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Abstract 

In this paper, we present near-ring group structure of quotients of a 
near-ring group and It is seen that near-ring of quotients may appear as 
a particular case in some cases. We also try to explore how inheritance 
of so-called Goldie character plays an important role in the existence 
of such structures. 

1. Introduction 

Here we discuss some characteristics of near-ring group of quotients of a 
near-ring group with so-called unusual near-ring module structure as referred 
by Grainger [5]. Here we give some insight to some Goldie characters of 
such a structure leading to the existence of such quotients as well as some 
sort of inheritances of Goldie properties. 
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We begin with the formal definition of such an unusual module structure. 
Suppose ( )+,G  is a group and ( )⋅+,,K  is a right near-ring. 

A complementary representation of K on G is a semigroup 
homomorphism ( ) ( )( ).,End,: DGK →⋅θ  

Suppose that ( )⋅+,,K  is a right near-ring. Then an unusual near-ring K 

module is a pair ( )( ),,, ∗+G  where ( )+,G  is a group and GKG →×∗ :  

is a function which satisfies: 

 (i) ( ) ( ) baxbax ∗∗=⋅∗  for all Gx ∈  and Kba ∈,  and 

(ii) ( ) ayaxayx ∗+∗=∗+  for all Gyx ∈,  and .Ka ∈  

Suppose ( )( )∗+ ,,G  is an unusual near-ring K-module. Then a function 

( ),End: GK →θ  

θ→ aa  

given by 

,: GGa →θ  

( ) axaxx ∗=θ→  

is a semigroup homomorphism. Thus, ’‘∗  induces the complimentary 

representation. 

Conversely, if ( )GK End: →θ  is a complimentary representation, then 

define a right scalar multiplication 

GKG →×∗ :  by ( )θ=∗ axax  for all Ka ∈  and .Gx ∈  

Thus, θ induces a right scalar multiplication that makes G an unusual near-
ring K module. We consider such an unusual near-ring module structure and 
call it a right near-ring group of a right near-ring. (In contrast, we usually 
deal with the left near-ring group structure of a right near-ring.) 
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And as such the definition of an unusual near-ring group structure of an 
additive group (not necessarily abelian) over a right near-ring with identity 1 
is as follows. 

Let ( )+,E  be a group and N be a near-ring with a map 

( ) xqqxENE →→×μ ,,:  

such that for all Eyx ∈,  and ,, Nrq ∈  we have 

( ) ,yqxqqyx +=+  

( ) ( ) ,rxqqrx =  

00 =x  

and ,1 xx =  

where zero in the left is the zero of N and the zero in the right is the zero in 
E. Then ( )μ+= ,,EEN  is called the near-ring group. 

A subset A of a near-ring group NE  is a sub-near-ring group of ,NE  if 

Axnyx ∈− ,  for all .,, NnAyx ∈∈  

The notion immediately leads us to the following. 

If E and F are two such unusual near-ring N-groups, then a mapping 
FEf →:  is an N-homomorphism if: 

 (i) f is a group homomorphism 

(ii) ( ) ( ) ,nefenf =  for Ee ∈  and Nn ∈  

in a usual way the notion of kernel of f follows. 

The notion of an N-map follows when the condition (i) is absent. 

In what follows, it contains the notion of essential as well as rational 
extensions together with some relevant results. 

An N-subgroup ( )0≠A  of E ( ( )+,i.e., A  is a subgroup of ( ),, +E  with 

)AAN ⊆  is an essential N-subgroup of E or E is an essential extension of 
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A, if for every N-subgroup ( )0≠X  of E, we have 0≠XA ∩  and is denoted 

by .EA e⊆  

An N-subgroup D of E is a dense (or rational) N-subgroup of E or E is a 
rational extension of D, written ED r⊆  if given Evu ∈,  with 0≠u  

there exists Nt ∈  such that Dvt ∈  and .0≠ut  

An N-subset D of L where N is a sub-near-ring of the near-ring L is 
LD r⊆  if and only if given Llk ∈,  with 0≠l  there exists Nx ∈  such 

that Dkx ∈  and .0≠lx  

An N-subgroup D of F where F is a near-ring group over L (where N is a 
sub-near-ring of near-ring L) is FD r⊆  if and only if given Lqp ∈,  with 

0≠q  there exists Dx ∈  such that Dpx ∈  and .0≠qx  

If ,EFD ⊆⊆  where E is a near-ring group, F is a sub-near-ring group 
and D is a normal sub-near-ring group of F such that ,ED r⊆  then zero 

homomorphism is the only homomorphism from DF  to E (i.e.,  

( ) ( )).0,Hom =EDF  Clearly, a rational extension is an essential 

extension. Moreover, if ,EGD ⊆⊆  where E is a near-ring group, G, an  
N-subgroup of E and D an N-subset of G, then ED r⊆  implies 

.EGD rr ⊆⊆  

In this paper, we mainly present: 

  (i) the formal structure of near-ring group of quotients of a near-ring 
group NE  as mentioned above, 

 (ii) its relation with so-called N-Ore condition with respect to set S of 
non-zero divisors of N, 

(iii) the sub-near-ring group character of so-called classical near-ring 
group of quotients, 

(iv) the inheritance of finite independent family character of right 
( )( )NQC -subgroup of ( )( ) ( )( )NQCEQC  which arises from such a family of 

right N-subgroups of .NE  
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Finally, we deal with some interesting results like necessary conditions 
of Goldie character of NE  if the near-ring group ( )( ) ( )( )NQCEQC  is so. 

Finally, we prove that in case of a semiprime Abelian Goldie near-ring group 

NE  with its non N-nilpotent elements being distributive with distributively 

closed essential N-subgroups possesses a classical near-ring group 
( )( ) ( )( )NQCEQC  of right quotients having no N-nilpotent right ( )( )NQC -

subgroups. 

Definitions and notation 

We begin with the notion of a fraction of a near ring group .NE  

A fraction of NE  is an N-map ,: NN EAf →  where NA  is a dense 

N-subgroup of .NE  It is easy to see that for given two fractions f and g of 

NE  with domains Dom f and Dom g, respectively, the maps: 

(i) NEgfgf →+ DomDom: ∩  

( ) ( )xgxfx +→  

and (ii) for given two fractions f and ( )Nnn ∈1  with domains Dom f and 

Dom ,1
n  and also ,,1Dom:1 nxxEnn

N →→  

( ) NEfnnf →⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ⋅

−
Dom1:1

1
 

or ( ) NN EAnnf →⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ ⋅

−1

1:1  

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛⊆⎟

⎠
⎞⎜

⎝
⎛⇒⊆

−−

1Dom11

11 nEnAnEA NNNN  

( )⎟
⎠
⎞⎜

⎝
⎛ ⎟

⎠
⎞⎜

⎝
⎛→ xnfx 1  

are also fractions of .NE  
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Given two fractions f and g of ,NE  f and g are ’~‘  related (denoted 

)’~‘ gf  if and only if they agree on the common part of their domains. 

It is to be noted that if f and g are fractions of ,NE  then gf ~  if and 

only if there exists a dense N-subgroup D of such that ( ) ( )xgxf =  for all 

Dx ∈  and the relation ’~‘  is an equivalence relation on the set of all 

fractions of .NE  

A near-ring group LF  with NE  as its sub-near-ring group is a near-ring 

group of quotients of NE  if ,LrN FE ⊆  where N is a sub-near-ring of near-

ring L. 

The near-ring group NE  satisfies the N-Ore condition w.r.t a subset S of 

N, if given ( ) ,, SErx ×∈  there exists a common right multiple 

// rxxr =  

such that ( ) ., // SErx ×∈  

Let A be any sub-near-ring group of near-ring group NE  over near-ring 

N and .NT ⊆  Then 

( ) { }TxaxEaTAnnE ∈=|∈= allfor0  

and ( ) { }.allfor0 AaaxNxAAnnN ∈=|∈=  

If ( )+,G  is a group and N is a near-ring, then G is said to be Goldie 

near-ring group when 

 (i) G has no infinite independent family of non-zero N-subgroups, and 

(ii) annihilators of subsets of G in N satisfy the ascending chain 
condition (under set inclusion). 

Every Goldie near-ring is clearly a Goldie near-ring group. 

The right singular N-subgroup of NE  is the right N-subgroup 
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( ) { ,01 =|∈= xLExEZ NN  for some strictly essential 

N-subgroup L of }.N  

The near-ring group NE  is called non-singular if ( ) .01 =NEZ  

A right N-subgroup A of NE  is ‘N-nilpotent’ if we have some ,Nn ∈  

,+∈α Z  we have .0=αAn  

An element ‘a’ is said to be ‘N-nilpotent’ if for some ,Nn ∈  

.0, =∈α α+ anZ  

We shall call a near-ring group NE  ‘semiprime’ if NE  has no non-zero 

‘N-nilpotent’ N-subgroup of .NE  

2. Preliminaries 

Now we present the important notion of what we are intending. 

Proposition 2.1. Let LF  be a near-ring group with NE  as a sub-near-

ring group (where N is a sub-near-ring of near-ring L). Then LF  is a near-

ring group of quotients of NE  if and only if for every ,0, ≠∈ qLq  we have 

( ) ( )0, 11 ⊃⊆ −−
NNrN EqqEEq  where { }.1

NNN EqxExEq ∈|∈=−  

Proof. Suppose .LrN FE ⊆  Given NEqz 1−∈  and .Nn ∈  Then we 
get 

( ) NEznq ∈  

.1
NEqzn −∈⇒  

Hence NEq 1−  is a subset of .LF  ,, LFvu ∈  .0≠v  Then .LFqu ∈  Since 
,LrN FE ⊆  there exists Nt ∈  such that ( ) NEtqu ∈  and .0≠vt  

The first condition implies that .1
NEqut −∈  Thus, given ,, LFvu ∈  

,0≠v  there exists Nt ∈  such that NEqut 1−∈  and 0≠vt  leading there 

by .1
LrN FEq ⊆−  
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Since we have LNN FEEq ⊆⊆−1  and ,1
LrN FEq ⊆−  it follows that 

.1
NrN EEq ⊆−  Now NN qEEa ∩∈  gives NN qEEa ,∈  and hence there 

exists NEb ∈  such that .qba =  Since ,NEaqb ∈=  we have .1
NEqb −=  

Hence ( ) ( ).1
NEqqqba −∈=  Thus, ( ) .1

NNN qEEEqq ∩⊇−  

Recalling LrN FE ⊆  and ,LeN FE ⊆  we see that ( ),0⊃NN qEE ∩  

which gives ( ) ( ).01 ⊃−
NEqq  

Suppose NrN EEq ⊆−1  and ( ) ( )01 ⊃−
NEqq  hold and Lqp ∈,  with 

.0≠q  Now we show that there exists NEx ∈  for which NEpx ∈  and 

.0≠qx  As ( ) NN qEEqq ⊆−1  and 

( ) { }NN EqxqxEqq 11 −− ∈|=  

{ }NEqxqx ∈|=  

.NE⊆  

We get ( ) NNN qEEEqq ∩⊆−1  which in turn gives ( ).0⊃NN qEE ∩  

Thus, there exists NEb ∈  such that .qba =  We note that .0≠qb  

(1) Suppose 0=p  and .bx =  Then we get ( ) NEbpx ∈== 00  and 

( ) .0≠= qbqx  

(2) Suppose .0≠p  Then NrN EEq ⊆−1  gives .1
NrN EEp ⊆−  

And we have NEqbb ∈,  with .0≠qb  Hence there exists Ny ∈  such 

that NEpby 1−∈  and ( ) .0≠yqb  Again byx =  gives NEx ∈  such that 

.NEpx ∈  

Thus, in both the cases 0=p  and ,0≠p  there exists NEx ∈  with 

NEpx ∈  and .0≠qx  Hence .LrN FE ⊆  

We see in this section that the fractions of NE  yield a near-ring group of 
quotients of .NE  
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Let ( )EQ  be the set of all equivalence classes of ...,, gf  into which the 
fractions ...,, gf  of NE  are partitioned by the relation ~,  defined in ( )EQ  

by the rule .gfgf +=+  

We see that ‘+’ in ( )EQ  is justified. For, hf ~  and ,~ lg  let 

.DomDomDomDom lhgfx ∩∩∩∈  

Now 
( ) ( ) ( ) ( )xgxfxgf +=+  

( ) ( )xlxh +=  

( ) ( ).xlh +=  

Hence .~ lhgf ++  Thus, if hf =  and ,lg =  we have .lhgf +=+  

Again, let ( )NQ  be the set of all equivalence classes ",1,1
αn  into 

which the fractions ",1,1
αn  of N are partitioned by the relation .~  Then 

define in ( )EQ  the rule as follows: 

.11
nfnf =  

We see that it is well-defined in ( ).EQ  Suppose gf ~  and .1~1
αn  

Let ( ) .1Dom1Dom11Dom1Dom
11

⎟
⎠
⎞⎜

⎝
⎛⎟

⎠
⎞⎜

⎝
⎛ α⎟

⎠
⎞⎜

⎝
⎛ αα∈

−− nfnx ∩∩∩  Then 

( ) ( )⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛ xnfxnf 11  

( )⎟
⎠
⎞⎜

⎝
⎛ α= xf 1  

( ) ( ).11 xgxg ⎟
⎠
⎞⎜

⎝
⎛ α=⎟

⎠
⎞⎜

⎝
⎛ α=  

Hence .1~1
αgnf  Thus, if gf =  and ,11

α=n  then we have .11
α= gnf  
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Proposition 2.2. The set ( )EQ  all equivalence classes of ...,, gf  into 

which the fractions ...,, gf  of NE  are partitioned by the relation ~  is a 

near-ring group defined by the rule gfgf +=+  and ,α=α ff  where 

( ),NQ∈α  the near-ring of quotients. 

Proof. Let us define ( ) ( ) ( ),: EQNQEQ →×μ  ( ) ,, α=α=α fff  

for all ( ) ( )., EQfNQ ∈∈α  

Now for all ,, 21 N∈αα  ( ),, EQgf ∈  we have 

( ) ( ) ( ) 11 α+=α+ gfgf  

11 α+α= gf  

11 α+α= gf  

,11 α+α= gf  

( ) ( )2121 αα=αα ff  

( )21αα= f  

(( )) 21 αα= f  

( ) ,21 αα= f  

( )EQ  has an additive identity 0  given by the fraction ,:0 NN EE →  

.0→x  

For every ( )EQf ∈  we get a fraction 

( ).,Dom: xfxEff N −→→−  

Given ,Dom fx ∈  we have 

( )( ) ( ) ( ) ( ) ,0=−=−+ xfxfxff  
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( ) ,00 =x  

( ) ( )( ) ( ) ( ) ( ) .0=+−=+− xfxfxff  

Hence ( ) ( ) ffff +−==−+ 0  or ( ) ( ) .0 ffff +−==−+  

Thus, every ( )EQf ∈  has an inverse ( ) ( ).EQf ∈−  And so we have 

.00 =f  

Hence ( ) ( )( )μ+= ,,EQEQ  is a near-ring group over ( ).NQ  

In particular, ( ) ( )( )⋅+= ,,NQNQ  is a near ring and ( )EQ  is a near-ring 

( )NQ  group. 

Proposition 2.3. NE  is embedded in the near-ring group ( ) ( ).NQEQ  

(and  so N is embedded in the near-ring ( )).NQ  

Proof. For every ,Nn ∈  we get a left multiplication in the near-ring 

group of transformations of ,NE  

.,:1 nxxEEn
NN →→  

Given ,, NpEx N ∈∈  we see that 

( ) ( )xpnxpn =⎟
⎠
⎞⎜

⎝
⎛

1  

( ) pnx=  

( ) .1 pxn
⎟
⎠
⎞⎜

⎝
⎛=  

Thus, the left multiplication ⎟
⎠
⎞⎜

⎝
⎛

1
n  is an N-map and hence a fraction of .NE  

Consider the map ( ) ( ),: NQN EQE →α  ,1
xx →  for .NEx ∈  Then 

for ,, NEyx ∈  we have 
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( ) 1
yxyx +=+α  

11
yx +=  

( ) ( ).yx α+α=  

Again, for ,, NExNn ∈∈  we have 

( ) 111
nxxnxn ==α  

nx
1=  

nx
1=  

( ) .nxα=  

Thus, α is an N-homomorphism. 

Now,  

kernel  
⎭⎬
⎫

⎩⎨
⎧ =|∈=α 01

xEx N  

{ }0=|∈= xEx N  

( ).0=  

Hence α is an N-monomorphism. 

Note 2.4. Since the map ( ) ( )NQN EQE →α :  is a monomorphism, we 

shall identify ( )NEα  with NE  and 1
n  with n, for simplicity of notation. 

Proposition 2.5. If Nr ED ⊆  and ( ),NQq ∈  ,0≠q  then ( )0=qD  

implies .0=q  

Proof. Let ,tq =  where t is a fraction of N, and .Nn ∈  Then ( )0=qD  

implies that 
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( ) ( )01 =nt  

or ( ) ( )( ) 01 =xnt  for every ( ) ( ) ( ) .0DomtDomt1 1 =⇒∈ − tnx  

Thus, .0== tq  

Proposition 2.6. If ( ),NQq ∈  t is a fraction of N, and f is a fraction of 

E such that ,tq =  then .1
NEqfDom −⊆  

Proof. Let .Dom fr ∈  Then 

( ) ( ) NErtrtrtqr ∈=== 111  

.1
NEqr −∈⇒  

Hence .Dom 1
NEqf −⊆  

As a corollary, we get 

Corollary 2.7. If ( ) ( ),NQEQq ∈  then ,1
NrN EEq ⊆−  where NEq 1−  

{ }.NN EqxEx ∈|∈=  

Also, 

Proposition 2.8. If  ( ) ,0, ≠∈ qNQq  then 

( ) ( ).01 ⊃−
NEqq  

The proof immediately follows from Proposition 2.5. 

Using the last two results and Proposition 2.1, we have 

Theorem 2.9. ( ) ( )NQEQ  is a near-ring group of quotients of .NE  

Proposition 2.10. Let NE  satisfy the N-Ore condition with respect to a 

multiplicatively closed subset S of N and have N-homomorphisms 

( ),: NQN →α  

( ) ( )NQN EQE →β :  
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such that Sr ∈  implies ( ) ( ).1 NQr ∈α −  Then the subset 

{ ( ) ( ) ( ) }SEraraES ×∈|αβ= −− ,11  

is a sub-near-ring group of ( ) ( ).NQEQ  

Proof. Let ( ) ( ) ( ) ( ) ., 111 −−− ∈αβαβ ESsbra  Then we have ( ) ( )sbra ,,,  

.SE ×∈  Since NE  satisfies the N-Ore condition w.r.t. S and ( ) ( )sbra ,,,  

,SE ×∈  we get that there exists ( ) ( ) SErbsr ×∈′′′′′ ,,,  such that rssr ′=′  

and .brrb ′=′′  And hence 

  (i) ( ) ( )rssr ′β=′β  and 

 (ii) ( ) ( ).brrb ′β=′′β  

Again, as N satisfies the Ore condition w.r.t. S and ( ),, sr ( ) ,, SNrp ×∈  

we therefore get that there exist ( ) ( ) SNrpsr ×∈′′′′ ,,,  such that rssr ′=′  

and .prrp ′=′′  And hence 

(iii) ( ) ( )rssr ′α=′α  and 

(iv) ( ) ( ).prrp ′α=′′α  

Now 

( ) ( ) ( ) ( ) 11 −− αβ−αβ sbra  

( ) ( ( ) ( ) ( ) ( ( ) ( ) ))11 −− ′α′αβ−′α′αβ= srrbrssa  (using (iii)) 

( ) ( ) ( ) ( ) ( ) ( ) 11 −− ′α′αβ−′α′αβ= srrbsrsa  

( ( ) ( ) ( ) ( )) ( ) .11 −− ∈′α′αβ−′αβ= ESsrrbsa  

Again, let ( ) ( ) .11 −− ∈αα NSrn  Then 

( ) ( ) ( ) ( ) 11 −− αααβ rnsb  

( ) ( ) ( ) ( ) ( ) 11 −− αα′α′αβ= rnrsrb    (using (iii)) 

( ) ( ) ( ) ( ) ,1
1
−′α′α′αβ= rnsrb  
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where 

( ) ( ) ( ) ( ) 1
1

1 −− ′α′α=α′α rnnr  

( ) ( ) ( ) 1
1
−′α′′αβ= rrnsrb  

.1−∈ ES  

Hence 1−ES  is a sub-near-ring group of ( ) ( ).NQEQ  

Remark 2.11. We note that if in Proposition 2.10., ,1 S∈  then the near-

ring group 1−ES  has ( )1β  as its identity. 

Thus, we get 

Proposition 2.12. Let NE  be a near-ring group and S be a 

multiplicatively closed subset of N containing 1, ( ),: NQN →α  NE:β  

( ) ( )NQEQ→  are homomorphisms satisfying the condition ( ) ( ),1 NQr ∈α −  

for Sr ∈  and the condition ( ) ,0=β a  for NEa ∈  implies that there exists 

St ∈  with .0=at  

Also, if the subset 1−ES  is a sub-near-ring group of ( ) ( ),NQEQ  then 

NE  satisfies the N-Ore condition with respect to S. 

Proof. Let ( ) ., SEra ×∈  Then NEa ∈  and .Sr ∈  Since Sr ∈  

implies ( ) ( ),1 NQr ∈α −  ( ) 1−α r  and ( ) 11 −α  exist and as 1−ES  is a sub-near-
ring group, we get 

( ) ( ) ( ) ( ) ( ) ( ) .11 11111 −−−−− ∈βα⇒∈αβαβ ESarESar  

It follows from the definition of ,1−ES  that for some ( ) SEsb ×∈,  such 

that 

( ) ( ) ( ) ( ) ( )( ) ( )( )brsasbar αβ=αβ⇒αβ=βα −− 11  

( ) ( ) ( ) ( )brsa βα=αβ⇒  

( )( ) ( )( ) .0=α−αβ⇒ brsa  



Khanindra Chandra Chowdhury and Dipti Nath 172 

Thus, there exists St ∈  such that 

( )( ) ( )( ) ( ) ( ) .00 =α−α⇒=α−α btrstatbrsa  

Putting /abt =  and ,/rst =  we see that given ( ) ,, SEra ×∈  we have 

( ) SEra ×∈// ,  such that ( ) ( ),// raar α=α  i.e., NE  satisfies N-Ore 
condition with respect to S. 

We now present our main result of the paper. In this part, we deal with 
the classical near-ring group of quotients of a near-ring group and with the 
Goldie character in such structures. 

3. Main Results 

It is easy to note that S is a multiplicatively closed subset of N, moreover 
every ( )Ss ∈  is invertible in ( ).NQ  

The following is a criterion when the set described below may appear as 
a subgroup of ( ) ( ).NQEQ  

Proposition 3.1. Let S be the set of non-zero divisors of N. If NE  
satisfies the N-Ore condition with respect to S and ,Ss ∈  then .NrN EsE ⊆  

Proof. Clearly, NsE  is an N-subgroup of .NE  Let ,, NEba ∈  .0≠b  

Then ( ) SEsa ×∈,  and hence there exists a common right multiple 
// saas =  such that ( ) ., // SEsa ×∈  Since NsEas ∈′  and s′  is a non-zero 

divisor and ,0≠b  we have .0≠′sb  Thus, .NrN EsE ⊆  

Because of Note 2.4, we regard NE  as a sub-near-ring group of 
( ) ( ).NQEQ  

Following result gives how the N-ore condition is connected with 
classical near-ring group of quotients. 

Proposition 3.2. If NE  satisfies the N-Ore condition w.r.t. S, then the 

subset ( )( ) { ( ) ( ) }SErxEQxrEQC ×∈|∈= − ,1  is a sub-near-ring group of 
( ) ( ).NQEQ  
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( )( )EQC  is the classical near-ring group of quotients of .NE  

Proof. Let α and β be the embeddings 

( )NQN →α :     and   ( ) ( )NQN EQE →β :  

rr →                             .1
xx →  

Also, for any ( ) ( )., 1 NQrSr ∈α∈ −  Thus, 

( )( ) { ( ) ( ) }SErxEQxrEQC ×∈|∈= − ,1  

{ ( ) ( ) ( ) ( ) }SErxEQrx ×∈|∈αβ= − ,1  

.1−= ES  

As 1−ES  sub-near-ring group of ( ) ( ) ( )( ) ( )( )NQcNQ EQCEQ ,  is a sub-

near-ring group of ( ) ( )NQEQ  (where ( )( )NQC  is the classical near-ring of 

quotients of near-ring N).  

As in [2, Lemma 2.1.1], we have 

Proposition 3.3. Let ( )( )NQC  be the complete near-ring of quotients of 

N. If ,...,,, 21 Ssss n ∈  then there exist ...,,, 21 xx  Nxn ∈  and Ss ∈  such 

that ....,,2,1,11 nisxs ii == −−  

Proposition 3.4. If J be a right N-subgroup of ,NE  then the subset 

{ ( ) ( ) }SJsxEQxsJS ×∈|∈= −− ,11  is a right ( )( )NQC  subgroup of 

( )( ) ( )( ).NQCEQC  

Proof. Let ( )( ) ( )( ),NQCEQCp ∈  ( )( ).NQCq ∈  Then ,1−= asp  

,1−= xtq  where StsNxJa ∈∈∈ ,,,  and 

( ) ( )11 −−= xtaspq  

( ).11 −−= xtsa  
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Since ( )( ) ( )( ),1, 1111 NQCNSssNQCxt =∈=∈ −−−−  we get 

( ) ( )( ).11 NQCxtS ∈−−  

Let ( ) ,111 −−− = buxts  ,Nb ∈  .su ∈  Then Jab ∈  gives .1−∈ JSpq  

Hence the result. 

Proposition 3.5. If { }tJJJ ...,,, 21  be an independent family of right 

N-subgroups of ,NE  then { }11
2

1
1 ...,,, −−− SJSJSJ t  is an independent family 

of right ( )( )NQC -subgroup of ( )( ) ( )( ).NQCEQC  

Proof. If possible, let { }11
2

1
1 ...,,, −−− SJSJSJ t  be not an independent 

family. Then there is an m, tm ≤≤1  such that ∑
≠

−− ≠
mn

nm SJSJ .011 ∩  

Then there is a non-zero element, n1 1 1
1 1m m m m t tj s j s j s j s− − −= + + + +" "  

(∧ stands for deletion of the term underneath) in the intersection. 

By Proposition 3.3, for ,...,,1 Sss t ∈  we get Nxx t ∈...,,1  and Ss ∈  

such that 

.1,1
1

1 tisxsi ≤≤= −−  

Now, 

n1 1 1 1
1 1m m m m t tj x s j x s j x s j x s− − − −= + + + +" "  

( n ) 1
1 1 .−= + + + +" "m m t tj x j x j x s  

And this gives 

n
1 1 0.m m m m t tj x j x j x j x= + + + + ≠" "  

So, ( )0≠⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
≠mn

nm JJ ∩  and is a contradiction, for { }tJJ ...,,1  is an 

independent family of N-subgroup of .NE  
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Therefore, { }11
1 ...,, −− SJSJ t  is an independent family of ( )( )NQC -

subgroup of ( )( ) ( )( ).NQCEQC  

Proposition 3.6. If J is an annihilator N-subgroup of near-ring group 

NE  (i.e., ( )TAnnJ E=  for some ,)NT ⊆  then .1 JEJS =− ∩  

Proof. Here Jx ∈  gives ( ).11 11 SJSxx ∈∈= −−  So, EJSx ∩1−∈  

giving there by .1 EJSJ ∩−⊆  

Next, EJSy ∩1−∈  gives ,1 xasy == −  where .,, ExSsJa ∈∈∈  

Now ,1 Exas ∈=−  0=xT  and we get ( )TAnnas E∈−1  in .NE  Thus, 

( ) Jasy ∈= −1  which gives .1 JEJS ⊆− ∩  

Hence the result. 

Proposition 3.7. If ( )( ) ( )( )NQCEQC  is the classical near-ring group of 

quotients of NTEN ⊆,  and ( ),TAnnJ E=  then ( )( )( ).1 TAnnJS EQC=−  

Proof. Here ( )( )( )TAnnx EQC∈  gives ( )( ) ( )( )NQCEQCx ∈  and .0=xT  

Since ( )( ) ( )( ),NQCEQCx ∈  1−= asx  for some ,NEa ∈  .Ss ∈  Then 

( ).01 =− Tas  Therefore, ( ),TAnna E∈  or Ja ∈  and hence, 1−= asx  

.1−∈ JS  It follows that ( )( )( ) .1−⊆ JSTAnn EQC  

To see the opposite inclusion, 1−∈ JSy  gives .,,1 SsJjjsy ∈∈= −  

Since ( )( )( ),TAnnJj EQC=∈  ( )( ) ( )( )NQCEQCj ∈  and 0=jT  which 

gives 01 =− Tjs  or ( )( )( ).1 TAnnjs EQC∈−  Thus, ( )( )( ),TAnny EQC∈  or 

( )( )( ).1 TAnnJS EQC⊆−  

Hence the result. 
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Proposition 3.8. Let ( )( ) ( )( )NQCEQC  be the classical near-ring group 

of right quotients of .NE  If NE  is additively commutatively, then so also is 

( )( ) ( )( ).NQCEQC  

Proof. Let ( )( ) ( )( )., NQCEQCyx ∈  Then ,1−= abx  1−= cdy  for some 

,, NEca ∈  ., Sdb ∈  

Now from Proposition 3.3, there exist SsNtt ∈∈ ,, 21  such that 

., 1
2

11
1

1 −−−− == stdstb  

Therefore, ,11
1

1 −−− === ussatabx  where NEatu ∈= 1  and 1−= cdy  

,11
2

−− == vssct  where .2 NEctv ∈=  Since ( )+,NE  is abelian, the result 

follows. 

Proposition 3.9. If the near-ring group ( )( ) ( )( )NQCEQC  is Goldie, then 

so is .NE  

Proof. If possible, then let there be a strictly ascending chain of right 
annihilators of subsets of ,NE  

,21 "⊂⊂ JJ  where ( ) ., NTTAnnJ iiEi ⊆=  

Then by Proposition 3.7, the chain 

"⊆⊆ −− 1
2

1
1 SJSJ  

is an ascending chain of right annihilator of subsets of ( )( ) ( )( ).NQCEQC  The 

near-ring group ( )( ) ( )( )NQCEQC  being Goldie, we therefore get +∈ Zm  

such that 

.1
1

1 "== −
+

− SJSJ mm  

This gives .1
1

1 "∩∩ == −
+

− ESJESJ mm  
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And by Proposition 3.6, we get ,1 "== +mm JJ  a contradiction. 

Therefore, NE  cannot have an infinite strictly ascending chain of right 

annihilators of subsets of .NE  

Next, if { }iJ  is an infinite independent family of N-subgroups of ,NE  

then by Proposition 3.5, the set { }1−SJi  is an infinite independent family of 

right ( )( )NQC -subgroup of ( )( ) ( )( ).NQCEQC  And this is not possible 

because ( )( ) ( )( )NQCEQC  is Goldie. Therefore, NE  cannot have an infinite 

independent family of right N-subgroups of .NE  Therefore, NE  is Goldie. 

Proposition 3.10. Let A, B, C be right N-subgroups of NE  such that 

NECBA ⊆⊆⊆  and A is N-essential in B, B is N-essential in C. Then A 

is N-essential in C. 

Proof. Let D be a (non-zero) N-subgroup of NE  and .CD ⊆  Since B is 

N-essential in C, we get ( ).0≠BD ∩  And since A is N-essential in B, this 

gives 

( ) ( ).0≠ABD ∩∩  

Now ( ).0≠⊇ ABDAD ∩∩∩  Thus, ( ).0≠AD ∩  Hence A is N-essential 

in C. 

Proposition 3.11. If every essential N-subset of N contains a non-zero 
divisor, then NE  is non-singular. 

Proof. Let ( ).Nl EZx ∈  Then there exists NL e⊆  such that ( ).0=xL  

Since ,NL e⊆  by given condition, there exists a non-zero divisor .Ll ∈  It 

follows that .0=xL  Since L is a non-zero divisor, we have .0=x  Thus, 

( ) .0=Nl EZ  

Lemma 3.12. Let M and H be N-subgroups of a near-ring group NE  
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such that H is N-essential in M. If ,0, ≠∈ aMa  then there is an essential 

right N-subgroup L of N such that .,0 HaLaL ⊆≠  

Proof. Let { }.HanNnL ∈|∈=  Then L is right N-subset of N and 

MaN ⊆  (since M is an N-subgroup of NE  and .)Ma ∈  Also 0≠aN  

(for Nl ∈  implies .)aNa ∈  Since H is N-essential in M, we get HaN ∩  

0≠  and ( ) Hanh ∈≠= 0  gives .0≠aL  

We now show that L is an essential right N-subset of N. Let ( )0≠I  be a 

right N-subset of N. We claim that .0≠LI ∩  Now, 0=aI  gives .HaI ⊆  

So, LI ⊆  giving thereby .0≠LI ∩  And if ,0≠aI  then aI is an 

N-subgroup of NE  and .MaI ⊆  

Since H is N-essential in M, .0≠HaI ∩  Hence for some ( ) ,0 Ix ∈≠  

.Hax ∈  Thus, .Lx ∈  Therefore, 0≠LI ∩  and this implies that L is an 

essential right N-subset of N. 

And we get 

Corollary 3.13. For ,Ma ∈  { }HanNnHa ∈|∈=−1  is an right 

essential N-subset of N. 

Lemma 3.14. Let NE  be a Goldie near-ring group whose non 

N-nilpotent elements are distributive. If NEx ∈  is such that ( ) ,0=xA  then 

xN is an essential N-subgroup of .NE  

Proof. Since ( ) ,0=xA  x is non N-nilpotent and thus it is distributive. Let 

M be an N-subgroup of NE  such that .0=xNM ∩  Now, for a non-nilpotent 

N∈α  and for a fix +∈ Zs  and for ,st ≤  let 

( )....,,1,0,, 0 snxxNxNxy t

tn

n ==αα
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
α∈ ∑

≠

∩  
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Then ∑
≠

α=α=
tn

t
t

n
n pxpxy ,  ,, Npp tn ∈  i.e., 

10 pxpxpxxp t
s

t
t α−−α−α= "  

( )1pppx t
s

t
t α−−α−α= "  (since x is distributive). 

Thus, xNMxp ∩∈0  which gives .00 =xp  It follows that 

,01 =α−−α−α pxpxpx t
s

t
t "  for ( ) .0=xA  

Similarly, we get .021 =α==α=α tpxpxpx "  Therefore, 

0=α⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
α∑

≠
NxNx t

tn

n ∩  for all +∈ Zs  and .st ≤  

Thus, the family { }...,,,, 2NxNxxNM αα  is an independent family. NE  

being Goldie, there exists +∈ Zu  such that .01 =α + Nx u  So, for any 

,Mm ∈  01 =α +um  which gives .0=m  Therefore, .0=M  Thus, 
0=xNM ∩  implies .0=M  Hence xN is an essential N-subgroup of .NE  

Lemma 3.15. If N is a semiprime Goldie near-ring where non-nilpotent 
elements are distributive, then every distributively closed right essential 
N-subset of N contains a regular element. 

Proposition 3.16. A semiprime abelian Goldie near-ring group NE  in 
which non N-nilpotent elements are distributive with distributively closed 
right essential N-subgroups has a classical near-ring group ( )( ) ( )( )NQCEQC  

of right quotients which has no N-nilpotent right ( )( )NQC -subgroups. 

Proof. Choose ,, NEyx ∈  ( ) ,0=xA  NE  being Goldie, by Lemma 
3.14, xN is an essential in .NE  Then, by Corollary 3.13, the set { |∈=λ Nr  

}yNxr ∈  is an essential in N. Therefore, by Lemma 3.15, λ contains a 

regular element, say ./r  Thus, // rxxr =  for some ./
NEx ∈  Thus the right 

N-Ore condition with respect to the set S of regular elements of N is satisfied 
in .NE  So by Proposition 3.2, NE  has a classical near-ring group of right 
quotients, say ( )( ) ( )( ).NQCEQC  
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Next, let J be a ( )( )NQC -subgroup of ( )( ) ( )( )NQCEQC  such that 

,02 =αJ  .N∈α  Now EJ ∩  is a right N-subgroup of .NE  Because of 

Proposition 3.4, 

( ) ( )( ) { }.,1 ScJNxxcEQCEJ ∈∈|= −∩  

Now, .,,, 1 SsEyysxJx ∈∈=∈ −  So, .JNyxs ∈=  

Thus,  

( ) ( ) ( )( ).1 EQCJNsysx ∈= −  

Conversely, if ( ) ( )( ),1 EQCEJys ∩∈−  ,EJy ∩∈  ,Ss ∈  then .1 Jys ∈−  

Hence ( ) ( )( ).EQCEJJ ∩=  Again, 02 =αJ  gives ( ) .022 =α⊆α JEJ ∩  

Therefore, EJ ∩  is an N-nilpotent right N-subgroup of NE  and NE  is 

semiprime. Hence .0=EJ ∩  Thus, it follows from what we have showed 
above that .0=J  

Example 1. { }6,5,4,3,2,1,0=N  is a near-ring under addition modulo 

7 and multiplication defined by the following table: 

• 0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 

1 0 1 2 4 4 2 1 

2 0 2 4 1 1 4 2 

3 0 3 6 5 5 6 3 

4 0 4 1 2 2 1 4 

5 0 5 3 6 6 3 5 

6 0 6 5 3 3 5 6 

It has no non-zero zero-divisors. Hence, every essential N-subset of this near-
ring contains a non-zero-divisor. It follows from Proposition 3.11 that the 
near-ring group is non-singular. 
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Example 2. { }cbaN ,,,0=  under the addition and multiplication 
defined by the following tables: 

+ 0 a b c 

0 0 a b c 

a a 0 c b 

b b c 0 a 

c c b a 0 
 

• 0 a b c 

0 0 0 0 0 

a 0 0 a a 

b 0 a b b 

c 0 a c c 

Its N-subsets are { },0  { }a,0  and { }.,,,0 cba  Of these, the second and 

the third are essential. It is at once seen that the near-ring does not satisfy the 
condition of Proposition 3.11, but is non-singular. 

Example 3. { }8,7,6,5,4,3,2,1,0=N  is a near-ring under addition 
modulo 8 and multiplication as defined by the following table: 

• 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 

1 0 0 0 2 0 4 4 2 

2 0 0 0 4 0 0 0 4 

3 0 0 0 6 0 4 4 6 

4 0 0 0 0 0 0 0 0 

5 0 0 0 2 0 4 4 2 

6 0 0 0 4 0 0 0 4 

7 0 0 0 6 0 4 4 6 
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Here near-ring group NN  has only two non-trivial N-subgroups { }4,0  

and { }6,4,2,0  such that { } { } .06,4,2,04,0 ≠∩  That is each of them has 

non-zero intersection with other N-subgroups of .NN  Therefore, 

{ } { } .6,4,2,0,4,0 NN NeNe ⊆⊆  

In this example, we see that { } { }.6,4,2,04,0 e⊆  This shows the 

validity of Proposition 3.10. 

Example 4. Consider the near-ring { }7,6,5,4,3,2,1,0=N  under 

addition modulo 8 and multiplication defined by the following table: 

• 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 
1 0 1 2 3 4 5 6 7 
2 0 2 4 6 0 2 4 6 
3 0 3 6 1 4 7 2 5 
4 0 4 0 4 0 4 0 4 
5 0 5 2 7 4 1 6 3 
6 0 6 4 2 0 6 4 2 

7 0 7 6 5 4 3 2 1 

Here { }4,0  and { }6,4,2,0  are ideals of NN  such that { }∩4,0  

{ } .06,4,2,0 ≠  Hence { }4,0  and { }6,4,2,0  are essential ideals of .NN  

Example 5. In Klein 4-group, the near-ring N without unity w.r.t. the 
operations addition defined in Table 1 and the multiplication defined in the 

Table 2 has the invariant subsets, { } { }.,,0,,0 bab  But for any invariant 

subsets, say ( )0≠L  of N, we get 0≠nL  for any .+∈ Zn  Hence N has no 

non-zero nilpotent invariant subsets. In this sense, N is strongly semi-prime. 
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Table 1 

+ 0 a b c 

0 0 a b c 

a a 0 c b 

b b c 0 a 

c c b a 0 

Table 2 

• 0 a b c 

0 0 0 0 0 

a 0 a 0 a 

b 0 0 b b 

c b a b c 

Example 6. Consider a non-zero symmetric near-ring ( )8DN =  without 

unity w.r.t. the addition and multiplication defined by Tables 3 and 4, 
respectively. 

Table 3 

+ 0 a 2a 3a b ba + ba +2 ba +3  

0 0 a 2a 3a b ba + ba +2 ba +3  

a a 2a 3a 0 ba + ba +2 ba +3 b 

2a 2a 3a 0 a ba +2 ba +3 b ba +  

3a 3a 0 a 2a ba +3 b ba + ba +2  

b b ba +3  ba +2 ba +  0 3a 2a a 

ba +  ba +  b ba +3 ba +2 a 0 3a 2a 

ba +2  ba +2  ba +  b ba +3 2a a 0 3a 

ba +3  ba +3  ba +2  ba + b 3a 2a a 0 
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Table 4 

* 0 a 2a 3a b ba +  ba +2 ba +3  

0 0 0 0 0 0 0 0 0 

a 0 a 2a a 0 0 0 2a 

2a 0 2a 0 2a 0 0 0 0 

3a 0 3a 2a 3a 0 0 0 2a 

b 0 b b b b b b b 

ba +  0 ba +  ba +2 ba + b b b ba +2  

ba +2  0 ba +2  b ba +2 b b b b 

ba +3  0 ba +3  ba +2 ba +3 b b b ba +2  

The non-zero proper left N-subsets are { },,0 b  { },,,0 bab +  

{ },2,,0 bab +  { },2,2,,0 baab +  { },3,2,,2,0 bababa ++  etc. 

 Here we note for any subsets L of N, there exist no left N-subsets X of N 

such that ,0=LX n  for any .+∈ Zn  

 Example 7. Consider the near-ring ( )8ZN =  without unity w.r.t. addition 

modulo 8 and multiplication defined by the following table: 

• 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 

1 0 0 0 2 0 4 4 2 

2 0 0 0 4 0 0 0 4 

3 0 0 0 6 0 4 4 6 

4 0 0 0 0 0 0 0 0 

5 0 0 0 2 0 4 4 2 

6 0 0 0 4 0 0 0 4 

7 0 0 0 6 0 4 4 6 
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Here N has proper left N-subsets viz. { },1,0  { },2,0  { },4,0  { },5,4,0  

{ } { } { } { },6,4,3,2,0,7,6,4,0,6,4,2,0,6,4,0  etc. 

Now { }{ } { }( )04,05,05,4,0 ≠=  and { } { } .05,05,4,0 2 =  

It is easy to see that if { }5,0  is replaced by { } 05,4,0 3 =  and thereby 

{ }5,4,0  is found as nilpotent subset of N. 

 Example 8. In the near-ring ( )8ZN =  without unity w.r.t. addition 

modulo 8 and multiplication defined by the following table, the only proper 
left N-subset is { }:2,0  

• 0 1 2 3 4 5 6 7 

0 0 0 0 0 0 0 0 0 

1 0 1 0 1 1 1 1 1 

2 0 2 0 2 2 2 2 2 

3 0 3 0 3 3 3 3 3 

4 0 4 0 4 4 4 4 4 

5 0 5 0 5 5 5 5 5 

6 0 6 0 6 6 6 6 6 

7 0 7 0 7 7 7 7 7 

Hence for any subset ( )0≠L  of it different from { },2,0  we have 

{ } .02,0 ≠L  But { } .02,0 2 =L  
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