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Abstract

In this paper, we present near-ring group structure of quotients of a
near-ring group and It is seen that near-ring of quotients may appear as
a particular case in some cases. We also try to explore how inheritance
of so-called Goldie character plays an important role in the existence
of such structures.

1. Introduction

Here we discuss some characteristics of near-ring group of quotients of a
near-ring group with so-called unusual near-ring module structure as referred
by Grainger [5]. Here we give some insight to some Goldie characters of
such a structure leading to the existence of such quotients as well as some
sort of inheritances of Goldie properties.
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We begin with the formal definition of such an unusual module structure.
Suppose (G, +) isagroup and (K, +, -) is a right near-ring.

A complementary representation of K on G is a semigroup
homomorphism 6 : (K, -) — (End(G), ).

Suppose that (K, +, -) is a right near-ring. Then an unusual near-ring K
module is a pair ((G, +), *), where (G, +) isagroup and *: G xK — G

is a function which satisfies:
(i) x*(a-b)=(x*a)*b forall xe G and a, b € K and
(i) (x+y)*a=x*a+y=*aforall x, yeG and a € K.
Suppose ((G, +), *) is an unusual near-ring K-module. Then a function
0: K — End(G),
a— ab
given by
a0:G - G,
X — x(ab) = x *a

is a semigroup homomorphism. Thus, ‘*’ induces the complimentary

representation.

Conversely, if 6: K — End(G) is a complimentary representation, then

define a right scalar multiplication

*:GxK —> G by x*a=x(ab) forall ae K and x € G.

Thus, 6 induces a right scalar multiplication that makes G an unusual near-
ring K module. We consider such an unusual near-ring module structure and
call it a right near-ring group of a right near-ring. (In contrast, we usually
deal with the left near-ring group structure of a right near-ring.)
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And as such the definition of an unusual near-ring group structure of an

additive group (not necessarily abelian) over a right near-ring with identity 1
is as follows.

Let (E, +) be agroup and N be a near-ring with a map

u:ExN —E, (x,9)— xq
such that forall x, y € E and g, r € N, we have
(x+Y)aq = xq + yq,
x(ar) = (xa)r,
x0=0
and x1 = x,

where zero in the left is the zero of N and the zero in the right is the zero in
E. Then Ey = (E, +, ) is called the near-ring group.

A subset A of a near-ring group Ey is a sub-near-ring group of Ey, if
X—Yy, xne Aforall X, ye A neN.

The notion immediately leads us to the following.

If E and F are two such unusual near-ring N-groups, then a mapping
f : E —> F isan N-homomorphism if:

(i) f is a group homomorphism
(ii) f(en)= f(e)n, foree E and n e N
in a usual way the notion of kernel of f follows.
The notion of an N-map follows when the condition (i) is absent.

In what follows, it contains the notion of essential as well as rational
extensions together with some relevant results.

An N-subgroup A(# 0) of E (i.e., (A, +) is a subgroup of (E, +), with

AN c A) is an essential N-subgroup of E or E is an essential extension of
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A, if for every N-subgroup X (= 0) of E, we have A() X = 0 and is denoted
by Ac, E.

An N-subgroup D of E is a dense (or rational) N-subgroup of E or E is a
rational extension of D, written D <, E if given u,ve E with u=0
there exists t € N such that vt € D and ut = 0.

An N-subset D of L where N is a sub-near-ring of the near-ring L is
D <, L ifand only if given k, | e L with | # 0 there exists x € N such
that kx € D and Ix = 0.

An N-subgroup D of F where F is a near-ring group over L (where N is a
sub-near-ring of near-ring L) is D <, F if and only if given p, g € L with
g # 0 there exists x e D such that px € D and gx = 0.

If D < F < E, where E is a near-ring group, F is a sub-near-ring group
and D is a normal sub-near-ring group of F such that D <, E, then zero
homomorphism is the only homomorphism from F/D to E (i.e,
Hom(F/D, E) = (0)). Clearly, a rational extension is an essential
extension. Moreover, if D < G < E, where E is a near-ring group, G, an
N-subgroup of E and D an N-subset of G, then D <, E implies
Dc G E

In this paper, we mainly present:

(i) the formal structure of near-ring group of quotients of a near-ring
group Ep as mentioned above,

(ii) its relation with so-called N-Ore condition with respect to set S of
non-zero divisors of N,

(iii) the sub-near-ring group character of so-called classical near-ring
group of quotients,

(iv) the inheritance of finite independent family character of right
C(Q(N)) -subgroup of C(Q(E))C(Q(N)) which arises from such a family of

right N-subgroups of Ey.
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Finally, we deal with some interesting results like necessary conditions
of Goldie character of Ey if the near-ring group C(Q(E))C(Q(N)) is so.

Finally, we prove that in case of a semiprime Abelian Goldie near-ring group
En with its non N-nilpotent elements being distributive with distributively

closed essential N-subgroups possesses a classical near-ring group
C(Q(E))C(Q(N)) of right quotients having no N-nilpotent right C(Q(N)) -

subgroups.
Definitions and notation

We begin with the notion of a fraction of a near ring group Ey.

A fraction of Ey is an N-map f : Ay — Ey, where Ay is a dense
N-subgroup of Ejp . It is easy to see that for given two fractions f and g of

En with domains Dom f and Dom g, respectively, the maps:
(i) f +g:Dom f NDom g — Ey

x = f(x)+ g(x)
and (ii) for given two fractions f and % (n € N) with domains Dom f and

Dom % andalso%: Dom%—> En, X & nX,

(f %) : (%j_l(Dom f) —> Ep
or (f %) ; (%)_1(AN ) > En
== ) < (3] o)

D

are also fractions of Ey.
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Given two fractions f and g of Ey, fand g are “~’ related (denoted

‘f ~ g’) if and only if they agree on the common part of their domains.

It is to be noted that if f and g are fractions of Ey, then f ~ g if and

only if there exists a dense N-subgroup D of such that f(x) = g(x) for all

x € D and the relation “‘~’ is an equivalence relation on the set of all
fractions of Ey.

A near-ring group F_ with Ey as its sub-near-ring group is a near-ring
group of quotients of Ey if Ey <, F_, where N is a sub-near-ring of near-
ring L.

The near-ring group Ejp satisfies the N-Ore condition w.r.t a subset S of

N, if given (X, r) € E x S, there exists a common right multiple

xrl = !

such that (x/, r’) e ExS.

Let A be any sub-near-ring group of near-ring group Ey over near-ring
Nand T < N. Then

Anng(T)={ae Elax=0forall x e T}
and Anny(A) = {x e N|ax =0 for all a € A}.
If (G, +) is a group and N is a near-ring, then G is said to be Goldie
near-ring group when
(i) G has no infinite independent family of non-zero N-subgroups, and

(ii) annihilators of subsets of G in N satisfy the ascending chain
condition (under set inclusion).

Every Goldie near-ring is clearly a Goldie near-ring group.

The right singular N-subgroup of Ej, is the right N-subgroup
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Z1(EN) = {x € EN | XL = 0, for some strictly essential
N-subgroup L of N}.
The near-ring group Ey is called non-singular if Z;(Ey ) = 0.

A right N-subgroup A of Ey is ‘N-nilpotent’ if we have some n € N,
aeZ’, wehave An“ = 0.

An element ‘a’ is said to be ‘N-nilpotent’ if for some n e N,
aeZ", an* =0.

We shall call a near-ring group Ey ‘semiprime’ if Ey has no non-zero

‘N-nilpotent” N-subgroup of Ey .
2. Preliminaries

Now we present the important notion of what we are intending.

Proposition 2.1. Let F; be a near-ring group with Ey as a sub-near-
ring group (where N is a sub-near-ring of near-ring L). Then F_ is a near-

ring group of quotients of Ey if and only if for every q € L, q # 0, we have
0 'En <r En. a(gEy) o (0) where g 'Ey = {x € Ey |ax € Ey}.
Proof. Suppose Ey <, F. Given z e q_lEN and n e N. Then we

get
q(zn) € En

= Ine q_lEN.

Hence q_lEN is a subset of F_.. u,veF, v=0. Then qu € F_. Since
En < FL, thereexists t € N such that (qu)t € Ey and vt = 0.

The first condition implies that ut q‘lEN. Thus, given u, v e F,
v = 0, there exists t e N such that ut q_lEN and vt # 0 leading there

by a'En <, FL.
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Since we have q_lEN c Ey cF and q_lEN < F_, it follows that
q‘lEN cr En. Now a € Ey (1 gEy gives a € Ey, qEy and hence there
exists b € Ey such that a = gb. Since gb = a € Ey, we have b = q‘lEN.
Hence a(= gb) € q(q*Ey ). Thus, q(q *En) 2 En NGEY.

Recalling Ey < F and Ey <o F, we see that Ey NgEN D (0),
which gives q(q*Ey) o (0).

Suppose q‘lEN cr En and q(q‘lEN) > (0) hold and p, g € L with
q # 0. Now we show that there exists x € Ey for which px € Ey and

gx = 0. As q(q‘lEN) < gEy and

a(a'En) = {ax|x € g Ep}
= {ax|gx € Ey}
c En-

We get q(q‘lEN) < En N gEN whichinturn gives Ey N gEN D (0).

Thus, there exists b € Ey such that a = gb. We note that gb = 0.

(1) Suppose p=0 and x =b. Then we get px(=0b =0)e Ey and
ax(= gb) = 0.

(2) Suppose p = 0. Then q_lEN cr EN gives p_lEN cr En-

And we have b, gb € Ey with gb = 0. Hence there exists y € N such
that by e p_lEN and (gb)y # 0. Again x = by gives x € Ey such that
px € Ey.

Thus, in both the cases p =0 and p = 0, there exists x € Ey with

px € Ey and gx = 0. Hence Ey <, FL.

We see in this section that the fractions of Ey yield a near-ring group of
quotients of Ey.
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Let Q(E) be the set of all equivalence classes of f, g, ... into which the

fractions f, g, ... of Ey are partitioned by the relation ~, defined in Q(E)

by therule f +g = f +g.
We see that “+” in Q(E) is justified. For, f ~h and g ~ I, let

x € Dom f (1 Dom g (1 Dom h () Dom I.

Now
(f +9)(x) = £(x)+g(x)
= h(x) + 1(x)
= (h +1)(x).
Hence f +g ~h+1. Thus,if f =h and g =1, wehave f + g =h+1.

Again, let Q(N) be the set of all equivalence classes % %, -+ into

which the fractions % %, --- of N are partitioned by the relation ~. Then

define in Q(E) the rule as follows:

fo=f

|3l
==

We see that it is well-defined in Q(E). Suppose f ~ g and % ~ %.

-1 -1
n (04 (04 (04 n
Let x e DomT N DomT N (Tj (Dom )N (T) (Dom T)' Then

(f %)(x) f@(x))

Il Il
—_
7\
R
—~
P>
p—
N

=]
Il
«

|

, then we have f
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Proposition 2.2. The set Q(E) all equivalence classes of f, g, ... into

which the fractions f, g, ... of Ey are partitioned by the relation ~ is a

near-ring group defined by the rule f + g = f + g and f @ = fo, where

@ € Q(N), the near-ring of quotients.

Proof. Let us define p:Q(E)xQ(N)— Q(E), (f,a)=fa= fa,
forall @ € Q(N), f € Q(E).

Now forall oy, ay € N, f, § e Q(E), we have

(f +9) () =(F + 9oy

= fOLl-i-gOLl
= foy + goy
=fag+gay

|
2
=
Q
N)

Q(E) has an additive identity O given by the fraction 0: Ey — Ey,

X — 0.
Forevery f e Q(E) we get a fraction
—f:Dom f - Ey, x— —f(x).
Given x € Dom f, we have

(f+(=F))(x) = f(x)-f(x) =0,



Characteristics of Classical Near-ring Group of Quotients 167

0(x) =0,

(-F)+(FHx) =-f(x)+ f(x)=0.

Hence f +(—f)=0=(-f)+ f or f+(-f)=0=(-f)+ f.
Thus, every f e Q(E) has an inverse (—f) € Q(E). And so we have
fo=0.
Hence Q(E) = (Q(E), +, ) is a near-ring group over Q(N).

In particular, Q(N) = (Q(N), +, -) isa near ring and Q(E) is a near-ring
Q(N) group.

Proposition 2.3. Ey is embedded in the near-ring group Q(E)Q(N).
(and so N is embedded in the near-ring Q(N)).

Proof. For every n e N, we get a left multiplication in the near-ring

group of transformations of Ey,

n

1:EN—>EN, X = nX.

Given x € Ey, p € N, we see that

(£)0®) = nxp)

= (nx)p

- ($)eop,

Thus, the left multiplication (%j is an N-map and hence a fraction of Ey.

Consider the map o : Ey — Q(E)Q(N), X — % for x e Ey. Then

for x, y € Ey, we have
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X +
a(x+y)= 1y

+

|
<

= a(X) + a(y).

Again, for n € N, x € Ey, we have

a(xn) =

Thus, o is an N-homomorphism.

Now,

kernel o = {x € Ey |§ = 0}

={x e Ey|x =0}
=(0).

Hence o is an N-monomorphism.

Note 2.4. Since the map a : Ey — Q(E)Q(N) is @ monomorphism, we
shall identify a(Ey ) with Ey and % with n, for simplicity of notation.

Proposition 2.5. If D <, Ey and qe Q(N), q # 0, then gD = (0)
implies g = 0.

Proof. Let q = t, where tis a fraction of N, and n € N. Then gD = (0)
implies that
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t(n/1) = (0)
or t((n/1)(x)) = 0 for every x e (n/1)"}(Domt) = t(Domt) = 0.
Thus, g =1t =0.
Proposition 2.6. If g € Q(N), tis a fraction of N, and f is a fraction of
E such that q = t, then Dom f < q‘lEN.

Proof. Let r € Dom f. Then

= t(r/1) = t(r)/L € Ey

| =

qr =t
=Tre q_lEN.
Hence Dom f < q‘lEN.
As a corollary, we get
Corollary 2.7. If q eQ(E)Q(N), then qlEy <, Ey, Where qEy
={xe Ey|gx € Ey}.

Also,
Proposition 2.8. If q € Q(N), g = 0, then

a(a*En) 2 (0).
The proof immediately follows from Proposition 2.5.
Using the last two results and Proposition 2.1, we have

Theorem 2.9. Q(E)Q(N) is a near-ring group of quotients of Ey .

Proposition 2.10. Let Ey satisfy the N-Ore condition with respect to a
multiplicatively closed subset S of N and have N-homomorphisms

a:N - Q(N),

B:EN = Q(E)g(n)
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such that r e S implies a(r)™* € Q(N). Then the subset
ES~! = {B(a)a(r)|(a, r) € E x S}
is a sub-near-ring group of Q(E)Q(N).
Proof. Let B(a)a(r) L, B(b)a(s)™ € ES™L. Then we have (a, r), (b, s)
e E xS. Since Ey satisfies the N-Ore condition w.r.t. S and (a, r), (b, s)

e E x S, we get that there exists (r’, s"), (b, r") € E x S such that rs' = sr’
and br” = rb’. And hence

(i) B(rs’) = B(sr’) and
(i) (br") = B(rb).
Again, as N satisfies the Ore condition w.r.t. Sand (r, s), (p,r)e N xS,

we therefore get that there exist (r’, s’), (p’, r') e N x S such that rs’ = sr’
and pr” = rp". And hence

(iii) a(rs') = a(sr) and
(iv) a(pr") = a(rp’).
Now
B)a(r) ™ - B(b)a(s) ™
= B(@) (a(s) st = B(b) (a(r)u(rs) ™)) (using (i)
= B@)a(s)ofrs’) ™ - B(b) o) ex(rs’)
= (B@)a(s) — Bb)a(r)ars) ™ e ES
Again, let a(n)a(r)™ € NS~ Then
B(b)au(s) taun)a(r)
= Bb)a(rs ) or) (o) (using (iii))
= B(b)a(rs) au(n')u(rf) %,
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where
a(r)ta(n) = a(n)a(y) ™
= B(b)ars’") a(ry)
e ES7L.

Hence ES ! is a sub-near-ring group of Q(E)Q(N).

Remark 2.11. We note that if in Proposition 2.10., 1 € S, then the near-
ring group ES™* has B(1) as its identity.
Thus, we get

Proposition 2.12. Let Ep be a near-ring group and S be a

multiplicatively closed subset of N containing 1, a.: N — Q(N), B: Ey
- Q(E)Q(N) are homomorphisms satisfying the condition a(r)™* € Q(N),
for r € S and the condition B(a) = 0, for a € Ey implies that there exists
t e S with at = 0.

Also, if the subset ES™* is a sub-near-ring group of Q(E)Q(N), then

En satisfies the N-Ore condition with respect to S.

Proof. Let (a,r)e ExS. Then aeEy and reS. Since reS
implies a(r) ™ e Q(N), a(r) ™t and a(1)™! existand as ES™ is a sub-near-
ring group, we get

B a(r) @))€ ES = a(r) p(a) e ES7L.

It follows from the definition of ES™2, that for some (b, s) e Ex S such
that

a(r) (@) = Bb)a(s) ™" = B(aa(s)) = B(a(r)b)
= B(a)a(s) = a(r)B(b)
= B((aa(s)) - a(r)b) = 0.
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Thus, there exists t € S such that

(a(es)) — a(r)b)t = 0 = aa(st) — a(r)bt = 0.

Putting bt = a’ and st =r/, we see that given (a, r) € E x S, we have
(a/, r'Ye ExS such that a(r)a/ = aa(r’), i.e, Ey satisfies N-Ore
condition with respect to S.

We now present our main result of the paper. In this part, we deal with
the classical near-ring group of quotients of a near-ring group and with the
Goldie character in such structures.

3. Main Results

It is easy to note that S is a multiplicatively closed subset of N, moreover
every s(e S) is invertible in Q(N).

The following is a criterion when the set described below may appear as
a subgroup of Q(E)Q(N).

Proposition 3.1. Let S be the set of non-zero divisors of N. If Ey
satisfies the N-Ore condition with respectto Sand s € S, then sEy <, Ey.

Proof. Clearly, sEy is an N-subgroup of Ey. Let a,b e Ey, b #0.

Then (a,s)e ExS and hence there exists a common right multiple

as’ = sa’ such that (a/, s/) € E x S. Since sa’ € sEy and s’ is a non-zero

divisor and b = 0, we have bs’ = 0. Thus, sEy <, Ey-

Because of Note 2.4, we regard Ey as a sub-near-ring group of
Q(E)g(n):

Following result gives how the N-ore condition is connected with
classical near-ring group of quotients.

Proposition 3.2. If Ey satisfies the N-Ore condition w.r.t. S, then the
subset C(Q(E)) = {xr* € Q(E)|(x, r) € E x S} is a sub-near-ring group of
Q(E)g(n)-
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C(Q(E)) is the classical near-ring group of quotients of Ey.
Proof. Let o and 3 be the embeddings
a:N—>Q(N) and B:Ey —>Q(E)Q(N)

r—r X —>

| x|

Also, forany r € S, a(r)™* € Q(N). Thus,
CQ(E)) = {xr ™t € Q(E)[(x, 1) € E x S}
= B € Q(E)I(x, 1) € E xS}
- Es .
As S sub-near-ring group of Q(E)o(yy C(Q(E))eq(n) IS a sub-

near-ring group of Q(E)Q(N) (where C(Q(N)) is the classical near-ring of

guotients of near-ring N).
Asin [2, Lemma 2.1.1], we have

Proposition 3.3. Let C(Q(N)) be the complete near-ring of quotients of

N. If 51, S, ..., Sy € S, then there exist xj, Xy, ..., X, € N and s € S such

that si‘l = xis‘l, i=1 2 ..n.

Proposition 3.4. If J be a right N-subgroup of Ep, then the subset
ISt = {xsT e Q(E)|(x, s) e I xS} is a right C(Q(N)) subgroup of
CQRE)cu)):-

Proof. Let pe C(Q(E))C(Q(N)), qeC(Q(N)). Then p=as
qzxt_l,whereaeJ,XEN,s,teS and
pq = (asH)(xt ™)

= a(s xt™1).
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Since xt™* € C(Q(N)), st =151 e NS = C(Q(N)), we get
s7H(xt™h) € C(Q(N)).

Let s_l(xt_l) =bu™l, beN, ues. Then abe J gives pge IS
Hence the result.

Proposition 3.5. If {J;, J,, ..., J;} be an independent family of right
N-subgroups of Ey, then {Jls‘l, JZS‘l, JtS‘l} is an independent family
of right C(Q(N)) -subgroup of C(Q(E))C(Q(N)).

Proof. If possible, let {Jls‘l, JZS‘l, JtS‘l} be not an independent

family. Then there is an m, 1< m <t such that JmS‘l N ZJnS‘l # 0.

n=m

—

Then there is a non-zero element, jms,;1 = jlsl‘1 + o4 JoSm o jtst‘l
(~ stands for deletion of the term underneath) in the intersection.

By Proposition 3.3, for s, ..., St € S, we get X;, ..., X € N and s € S
such that

1

=X15_, 1<i<t.

st

Now,

J-mxms_l = J-lxls_l +-t ijmS_l +ot thtS_l
. - . _1
= (hX o+ JmXm 4+ J)s

And this gives

—

JmXm = JiX o+ JmXm oo+ X # 0.

So, Jpn ﬂ[an] # (0) and is a contradiction, for {Jq, .., J¢} is an

n=m

independent family of N-subgroup of Ey.
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Therefore, {Jls_l, JtS_l} is an independent family of C(Q(N))-
subgroup of C(Q(E))C(Q(N)).
Proposition 3.6. If J is an annihilator N-subgroup of near-ring group
En (i.e, 3 = Anng(T) for some T < N), then ITNE=J.
Proof. Here x € J gives x =x1t e J51(1eS). So, xeJSINE
giving there by J < ISTNE.

1=x, where ae J,se S, x e E.

Next, y e ISTNE gives y = as~
Now as 1 =xecE, xT =0 and we get as! e Anng(T) in Ey. Thus,
y(=as™t) e J whichgives ISTTNE < J.

Hence the result.

Proposition 3.7. If C(Q(E))C(Q(N)) is the classical near-ring group of

quotients of En, T < N and J = Anng(T), then st = Anncq(e))(T)-
Proof. Here x € Annc(q(g))(T) gives x e C(Q(E))C(Q(N)) and xT =0.

Since x e C(Q(E))C(Q(N)), x = as™* for some a e Ey, SseS. Then

asIT =(0). Therefore, ae Anng(T), or aeJ and hence, X = as ™t

e JS7L. It follows that Annc ) (T) < st

To see the opposite inclusion, y e Js1 gives y = js_l, jel,seS.
Since j e J = Anncqe))(T), JeC(Q(E))cqny and jT =0 which
gives jsT =0 or js e Anncq(e))(T). Thus, y e Anncqe)(T), or
Js7t c AnnC(Q(E))(T).

Hence the result.
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Proposition 3.8. Let C(Q(E))C(Q(N)) be the classical near-ring group

of right quotients of Ey. If Ey is additively commutatively, then so also is
CRE)c@))

Proof. Let x, y € C(Q(E))C(Q(N)). Then x = ab™!, y = cd* for some
a,ceEy, b deS.

Now from Proposition 3.3, there exist t;, t, € N, s € S such that
bt= tls‘l, d~t= tzs‘l.

Therefore, x =ab™! = atls_1 =us~!, where u = atj e Ey and y =cd -1

= ctys ! = vs~!, where v = ct, e Ey. Since (Ey, +) is abelian, the result

follows.
Proposition 3.9. If the near-ring group C(Q(E))C(Q(N)) is Goldie, then
sois Ey.

Proof. If possible, then let there be a strictly ascending chain of right
annihilators of subsets of Ey,

Ji < Jy <+, where J; = Anng(T;), Tj < N.
Then by Proposition 3.7, the chain
Jls_l c JZS_1 c -
is an ascending chain of right annihilator of subsets of C(Q(E))C(Q(N)). The

near-ring group C(Q(E))C(Q(N)) being Goldie, we therefore get me Z™*

such that
ISt =35 =

This gives J,S T NE =3, ;S TNE =---.
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And by Proposition 3.6, we get J,, = Jn.1 =+, a contradiction.
Therefore, Ep cannot have an infinite strictly ascending chain of right

annihilators of subsets of Ey.

Next, if {J;} is an infinite independent family of N-subgroups of Ey,
then by Proposition 3.5, the set {JiS_l} is an infinite independent family of
right C(Q(N))-subgroup of C(Q(E))C(Q(N)). And this is not possible
because C(Q(E))C(Q(N)) is Goldie. Therefore, Ey cannot have an infinite

independent family of right N-subgroups of Ey. Therefore, Ey is Goldie.

Proposition 3.10. Let A, B, C be right N-subgroups of Ey such that
Ac B c C c Ey and A is N-essential in B, B is N-essential in C. Then A

is N-essential in C.

Proof. Let D be a (non-zero) N-subgroup of Ey and D < C. Since B is
N-essential in C, we get D (1 B = (0). And since A is N-essential in B, this

gives

(DN B)N A = (0).
Now DNA>DNBNA=(0). Thus, D A = (0). Hence A is N-essential
inC.

Proposition 3.11. If every essential N-subset of N contains a non-zero
divisor, then Ep is non-singular.

Proof. Let x € Z;(Ey ). Then there exists L <, N such that xL = (0).
Since L <, N, by given condition, there exists a non-zero divisor | € L. It

follows that xL = 0. Since L is a non-zero divisor, we have x = 0. Thus,
Z,(Ey) =0.

Lemma 3.12. Let M and H be N-subgroups of a near-ring group Ep
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such that H is N-essential in M. If a € M, a # 0, then there is an essential

right N-subgroup L of N such that aL # 0, aL < H.

Proof. Let L ={n e N|an e H}. Then L is right N-subset of N and
aN < M (since M is an N-subgroup of Ey and a € M). Also aN =0
(for I e N implies a € aN). Since H is N-essential in M, we get aN (| H

# 0 and h =an(= 0) e H gives aL # 0.

We now show that L is an essential right N-subset of N. Let I(= 0) be a
right N-subset of N. We claim that 1 N L # 0. Now, al =0 gives al < H.
So, | ¢ L giving thereby I NL=0. And if al #0, then al is an
N-subgroup of Ey and al < M.

Since H is N-essential in M, al (N H = 0. Hence for some x(# 0) € I,

ax € H. Thus, x € L. Therefore, 1 (1L = 0 and this implies that L is an

essential right N-subset of N.

And we get

Corollary 3.13. For ac M, a*H ={neN|aneH} is an right
essential N-subset of N.

Lemma 3.14. Let Ey be a Goldie near-ring group whose non
N-nilpotent elements are distributive. If x € Ey is such that A(x) = 0, then

XN is an essential N-subgroup of Ey .

Proof. Since A(x) = 0, x is non N-nilpotent and thus it is distributive. Let

M be an N-subgroup of Ey such that M (] xN = 0. Now, for a non-nilpotent

oae N andforafix se Z" andfort <s, let

y e [Zxa”NJ Nxa!N, (xa® =x,n=0,1 ..., s).

n=t
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Then y = > xa"p, = xa'py, pn, Py € N, e,

n=t

xpo = xa'py — xaSpp — - — Xop;

x(oct Pt — a’ p; — - — o) (since x is distributive).

Thus, xpg € M (1 xN which gives xpg = 0. It follows that
xolpp — xaSpy — -+ — xapy = 0, for A(x) = 0.

Similarly, we get xap; = xap, =--- = xap; = 0. Therefore,

(ZXa”N]ﬂ xa'N =0 forall se Z* and t < s.

n=t

Thus, the family {M, xN, xaN, chZN, ...} is an independent family. Ep

being Goldie, there exists u e Z* such that xa'**N =0. So, for any

meM, mo'*t =0 which gives m=0. Therefore, M =0. Thus,
M 1 xN =0 implies M = 0. Hence xN is an essential N-subgroup of Ey .

Lemma 3.15. If N is a semiprime Goldie near-ring where non-nilpotent
elements are distributive, then every distributively closed right essential
N-subset of N contains a regular element.

Proposition 3.16. A semiprime abelian Goldie near-ring group Ey in

which non N-nilpotent elements are distributive with distributively closed
right essential N-subgroups has a classical near-ring group C(Q(E))C(Q(N )

of right quotients which has no N-nilpotent right C(Q(N)) -subgroups.

Proof. Choose x, y € Ey, A(x)=0, Ey being Goldie, by Lemma
3.14, xN is an essential in Ey. Then, by Corollary 3.13, the set A = {r e N |

xr € yN} is an essential in N. Therefore, by Lemma 3.15, A contains a

"= X! for some x’ e En. Thus the right

N-Ore condition with respect to the set S of regular elements of N is satisfied
in Ey. So by Proposition 3.2, Ey has a classical near-ring group of right

quotients, say C(Q(E))C(Q(N)).

regular element, say r/. Thus, xr
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Next, let J be a C(Q(N))-subgroup of C(Q(E))C(Q(N)) such that
Jo? =0, ooe N. Now JNE isa right N-subgroup of Ej . Because of
Proposition 3.4,

(JNE)CQ(E)) = {xc|x e IN, c e S}.

Now, XeJ,XzyS_l,yeE,SeS. So, xs =Yy e JN.

Thus,

X = (ys)s~* € (IN)C(Q(E)).

Conversely, if ys™* e (JNE)C(Q(E)), ye JNE, seS§, then yst e J.
Hence J = (J N E)C(Q(E)). Again, Ja? = 0 gives (J N Eaz) c Jo® = 0.

Therefore, J () E is an N-nilpotent right N-subgroup of Ey and Ey is

semiprime. Hence J (1 E = 0. Thus, it follows from what we have showed
above that J = 0.

Example 1. N = {0, 1, 2, 3, 4, 5, 6} is a near-ring under addition modulo
7 and multiplication defined by the following table:

o o1 M W N B O

o O O O O o o | o
o o1 A W ON P O
g W P o M N O DN
w o N O b~ O w
w oo N O b~ O b
g W P o M N O o
o o A W N P OO

It has no non-zero zero-divisors. Hence, every essential N-subset of this near-
ring contains a non-zero-divisor. It follows from Proposition 3.11 that the
near-ring group is non-singular.
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Example 2. N ={0, a, b, ¢} under the addition and multiplication

defined by the following tables:

+ 0 a b c
0 0 a b c
a a 0 b
b b C 0 a
c c b a 0
o 0 a b c
0 0 0 0 0
a 0 0 a
b 0 a b b
c 0 a c c

Its N-subsets are {0}, {0, a} and {0, a, b, c}. Of these, the second and

the third are essential. It is at once seen that the near-ring does not satisfy the

condition of Proposition 3.11, but is non-singular.

Example 3. N ={0,1, 2,3,4,5,6, 7,8} is a near-ring under addition

modulo 8 and multiplication as defined by the following table:

. 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 0 0 2 0 4 4 2
2 0 0 0 4 0 0 0 4
3 0 0 0 6 0 4 4 6
4 0 0 0 0 0 0 0 0
5 0 0 0 2 0 4 4 2
6 0 0 0 4 0 0 0 4
7 0 0 0 6 0 4 4 6




182 Khanindra Chandra Chowdhury and Dipti Nath
Here near-ring group y N has only two non-trivial N-subgroups {0, 4}
and {0, 2, 4, 6} such that {0, 4} N {0, 2, 4, 6} = 0. That is each of them has

non-zero intersection with other N-subgroups of \ N. Therefore,
{0, 4} ge NN' {O, 2, 4, 6} ge NN‘

In this example, we see that {0, 4} <, {0, 2, 4, 6}. This shows the
validity of Proposition 3.10.

Example 4. Consider the near-ring N ={0,1, 2, 3, 4,5, 6,7} under

addition modulo 8 and multiplication defined by the following table:

~N|loo o0 A W N P O

Ol O O o o o oo
~N~N|o o~ W N BFP O
oldh M OO DN O|DN
AN N D P O W OoO|w
~AlO p O M O » O >
Wl P D NN OO,
N DA OO MO OO
RN WA OO N O

Here {0, 4} and {0, 2, 4, 6} are ideals of N such that {0, 4} N
{0, 2, 4, 6} # 0. Hence {0, 4} and {0, 2, 4, 6} are essential ideals of \ N.

Example 5. In Klein 4-group, the near-ring N without unity w.r.t. the
operations addition defined in Table 1 and the multiplication defined in the
Table 2 has the invariant subsets, {0, b}, {0, a, b}. But for any invariant
subsets, say L(# 0) of N, we get L" =0 forany n e Z*. Hence N has no

non-zero nilpotent invariant subsets. In this sense, N is strongly semi-prime.



Characteristics of Classical Near-ring Group of Quotients 183

Table 1
+ 0 a b C
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0
Table 2
o 0 a b c
0 0 0 0 0
a 0 a 0 a
b 0 0 b b
c b a b c

Example 6. Consider a non-zero symmetric near-ring N(= Dg) without

unity w.r.t. the addition and multiplication defined by Tables 3 and 4,
respectively.

Table 3

+ 0 a 2a 3a b a+b 2a+b 3a+b

0 0 a 2a 3a b a+b 2a+b 3a+b

a a 2a 3a 0 a+b 2a+b 3a+b b
2a 2a 3a 0 a 2a+b 3a+b b a+b
3a 3a 0 a 2a 3a+b b a+b 2a+b

b b 3a+b 2a+b a+b 0 3a 2a a
a+b|a+b b 3a+b 2a+b a 0 3a 2a
2a+bl2a+b a+b b 3a+b 2a a 0 3a

3a+b{3a+b 2a+b a+b b 3a 2a a 0
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Table 4

* 0 a 2a 3a b a+b 2a+b 3a+b

0 0 0 0 0 0 0 0 0

a 0 a 2a a 0 0 0 2a
2a 0 2a 0 2a 0 0 0 0
3a 0 3a 2a 3a 0 0 0 2a

b 0 b b b b b b b
a+b| 0 a+b 2a+b a+b b b b 2a+b
2a+b| 0 2a+b b 2a+b b b b b
3a+b| 0 3a+b 2a+b 3a+b b b b 2a+b

The non-zero proper left N-subsets are {0, b}, {0, b, a+ b},
{0, b, 2a + b}, {0, b, 2a, 2a + b}, {0, 2a, b, 2a + b, 3a + b}, etc.

Here we note for any subsets L of N, there exist no left N-subsets X of N
suchthat X"L =0, forany ne Z*.

Example 7. Consider the near-ring N (= Zg) without unity w.r.t. addition

modulo 8 and multiplication defined by the following table:

N o o1~ W ON O

O O O O O O o o] o
O O O O O O O Ok
O O O O O O o oOo|N
o A N O O DM N O] W
O O O O O o o o >
h O A O D O » O] WG
h O A O D O » O O
o N N O OO M~ N O
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Here N has proper left N-subsets viz. {0, 1}, {0, 2}, {0, 4}, {0, 4, 5},
{0, 4, 6}, {0, 2, 4, 6}, {0, 4, 6, 7}, {0, 2, 3, 4, 6}, etc.

Now {0, 4, 5}{0, 5} = {0, 4} (= 0) and {0, 4, 5}%{0, 5} = 0.

It is easy to see that if {0, 5} is replaced by {0, 4, 5> = 0 and thereby
{0, 4, 5} is found as nilpotent subset of N.

Example 8. In the near-ring N(= Zg) without unity w.r.t. addition

modulo 8 and multiplication defined by the following table, the only proper
left N-subset is {0, 2}:

N o o1 A W N B O

O O O O O o o o| o
N o oA W N Rk O
O O O O O O o o|MN
~N o o b~ W N P O|w
N o o~ W N Rk O|N
~N o g b~ W N P OO,
N~ o o b~ W N P OO
N o o~ W N Rk O|N

Hence for any subset L(= 0) of it different from {0, 2}, we have

{0, 2}L = 0. But {0, 2)°L = 0.
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