operatorname{Hom}_{k}\left(U_{0}, V_{0}\right)$ such that

$$
\varphi \in[X, Y] \text { if and only if } X \subset \operatorname{Ker} \varphi \text { and } \operatorname{Im} \varphi \subset Y .
$$

Note that if $X^{\prime} \subset X$ and $Y \subset Y^{\prime}$, then $[X, Y] \subset\left[X^{\prime}, Y^{\prime}\right]$.

The following results concerning linear maps and morphisms of categories of representations of equipped posets were proved in [2] and [3]. In this case, for a category \mathcal{A}, we let $\left\langle U_{i} \mid i \in I\right\rangle_{\mathcal{A}}$ denote the ideal consisting of all morphisms passed through finite direct sums of the objects U_{i}. That is, if $\varphi: U \rightarrow V \in\left\langle U_{i} \mid i \in I\right\rangle_{\mathcal{A}}$, then there exist morphisms $f, g \in \mathcal{A}$ such that $\varphi=U \xrightarrow{f} \underset{i}{\oplus} U_{i}^{m_{i}} \xrightarrow{g} V$ with $m_{i}=0$ for almost all i.

Lemma 6. If $\varphi \in[X, Y]$ and $\varphi\left(X^{\prime}\right) \subset Y^{\prime}$, then

$$
\varphi \in\left[X+X^{\prime}, Y\right]+\left[X, Y \cap Y^{\prime}\right] .
$$

Lemma 7. Let U and V be two representations of an equipped poset $\mathcal{P}=a^{\nabla}+b_{\Delta}+\{a \prec X \prec c\}$, where $a, c \in \mathcal{P}^{\otimes}, b \in \mathcal{P}^{\circ}$ is a strong point incomparable with a and $c,\{a \prec X \prec c\}$ is a completely weak set containing an arbitrary set X (eventually empty). Then for an F-linear map $\varphi: U_{0} \rightarrow V_{0}$, we have the following equivalences:
(a) $\varphi \in{ }_{U}\langle T(a)\rangle_{V} \Leftrightarrow \varphi \in\left[\left(U_{b}+U_{c}\right)^{-}, V_{a}^{+}\right], \tilde{\varphi}\left(U_{c}\right) \subset V_{a}$,
(b) $\varphi \in{ }_{U}\langle T(a, c)\rangle_{V} \Leftrightarrow \varphi \in\left[\left(U_{b}+U_{a+X}\right)^{-}, V_{a}^{+} \cap V_{c}^{-}\right], \quad \tilde{\varphi}\left(U_{c}\right) \subset \tilde{V}_{a}^{+}$ $\cap \tilde{V}_{c}^{-}, \tilde{\varphi}\left(U_{a+X}\right) \subset V_{a} \cap \tilde{V}_{c}^{-}$,
(c) $\varphi \in{ }_{U}\langle P(a)\rangle_{V} \Leftrightarrow \varphi \in\left[U_{b}^{+}, V_{a}^{-}\right]$.

Corollary 8. Let U and V be representations of an equipped poset $\mathcal{P}=a^{\nabla}+b_{\Delta}+\left\{a \prec c_{1} \prec \cdots \prec c_{n}\right\}$, where $\left\{a \prec c_{1} \prec \cdots \prec c_{n}\right\}$ is a completely weak chain incomparable with the strong point b. Then for an F-linear map, $\varphi: U_{0} \rightarrow V_{0}$, we have the following equivalences if $1 \leq i \leq n\left(U_{c_{0}}=U_{a}\right)$:
(a)

$$
\begin{aligned}
& \varphi \in U_{U}\left\langle T\left(a, c_{i}\right)\right\rangle_{V} \Leftrightarrow \varphi \in\left[\left(U_{b}+U_{c_{i-1}}\right)^{-}, V_{a}^{+} \cap V_{c_{i}}^{-}\right] \\
& \tilde{\varphi}\left(U_{c_{n}}\right) \subset \tilde{V}_{c_{i}}^{-}, \tilde{\varphi}\left(U_{c_{i}}\right) \subset \tilde{V}_{a}^{+} \cap \tilde{V}_{c_{i}}^{-}, \tilde{\varphi}\left(U_{c_{i-1}}\right) \subset V_{a} \cap \tilde{v}_{c_{i}}^{-}
\end{aligned}
$$

(b) $\varphi \in{ }_{U}\langle P(a)\rangle_{V} \Leftrightarrow \varphi \in\left[\left(U_{b}+U_{C_{n}}\right)^{-}, V_{a}^{+}\right], \tilde{\varphi}\left(U_{c_{n}}\right) \subset V_{a}$.

Remark 9. Note that if $\varphi \in\left[\left(U_{b}+U_{c_{i-1}}\right)^{-}, V_{a}^{+} \cap V_{c_{i}}^{-}\right]$in Corollary 8, item (a), then the condition $\tilde{\varphi}\left(U_{c_{n}}\right) \subset \tilde{V}_{a}^{+} \cap \tilde{V}_{c_{i}}^{-}=V_{a} \cap \tilde{V}_{c_{i}}^{-}$, follows if $V_{a}=F\left(V_{a}\right)$. In the same way, the condition $\tilde{\varphi}\left(U_{C_{n}}\right) \subset V_{a}$ in item (b) follows if $V_{a}=F\left(V_{a}\right)$ and $\varphi \in\left[\left(U_{b}+U_{c_{n}}\right)^{-}, V_{a}^{+}\right]$.

Remark 10. If a finite dimensional F-space $U_{0}=\left\{e_{t} \mid t \in J\right\}$ and an F-subspace $K \subset U_{0}$ are such that for a fixed ordered basis subspace K has the form $K=F\left\{e_{t} \mid t \in I \subset J\right\}$, then we let $\alpha=\alpha_{t} K$ denote to a vector $\alpha \in K$ such that $\alpha=\sum_{t \in I} \alpha_{t} e_{t}$. Indices for scalar numbers α_{t} depend of the order given to the basis of the subspace K.

If a G-subspace $H \subset \tilde{U}_{0}$, is such that $H^{-}=0$ and for a fixed ordered basis, we have that $H=G\left\{e_{i_{t}}+\mathbf{u} e_{j_{t}} \mid e_{i_{t}}, e_{j_{t}} \in U_{0}, t \in I, i \in I^{\prime}, j \in I^{\prime \prime}\right\}$, I, I^{\prime} and $I^{\prime \prime}$ suitable sets of indices, then we write:

$$
\begin{aligned}
& H^{1}=F\left\{e_{i_{t}} \mid t \in I, i \in I^{\prime}\right\}, \\
& H^{2}=\left\{e_{j_{t}} \mid t \in I, j \in I^{\prime \prime}\right\} .
\end{aligned}
$$

Therefore, $F(H)=\tilde{H}^{1} \oplus \tilde{H}^{2}$. Thus, if a vector $\alpha \in F(H)$, then $\alpha=\alpha_{i_{t}} \tilde{H}^{1}$ $+\alpha_{j_{t}} \tilde{H}^{2}$, where $\alpha_{i_{t}}, \alpha_{j_{t}} \in G$. In particular, if $\alpha_{i_{t}}=\alpha_{j_{t}}$, for each $t \in I$, then the vector $\beta=\alpha_{i_{t}} \tilde{H}^{1}+\mathbf{u} \alpha_{j_{t}} \tilde{H}^{2} \in H$, may be also written in the forms $\beta=\alpha_{i_{t}} H=\alpha_{i_{t}}\left(\tilde{H}^{1}+\mathbf{u} \tilde{H}^{2}\right)$.

3. The Completion

In this section, we give the categorical properties of the completion for
equipped posets which is a special differentiation introduced by Zavadskij in order to classify equipped posets of finite growth [15, 16].

If \mathcal{P} is an equipped poset, then a pair of comparable weak points (a, b) with $a \prec b$ is special provided \mathcal{P} can be written in the form $\mathcal{P}=a^{\nabla}+b_{\Delta}$ $+\Sigma$, where Σ is the interior completely weak of the interval $[a, b]=$ $\{x \in \mathcal{P} \mid a \leq x \leq b\} \subseteq \mathcal{P}$.

The completion of poset \mathcal{P} with respect to the special pair (a, b) is the transition from \mathcal{P} to an equipped poset $\overline{\mathcal{P}}_{(a, b)}=\overline{\mathcal{P}}$ obtained from \mathcal{P} by strengthening relation $a \prec b$ in \mathcal{P}. In such a case, it is obtained a new strong relation of the form $a \triangleleft b$. Figure 2 shows a diagram for this differentiation.

Figure 2
Note that, if U is a representation of an equipped poset \mathcal{P} (over the pair of fields (F, G)), then the corresponding subspace U_{a} can be written in the form $U_{a}=\tilde{U}_{a}^{-} \oplus R_{a}$ and $R_{a}=M_{a} \oplus N_{a}$, where $U_{a}^{-} \oplus M_{a}^{+}=U_{a}^{+} \cap U_{b}^{-}$.

We let $C^{(a, b)}$ denote the first version of the completion functor defined in such a way that $C^{(a, b)}: \operatorname{rep} \mathcal{P} \rightarrow \operatorname{rep} \overline{\mathcal{P}}$ in this case, each object $U \in \operatorname{rep} \mathcal{P}$ is applied to the object $\bar{U} \in \operatorname{rep} \overline{\mathcal{P}}$ such that

$$
\begin{aligned}
& \bar{U}_{0}=U_{0} \\
& \bar{U}_{b}=U_{b}+\tilde{N}_{a}^{+}=U_{b}+F\left(U_{a}\right)
\end{aligned}
$$

$$
\begin{align*}
& \bar{U}_{x}=U_{x} \text { for remaining points } x \in \overline{\mathcal{P}}, \\
& \bar{\varphi}=\varphi, \text { for a linear map-morphism } \varphi: U_{0} \rightarrow V_{0} . \tag{5}
\end{align*}
$$

For example, $\overline{T(a, b)}=\overline{T(a)}=T(a)$.
The following lemma was proved by Zavadskij in [15].
Lemma 11. Category rep $\overline{\mathcal{P}}_{(a, b)}$ is a full subcategory of the category rep \mathcal{P} which consists of objects without direct summands in the class $[T(a)]$ of the indecomposable $T(a)$, therefore

$$
\text { Ind } \overline{\mathcal{P}}=\operatorname{Ind} \mathcal{P} \backslash[T(a)] .
$$

The following theorem allows to obtain an equivalence between quotient categories of rep \mathcal{P} and rep $\overline{\mathcal{P}}$.

Theorem 12. The completion functor $C^{(a, b)}$ induces the following equivalence between quotient categories

$$
r e p \mathcal{P} /\langle T(a), T(a, b)\rangle \xrightarrow{\sim} r e p \overline{\mathcal{P}} /\langle T(a)\rangle .
$$

Proof. We let R, \bar{R} denote categories rep \mathcal{P} and rep $\overline{\mathcal{P}}$, respectively. In the same way, we let $\Theta=\langle T(a), T(a, b)\rangle_{R}, \bar{\Theta}=\langle T(a)\rangle_{\bar{R}}$ denote the ideals consisting of morphisms of the corresponding categories passing through direct sums of indecomposable $T(a), T(a, b)$ and $T(a)$, respectively. Therefore, for each pair of objects $U, V \in R$, the following inclusions hold, $\Theta(U, V) \subset \bar{\Theta}(\bar{U}, \bar{V}) \subset \bar{R}(\bar{U}, \bar{V}), \quad \Theta(U, V) \subset R(U, V) \subset \bar{R}(\bar{U}, \bar{V})$. Thus, in order to obtain the result, it is enough to prove the following identities:

$$
R(U, V) \cap \bar{\Theta}(\bar{U}, \bar{V})=\Theta(U, V) \text { and } R(U, V)+\bar{\Theta}(\bar{U}, \bar{V})=\bar{R}(U, V)
$$

Note that, Lemma 7 (applied to poset \mathcal{P}) allows to conclude that for each pair of morphisms $f, g \in R(U, V)$ and $h \in \bar{R}(\bar{U}, \bar{V})$, it holds:

$$
\begin{aligned}
& f \in\left[U_{b}^{-}, V_{a}^{+}\right], \quad \tilde{f}\left(U_{b}\right) \subset V_{a} \Leftrightarrow f \in\langle T(a)\rangle_{R}, \\
& g \in\left[\underline{U_{b}^{-}}, V_{a}^{+} \cap V_{b}^{-}\right], \quad \tilde{g}\left(U_{b}\right) \subset \tilde{V}_{a}^{+} \cap \tilde{V}_{b}^{-}, \\
& \tilde{g}\left(U_{a^{\curlyvee} \curlyvee_{b}}\right) \subset V_{a} \cap \tilde{V}_{b}^{-} \Leftrightarrow g \in\langle T(a, b)\rangle_{R}, \\
& h \in\left[\underline{U_{b}^{-}}, V_{a}^{+}\right], \quad \tilde{h}\left(U_{b}\right) \subset \tilde{V}_{a}^{+}, \quad \tilde{h}\left(U_{a}^{\curlyvee}\right) \subset V_{a} \Leftrightarrow h \in\langle T(a)\rangle_{\bar{R}} .
\end{aligned}
$$

On the other hand, if $\varphi \in R(U, V) \cap \bar{\Theta}(\bar{U}, \bar{V})$, then $\tilde{\varphi}\left(U_{x}\right) \subset V_{x}$ if $x \in \mathcal{P}$, in particular $\varphi\left(U_{b}^{-}\right) \subset V_{a}^{+} \cap V_{b}^{-}$. If we apply Lemma 6 to morphism φ, then $\varphi \in\left[\underline{U_{b}^{-}}, V_{a}^{+} \cap V_{b}^{-}\right]+\left[\underline{U_{b}^{-}}+U_{b}^{-}, V_{a}^{+}\right]$. Since $\left[\underline{U_{b}^{-}}+U_{b}^{-}, V_{a}^{+}\right]=$ $\left[U_{b}^{-}, V_{a}^{+}\right], \varphi \in\left[\underline{U_{b}^{-}}, V_{a}^{+} \cap V_{b}^{-}\right]+\left[U_{b}^{-}, V_{a}^{+}\right]$. Therefore, $\varphi \in \Theta(U, V)$. Because, it is possible to write φ in the form $\varphi=\varphi_{1}+\varphi_{2}$, with $\varphi_{1}, \varphi_{2} \in \Theta(U, V)$.

If $\psi \in \bar{R}(\bar{U}, \bar{V})$, then $\widetilde{\psi}\left(U_{x}\right) \subset V_{x}$ for all $x \in \mathcal{P} \backslash b$ and $\widetilde{\psi}\left(U_{b}\right) \subset V_{b}$ $+\tilde{N}_{a}^{+}$. Furthermore, $\tilde{\psi}\left(U_{b} \cap \underline{\tilde{U}_{b}^{-}}\right) \subset \tilde{\psi}\left(\underline{\tilde{U}_{b}^{-}}\right) \subset \underline{\tilde{V}_{b}^{-}} \subset V_{b}$. Since the inclusion $\tilde{\psi}\left(U_{x}\right) \subset V_{x}$ for $x \in b_{\curlywedge} \cap \mathcal{P}^{\otimes}$ does not hold in general, $\psi \in R(U, V)$ is not always true.

The following notation and definitions are necessary to define a morphism $w \in \bar{\Theta}(\bar{U}, \bar{V})$ such that $\psi-w \in R$.

For each $x \in b_{\curlywedge} \cap \mathcal{P}^{\otimes}$, it holds $U_{x}=U_{X} \oplus D_{X}$, where D_{X} is a complementary of $\underline{U_{X}}$ in U_{x}. Furthermore, $D_{x}=\tilde{L}_{x}^{-} \oplus H_{X}, \quad H_{X}=M_{x}$ $\oplus N_{x}$, with $M_{x}=\sum_{y \in x^{\curlyvee}} M_{x y} \subset \tilde{U}_{b}^{-}$. Subspaces $M_{x y} \subset M_{x}$ are such that $M_{x y}=H_{x} \cap \tilde{U}_{y}^{-}$, for some $y \in x^{\curlyvee}$. Moreover, if $Z_{x y}=\left\{z \in x^{\curlyvee} \mid M_{x y} \subset \tilde{U}_{z}^{-}\right\}$, then $y \in \min Z_{x y}$. Actually, $U_{b}^{-} \cap U_{x}^{+}=U_{x}^{-} \oplus M_{x}^{+}$.

If $U_{b}=\tilde{U}_{b}^{-} \oplus T_{b}$, then for each $x \in b_{\curlywedge}$, we have $N_{x} \subset T_{b}=$ $\sum_{x \in b_{\mathbf{\Delta}} \cap \mathcal{P}^{\otimes}} N_{x} \oplus N_{b}$ and $N_{x}^{+} \cap \underline{U_{b}^{-}}=0$.

$$
U_{x}^{-}=\left(U_{x}^{-} \cap U_{b_{\Delta}}^{+}+\sum_{y \in x_{\curlywedge} \backslash x} U_{y}^{-}+Z_{x}\right) \oplus Y_{x}
$$

where a vector $\alpha \in Z_{x}$ if $\alpha \in M_{y x}^{+}$, for some $y \in x_{\curlywedge} \backslash x$ and Y_{x} is a complementary in U_{x}^{-}. Therefore, U_{b}^{-}may be written in the form; $U_{b}^{-}=\left(\underline{U_{b}^{-}}+Z_{b}\right) \oplus Y_{b}$, with $Z_{b}=Z_{b} \cap \underline{U_{b}^{-}} \oplus Z_{b_{*}}$. Same notation, we use in representation V, by replacing for each $x \in \mathcal{P}^{\otimes}$, the symbol H_{x} instead of G_{X}. Also, by replacing notation $M^{\prime}, N^{\prime}, T^{\prime}, Y^{\prime}, Z^{\prime}$ instead of M, N, T, Y, Z, respectively.

We write $V_{b}=V_{a} \oplus L_{b_{*}}$, with $V_{b}^{+}=V_{a}^{+}+L_{b_{*}}^{+}$. In fact, we suppose $L_{b_{*}}=\tilde{L}_{b_{*}^{a}}^{-} \oplus \tilde{L}_{b_{*}^{0}}^{-} \oplus G_{b_{*}}, \tilde{L}_{b_{*}}^{-}=\tilde{L}_{b_{*}^{a}}^{-} \oplus \tilde{L}_{b_{*}^{0}}^{-}, L_{b_{*}^{a}}^{+}=V_{a}^{+} \cap L_{b_{*}}^{+}$, further $L_{b_{*}^{0}}^{+} \cap$ $V_{a}^{+}=G_{b_{*}}^{+} \cap V_{a}^{+}=0$. Therefore, $V_{b}^{+}=N_{a}^{\prime+} \oplus G_{b_{*}}^{\prime+}$, with $G_{b_{*}}^{\prime+}=V_{a}^{-} \oplus M_{a}^{\prime+}$ $\oplus L_{b_{*}^{0}} \oplus G_{b_{*}}^{+}$.

We consider $V_{0}=V_{b}^{+} \oplus X_{0}$ and subspace $W_{0}^{\prime}=L_{b_{*}}^{+} \oplus X_{0}$, for a complementary X_{0}, in such a way that the pair of subspaces, $\left(N_{a}^{\prime+}, W_{0}^{\prime}\right)$ is a $\left(V_{a}^{+}, L_{b_{*}}^{+}\right)$-cleaving in V_{0}. Furthermore, since $T_{b}^{+}=N_{b_{\mathbf{\Delta}}}^{+} \oplus N_{b}^{+}, \quad N_{b_{\mathbf{\Delta}}}^{+}$ $\bigcap M_{x}^{+}=0$, for all $x \in b_{\mathbf{\Delta}}$. If $U_{0}=U_{b}^{+} \oplus X_{0}$, with X_{0} a complementary, $U_{b}^{+}=U_{b_{\mathbf{\Delta}}}^{+} \oplus Y_{b} \oplus N_{b}^{+}$and $U_{b_{\mathbf{\Delta}}}^{+}=Z_{b_{*}} \oplus X_{b}, \quad X_{b}$ a complementary. Thus, $U_{b}^{+}=Z_{b_{*}} \oplus X_{b} \oplus Y_{b} \oplus N_{b}^{+}$and $U_{0}=Z_{b_{*}} \oplus X_{b} \oplus Y_{b} \oplus N_{b}^{+} \oplus X_{0}$.

If $X_{1}=Z_{b_{*}}, \quad X_{2}=Y_{b}, \quad X_{3}=N_{b}^{+}$and $e_{s} \in X_{i}$ is a basic vector for some $i \in\{1,2,3\}$, then by using adequate notation for linear combinations in subspaces $N_{a}^{\prime}, G_{b_{*}}^{\prime}$ (see Remark 10), we write

$$
\psi\left(e_{s}\right)=\alpha_{a_{n}} N_{a}^{\prime+}+\alpha_{g_{m}} G_{b_{*}}^{\prime+} .
$$

If the basic vectors $e_{i}, e_{j} \in T_{b}^{+}, \alpha=e_{i}+\mathbf{u} e_{j} \in N_{b}$ and

$$
\begin{aligned}
& \psi\left(e_{i}\right)=\alpha_{a_{n}} N_{a}^{\prime+}+\alpha_{g_{m}} G_{b_{*}}^{\prime+}, \\
& \psi\left(e_{j}\right)=\alpha_{a_{n}}^{\prime} N_{a}^{\prime+}+\alpha_{g_{m}}^{\prime} G_{b_{*}}^{\prime+}
\end{aligned}
$$

then $\left(\alpha_{g_{m}}+\mathbf{u} \alpha_{g_{m}}^{\prime}\right) \tilde{G}_{b_{*}}^{\prime+} \in V_{b}$. On the other hand, if $\alpha \in M_{\chi} \cap \tilde{U}_{b}^{-}$, for some $x \in b_{\curlywedge}$, then $\left(\alpha_{g_{m}}+\mathbf{u} \alpha_{g_{m}}^{\prime}\right) \tilde{G}_{b_{*}}^{\prime+} \in \tilde{V}_{b}^{-}$.

If $w_{t}: U_{0} \rightarrow V_{0}$ is the F-linear map such that $w_{t}\left(e_{s}\right)=\alpha_{a_{n}} N_{a}^{\prime+}$, if $e_{s} \in X_{t}, w_{t}=0$ otherwise for each $t \in\{1,2,3\}$ and we write $w=w_{1}+w_{2}$ $+w_{3}$, then $w \in\left[\underline{U_{b}^{-}}, V_{a}^{+}\right]$. In fact, $w \in\langle T(a)\rangle_{\bar{R}}$.

Furthermore,

$$
\begin{aligned}
& (\tilde{\psi}-\tilde{w})\left(\tilde{U}_{b}^{-}\right) \subset \tilde{V}_{b}^{-}, \\
& (\tilde{\psi}-\tilde{w})\left(U_{x} \cap \tilde{X}_{b}\right)=\tilde{\psi}\left(U_{x} \cap \tilde{X}_{b}\right) \subset \tilde{\psi}\left(U_{x}\right) \subset V_{x}, \text { if } x \in b_{\mathbf{\Delta}} \cap b_{\curlywedge},
\end{aligned}
$$

in this case, if $\alpha=e_{i}+\mathbf{u} e_{j} \in M_{x b}$, with $e_{i}, e_{j} \in X_{1}$, then $(\tilde{\psi}-\tilde{w})(\alpha)=$ $\left(\alpha_{g_{m}}+\mathbf{u} \alpha_{g_{m}}^{\prime}\right) \tilde{G}_{b_{*}}^{\prime+} \in \tilde{V}_{b}^{-} \cap V_{x} \subset V_{x}$. Therefore, $(\tilde{\psi}-\tilde{w})\left(U_{x}\right) \subset V_{x}$.

If $x \in a^{\nabla}$, then we have $(\tilde{\psi}-\tilde{w})\left(U_{x}\right) \subset V_{x}+F\left(V_{a}\right) \subset V_{x}$. If $x \in b_{\Delta}$, then $(\tilde{\psi}-\tilde{w})\left(U_{x}\right)=\tilde{\psi}\left(U_{x}\right) \subset V_{x}$.

If $e_{i}, e_{j} \in X_{3}$ and $\alpha=e_{i}+\mathbf{u} e_{j} \in N_{b}$, then $(\tilde{\psi}-\tilde{w})(\alpha)=\left(\alpha_{g_{m}}+\right.$ $\left.\mathbf{u} \alpha_{g_{m}}^{\prime}\right) \tilde{G}_{b_{*}}^{\prime+} \in V_{b}$. Thus, $(\tilde{\psi}-\tilde{w})\left(U_{b}\right) \subset V_{b}$ and $\psi-w \in R(U, V)$.

Since morphism $w \in \bar{\Theta}(\bar{U}, \bar{V})$, we conclude $\psi \in R(U, V)+\bar{\Theta}(\bar{U}, \bar{V})$ and with this fact, we are done.

Corollary 13. If $\Gamma(R)$ and $\Gamma(\bar{R})$ are Gabriel quivers of categories $R=$ rep \mathcal{P} and $\bar{R}=\operatorname{rep} \overline{\mathcal{P}}$, respectively, then $\Gamma(R) \backslash[T(a), T(a, b)] \simeq \Gamma(\bar{R}) \backslash[T(a)]$.

The second version of the completion functor $C_{(a, b)}$ for an equipped poset with a special pair of points (a, b) is defined in the following form:
$C_{(a, b)}: \operatorname{rep} \mathcal{P} \rightarrow \operatorname{rep} \overline{\mathcal{P}}$ assigns to each object $U \in \operatorname{rep} \mathcal{P}$, the object $\bar{U} \in \operatorname{rep} \overline{\mathcal{P}}$ such that

$$
\begin{align*}
& \bar{U}_{0}=U_{0}, \\
& \bar{U}_{a}=\tilde{U}_{b}^{-} \cap U_{a}=\tilde{U}_{a}^{-} \oplus M_{a}, \\
& \bar{U}_{x}=U_{x} \text { for remaining points } x \in \operatorname{rep} \overline{\mathcal{P}}, \\
& \bar{\varphi}=\varphi, \text { for a linear map-morphism } \varphi: U_{0} \rightarrow V_{0} . \tag{6}
\end{align*}
$$

For example, $\overline{T(a)}=\overline{T\left(a^{\mathbf{\nabla}}\right)}=T\left(a^{\mathbf{\nabla}}\right)$, where $T\left(a^{\mathbf{\nabla}}\right)$ is the representation of \mathcal{P} (over $(F, G))$ such that:

$$
T\left(a^{\mathbf{\nabla}}\right)=\left(T_{0}, T_{X} \mid x \in \mathcal{P}\right), T_{0}=F^{2}, T_{X}=G\left\{(1, \mathbf{u})^{t}\right\}
$$

if $x \in a^{\curlyvee} \backslash a$ and (1, u) $)^{t}$ is a vector of coordinates with respect to an ordered fixed basis of $T_{0}, T_{X}=\widetilde{T}_{0}=G^{2}$, if $x \in a^{\nabla}, T_{X}=0$ otherwise.

Lemma 11 and the following theorem allow us to obtain a relationship between categories rep \mathcal{P} and rep $\overline{\mathcal{P}}$ via the functor $C_{(a, b)}$:

Theorem 14. The functor $C_{(a, b)}$ induces the following equivalence between quotient categories:

$$
\operatorname{rep} \mathcal{P} /\left\langle T(a), T\left(a^{\mathbf{\nabla}}\right)\right\rangle \xrightarrow{\sim} \operatorname{rep} \overline{\mathcal{P}} /\left\langle T\left(a^{\mathbf{\nabla}}\right)\right\rangle .
$$

Proof. Let $R=\operatorname{rep} \mathcal{P}, \quad \bar{R}=\operatorname{rep} \overline{\mathcal{P}}, \quad \Delta=\left\langle T(a), T\left(a^{\nabla}\right)\right\rangle_{R} \quad$ and $\quad \bar{\Delta}=$ $\left\langle T\left(a^{\mathbf{V}}\right)\right\rangle_{\bar{R}}$. Thus, for each pair of objects $U, V \in \operatorname{rep} \mathcal{P}$, the following inclusions hold, $\quad \Delta(U, V) \subset \bar{\Delta}(\bar{U}, \bar{V}) \subset \bar{R}(\bar{U}, \bar{V}), \quad \Delta(U, V) \subset R(U, V) \subset$ $\bar{R}(\bar{U}, \bar{V})$. Therefore, it is enough to prove:

$$
R(U, V) \cap \bar{\Delta}(\bar{U}, \bar{V})=\Delta(U, V) \text { and } R(U, V)+\bar{\Delta}(\bar{U}, \bar{V})=\bar{R}(U, V) .
$$

Lemma 7 allows to conclude the following identities for linear maps $f, g \in R(U, V), h \in \bar{R}(\bar{U}, \bar{V})$ and $D_{V_{a}}^{+}=\left(\bigcap_{x \in a^{\curlyvee} \backslash a} V_{x}^{+}\right) \cap\left(\bigcap_{y \in a^{\nabla}} V_{y}^{-}\right)$:

$$
\begin{aligned}
& f \in\langle T(a)\rangle_{R} \Leftrightarrow f \in\left[U_{b}^{-}, V_{a}^{+}\right], \quad \tilde{f}\left(U_{b}\right) \subset V_{a}, \\
& g \in\left\langle T\left(a a^{\mathbf{\nabla}}\right)\right\rangle_{R} \Leftrightarrow g \in\left[U_{a}^{+}+U_{b}^{-}, D_{V_{a}}^{+}\right], \tilde{g}\left(U_{b}\right) \subset \bigcap_{x \in a^{\curlyvee} \backslash a} V_{x}, \\
& h \in\left\langle T\left(a^{\mathbf{v}}\right)\right\rangle_{\bar{R}} \Leftrightarrow h \in\left[U_{b}^{-}, D_{V_{a}}^{+}\right], \tilde{h}\left(U_{b}\right) \subset \bigcap_{x \in a^{\curlyvee} \backslash a} V_{x} .
\end{aligned}
$$

If $\varphi \in R(U, V) \cap \bar{\Delta}(\bar{U}, \bar{V})$, then $\tilde{\varphi}\left(U_{x}\right) \subset V_{x}$ if $x \in \mathcal{P}$. In particular, $\varphi\left(U_{a}^{+}\right) \subset V_{a}^{+}$.

Lemma 6 allows us to write $\varphi \in\left[U_{b}^{-}+U_{a}^{+}, D_{V_{a}}^{+}\right]+\left[U_{b}^{-}, D_{V_{a}}^{+} \cap V_{a}^{+}\right]$. Since $\left[U_{b}^{-}, D_{V_{a}}^{+} \cap V_{a}^{+}\right]=\left[U_{b}^{-}, V_{a}^{+}\right], \varphi \in\left[U_{b}^{-}, V_{a}^{+}\right]+\left[U_{b}^{-}+U_{a}^{+}, D_{V_{a}}^{+}\right]$. Since there exist morphisms $\varphi_{1}, \varphi_{2} \in \Delta(U, V)$ such that $\varphi=\varphi_{1}+\varphi_{2}$, we conclude $\varphi \in \Delta(U, V)$.

If $\psi \in \bar{R}(\bar{U}, \bar{V})$, then $\tilde{\psi}\left(U_{x}\right) \subset V_{x}$, for all $x \in \mathcal{P} \backslash a$. Furthermore, $\tilde{\psi}\left(\tilde{U}_{b}^{-} \cap U_{a}\right) \subset \tilde{V}_{b}^{-} \cap V_{a} \subset V_{a}$, since in general, $\tilde{\psi}\left(U_{a}\right) \not \subset V_{a}$ not necessarily $\psi \in R(U, V)$.

For each $x \in a^{\curlyvee}$, we can write $U_{x}=\underline{U_{x}} \oplus K_{x}, \quad K_{x}=\tilde{K}_{x}^{-} \oplus H_{x}$, $H_{x}=M_{x} \oplus N_{x}, \quad$ where $\alpha \in M_{x}$ if $\alpha \in \tilde{U}_{b}^{-}, \quad U_{b}^{-} \cap U_{x}^{+}=U_{x}^{-} \oplus M_{x}^{+}$, $N_{x}^{+} \cap U_{b_{\Delta}}^{+}=0$.
$U_{x}^{-}=\underline{U_{x}^{-}} \oplus P_{x}$ with $P_{x}=Y_{x} \oplus Z_{x}$ and $\alpha \in Z_{x}$ if $\alpha \in M_{y}^{+} \cap U_{x}^{-}$, for some $y \in x_{\curlywedge} \backslash x$, we write $U_{0}=U_{a}^{+}+U_{b}^{-} \oplus Y_{0}$ and $W_{0}=U_{b}^{-} \oplus Y_{0}$.

For the representation V, we have $\left(\bigcap_{x \in a^{\curlyvee} \backslash a} V_{x}\right) \cap\left(\bigcap_{y \in a^{\nabla}} \tilde{V}_{y}^{-}\right)=$ $V_{a} \oplus X_{1}, \quad V_{a}=\tilde{V}_{a}^{-} \oplus M_{a} \oplus N_{a}, \quad X_{1}=\tilde{X}_{a}^{-} \oplus \tilde{X}_{0}^{-} \oplus G_{x_{0}}$. With $\tilde{X}_{1}^{-}=\tilde{X}_{a}^{-}$ $\oplus \tilde{X}_{0}^{-}, X_{a}^{+} \subset X_{1}^{+} \cap V_{a}^{+}, X_{0}^{+} \cap V_{a}^{+}=G_{x_{0}}^{+} \cap V_{a}^{+}=0$ and $X_{0}=\tilde{X}_{0}^{-} \oplus G_{x_{0}}$, $V_{0}=\left(X_{1}^{+}+V_{a}^{+}\right) \oplus Y_{0}^{\prime}$ and $W_{0}^{\prime}=V_{a}^{+} \oplus Y_{0}^{\prime}, \quad Y_{0}$ and Y_{0}^{\prime} are corresponding complementary subspaces in U_{0} and V_{0}.

Let $\left(N_{a}^{+}, W_{0}\right)$ be a $\left(U_{a}^{+}, U_{b}^{-}\right)$-cleaving in U_{0} and $\left(X_{0}^{+}, W_{0}^{\prime}\right)$ be the $\left(X_{1}^{+}, V_{a}^{+}\right)$-cleaving in V_{0}.

If $e_{s} \in N_{a}^{+}$is a basic vector, then by definition

$$
\psi\left(e_{s}\right)=\alpha_{l_{i}^{a}} V_{a}^{+}+\alpha_{q_{j}^{b}} X_{0}^{+}
$$

If e_{i}, e_{j} are basic vectors of N_{a}^{+}, with $\alpha=e_{i}+\mathbf{u} e_{j} \in N_{a}$ and

$$
\psi\left(e_{i}\right)=\alpha_{l_{i}^{a}} V_{a}^{+}+\alpha_{q_{j}^{b}} X_{0}^{+}, \quad \psi\left(e_{j}\right)=\alpha_{1_{i}^{a}}^{\prime} V_{a}^{+}+\alpha_{q_{j}^{b}}^{\prime} X_{0}^{+}
$$

then

$$
\tilde{\psi}(\alpha)=\left(\alpha_{1_{i}^{a}}+\mathbf{u} \alpha_{l_{i}^{a}}^{\prime}\right) V_{a}+\left(\alpha_{q_{j}^{b}}+\mathbf{u} \alpha_{q_{j}^{b}}^{\prime}\right) X_{0} \in V_{a} \oplus X_{0} .
$$

Therefore, if $w: U_{0} \rightarrow V_{0}$ is the F-linear map such that $w\left(W_{0}\right)=0$ and for $e_{s} \in N_{a}^{+}, w\left(e_{s}\right)=\alpha_{q_{j}^{b}} X_{0}^{+}$, according with the notation for the image under ψ of $N(a)$. Thus, $w \in\left[U_{b}^{-}, D_{V_{a}}^{+}\right]$because $X_{1}^{+}+V_{a}^{+} \subset D_{V_{a}}^{+}$. In fact, $w \in$ $\left\langle T\left(a^{\mathbf{\Delta}}\right)\right\rangle_{\bar{R}}$.

It holds that if $\alpha=e_{i}+\mathbf{u} e_{j} \in N_{a}$, then $(\tilde{\psi}-\tilde{w})(\alpha)=\left(\alpha_{l_{i}^{a}}+\mathbf{u} \alpha_{l_{i}^{a}}^{\prime}\right) V_{a}$ $\in V_{a}$.

If $x \in a^{\nabla}$, then $(\tilde{\psi}-\tilde{w})\left(U_{x}\right) \subset \tilde{D}_{V_{a}}^{+}+V_{x} \subset V_{x}$, in case $x \in b_{\Delta}$, we have $(\tilde{\psi}-\tilde{w})\left(U_{x}\right)=\tilde{\psi}\left(U_{x}\right) \subset V_{x}$, by definition $(\tilde{\psi}-\tilde{w})\left(\tilde{U}_{b}^{-} \cap U_{a}\right) \subset \tilde{V}_{b}^{-}$ $\cap V_{a} \subset V_{a}$.

If $x \in\left(a^{\curlyvee} \backslash a\right)$, then we can write U_{x} in the form $U_{x}=U_{a} \oplus U_{X_{*}}$, $\operatorname{con} U_{x_{*}}^{+} \cap N_{a}^{+}=0$, thus $(\tilde{\psi}-\tilde{w})\left(U_{x}\right) \subset V_{a}+V_{x} \subset V_{x}$, because $\tilde{w}\left(U_{X_{*}}\right)=0$, since $U_{X_{*}}$ is a complementary of U_{a} in U_{x}. Since $\varphi=\psi-w \in R(U, V)$, we conclude $\psi=\varphi+w \in R(U, V)+\bar{\Delta}(\bar{U}, \bar{V})$ and with this fact, we are done.

Remark 15. Morphism w in the proof of Theorem 14 may be constructed in such a way that if $e_{N_{a}^{+}} \in \operatorname{End}_{F} U_{0}=\operatorname{End}_{F}\left(N_{a}^{+} \oplus W_{0}\right), e_{X_{0}^{+}} \in \operatorname{End}_{F} V_{0}$ $=\operatorname{End}_{F}\left(X_{0}^{+} \oplus W_{0}^{\prime}\right)$ are the corresponding splitting idempotents of summands N_{a}^{+}of U_{0} and X_{0}^{+}of V_{0}. Then $w=e_{X_{0}^{+}} \psi e_{N_{a}^{+}}$.

As in the case for Theorem 12, we have the following corollary for the second version of the completion functor:

Corollary 16. If $\Gamma(R)$ and $\Gamma(\bar{R})$ are Gabriel quivers of categories $R=$ rep \mathcal{P} and $\bar{R}=$ rep $\overline{\mathcal{P}}$, respectively, then $\left.\Gamma(R) \backslash T(a), T\left(a^{\mathbf{\nabla}}\right)\right] \simeq \Gamma(\bar{R}) \backslash\left[T\left(a^{\mathbf{\nabla}}\right)\right]$.

References

[1] V. M. Bondarenko and A. G. Zavadskij, Posets with an equivalence relation of tame type and of finite growth, Can. Math. Soc. Conf. Proc 11 (1991), 67-88.
[2] A. M. Cañadas and A. G. Zavadskij, Categorical description of some differentiation algorithms, J. Algebra Appl. 5(5) (2006), 629-652.
[3] A. M. Cañadas, Morphisms in categories of representations of equipped posets, JP Journal of Algebra, Number Theory and Applications 25(2) (2012), 145-176.
[4] A. M. Cañadas, Categorical properties of the algorithm of differentiation VII for equipped posets, JP Journal of Algebra, Number Theory and Applications 25(2) (2012), 177-213.
[5] P. Gabriel, Représentations indécomposables des ensemblés ordonnés, Semin. P. Dubreil, 26 annee 1972/73, Algebre, Expose 13 (1973), 301-304.
[6] M. M. Kleiner, Partially ordered sets of finite type, Zap. Nauchn. Semin. LOMI 28 (1972), 32-41 (in Russian); English transl., J. Sov. Math. 3(5) (1975), 607-615.
[7] L. A. Nazarova and A. V. Roiter, Representations of partially ordered sets, Zap. Nauchn. Semin. LOMI 28 (1972), 5-31 (in Russian); English transl., J. Sov. Math. 3 (1975), 585-606.
[8] L. A. Nazarova and A. G. Zavadskij, Partially ordered sets of finite growth, Function. Anal. i Prilozhen. 19(2) (1982), 72-73 (in Russian); English transl., Funct. Anal. Appl. 16 (1982), 135-137.
[9] C. Rodríguez Beltrán and A. G. Zavadskij, On corepresentations of equipped posets and their differentiation, Rev. Colombiana Mat. 41 (2007), 117-142.
[10] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Gordon and Breach, London, 1992.
[11] A. V. Zabarilo and A. G. Zavadskij, One-parameter equipped posets and their representations, Functional. Anal. i Prilozhen 34(2) (2000), 72-75 (in Russian); English transl., Funct. Anal. Appl. 34(2) (2000), 138-140.
[12] A. G. Zavadskij, Differentiation with respect to a pair of points, Matrix Problems, Collect. Sci. Works. Kiev (1977), 115-121 (in Russian).
[13] A. G. Zavadskij, The Auslander-Reiten quiver for posets of finite growth, Topics in Algebra, Banach Center Publ. 26(1) (1990), 569-587.
[14] A. G. Zavadskij, An algorithm for posets with an equivalence relation, CMS Conf. Proc., 11, Amer. Math. Soc., Providence, RI, 1991, pp. 299-322.
[15] A. G. Zavadskij, Tame equipped posets, Linear Algebra Appl. 365 (2003), 389-465.
[16] A. G. Zavadskij, Equipped posets of finite growth, Representations of Algebras and Related Topics, AMS, Fields Inst. Comm. Ser. 45, 2005.
[17] A. G. Zavadskij, On two point differentiation and its generalization, Algebraic Structures and their Representations, AMS, Contemporary Math. Ser. 376, 2005.

