

CHARACTERISTICS OF CLASSICAL NEAR-RING GROUP OF QUOTIENTS

Khanindra Chandra Chowdhury and Dipti Nath

Department of Mathematics
Gauhati University
Guwahati, 781014, Assam, India
e-mail: chowdhurykc@yahoo.com
diptinathkalita@gmail.com

Abstract

In this paper, we present near-ring group structure of quotients of a near-ring group and It is seen that near-ring of quotients may appear as a particular case in some cases. We also try to explore how inheritance of so-called Goldie character plays an important role in the existence of such structures.

1. Introduction

Here we discuss some characteristics of near-ring group of quotients of a near-ring group with so-called unusual near-ring module structure as referred by Grainger [5]. Here we give some insight to some Goldie characters of such a structure leading to the existence of such quotients as well as some sort of inheritances of Goldie properties.

© 2012 Pushpa Publishing House

2010 Mathematics Subject Classification: 16P20, 16P70, 16Y30.

Keywords and phrases: near-ring, near-ring group, annihilator, essential, Goldie character, fractions, near-ring of quotients.

Submitted by Yong Uk Cho; Editor: JP Journal of Algebra, Number Theory and Applications: Published by Pushpa Publishing House.

Received March 20, 2012; Revised May 26, 2012

We begin with the formal definition of such an unusual module structure. Suppose (G, +) is a group and $(K, +, \cdot)$ is a right near-ring.

A complementary representation of K on G is a semigroup homomorphism $\theta:(K,\cdot)\to (\operatorname{End}(G),\circ).$

Suppose that $(K, +, \cdot)$ is a right near-ring. Then an *unusual near-ring K* module is a pair ((G, +), *), where (G, +) is a group and $*: G \times K \to G$ is a function which satisfies:

(i)
$$x * (a \cdot b) = (x * a) * b$$
 for all $x \in G$ and $a, b \in K$ and

(ii)
$$(x + y) * a = x * a + y * a$$
 for all $x, y \in G$ and $a \in K$.

Suppose ((G, +), *) is an unusual near-ring K-module. Then a function

$$\theta: K \to \operatorname{End}(G)$$
,

$$a \rightarrow a\theta$$

given by

$$a\theta: G \to G$$
,

$$x \to x(a\theta) = x * a$$

is a semigroup homomorphism. Thus, '*' induces the complimentary representation.

Conversely, if $\theta: K \to \operatorname{End}(G)$ is a complimentary representation, then define a *right scalar multiplication*

$$*: G \times K \to G$$
 by $x * a = x(a\theta)$ for all $a \in K$ and $x \in G$.

Thus, θ induces a right scalar multiplication that makes G an unusual nearring K module. We consider such an unusual near-ring module structure and call it a *right near-ring group* of a right near-ring. (In contrast, we usually deal with the left near-ring group structure of a right near-ring.)

And as such the definition of an unusual near-ring group structure of an additive group (not necessarily abelian) over a right near-ring with identity 1 is as follows.

Let (E, +) be a group and N be a near-ring with a map

$$\mu: E \times N \to E, (x, q) \to xq$$

such that for all $x, y \in E$ and $q, r \in N$, we have

$$(x + y)q = xq + yq,$$

$$x(qr) = (xq)r,$$

$$x0 = 0$$
and $x1 = x$,

where zero in the left is the zero of N and the zero in the right is the zero in E. Then $E_N = (E, +, \mu)$ is called the *near-ring group*.

A subset A of a near-ring group E_N is a sub-near-ring group of E_N , if x - y, $xn \in A$ for all $x, y \in A$, $n \in N$.

The notion immediately leads us to the following.

If E and F are two such unusual near-ring N-groups, then a mapping $f:E\to F$ is an N-homomorphism if:

- (i) f is a group homomorphism
- (ii) f(en) = f(e)n, for $e \in E$ and $n \in N$

in a usual way the notion of kernel of f follows.

The notion of an *N-map* follows when the condition (i) is absent.

In what follows, it contains the notion of essential as well as rational extensions together with some relevant results.

An N-subgroup $A(\neq 0)$ of E (i.e., (A, +) is a subgroup of (E, +), with $AN \subseteq A$) is an essential N-subgroup of E or E is an essential extension of

A, if for every N-subgroup $X(\neq 0)$ of E, we have $A \cap X \neq 0$ and is denoted by $A \subseteq_e E$.

An *N*-subgroup *D* of *E* is a dense (or rational) *N*-subgroup of *E* or *E* is a rational extension of *D*, written $D \subseteq_r E$ if given $u, v \in E$ with $u \neq 0$ there exists $t \in N$ such that $vt \in D$ and $ut \neq 0$.

An *N*-subset *D* of *L* where *N* is a sub-near-ring of the near-ring *L* is $D \subseteq_r L$ if and only if given $k, l \in L$ with $l \neq 0$ there exists $x \in N$ such that $kx \in D$ and $lx \neq 0$.

An *N*-subgroup *D* of *F* where *F* is a near-ring group over *L* (where *N* is a sub-near-ring of near-ring *L*) is $D \subseteq_r F$ if and only if given $p, q \in L$ with $q \neq 0$ there exists $x \in D$ such that $px \in D$ and $qx \neq 0$.

If $D \subseteq F \subseteq E$, where E is a near-ring group, F is a sub-near-ring group and D is a normal sub-near-ring group of F such that $D \subseteq_r E$, then zero homomorphism is the only homomorphism from F/D to E (i.e., $\operatorname{Hom}(F/D,E)=(0)$). Clearly, a rational extension is an essential extension. Moreover, if $D \subseteq G \subseteq E$, where E is a near-ring group, G, an N-subgroup of E and D an N-subset of G, then $D \subseteq_r E$ implies $D \subseteq_r G \subseteq_r E$.

In this paper, we mainly present:

- (i) the formal structure of near-ring group of quotients of a near-ring group ${\cal E}_N$ as mentioned above,
- (ii) its relation with so-called *N-Ore condition* with respect to set *S* of non-zero divisors of *N*,
- (iii) the sub-near-ring group character of so-called classical near-ring group of quotients,
- (iv) the inheritance of finite independent family character of right C(Q(N))-subgroup of $C(Q(E))_{C(Q(N))}$ which arises from such a family of right N-subgroups of E_N .

Finally, we deal with some interesting results like necessary conditions of Goldie character of E_N if the near-ring group $C(Q(E))_{C(Q(N))}$ is so. Finally, we prove that in case of a semiprime Abelian Goldie near-ring group E_N with its non N-nilpotent elements being distributive with distributively closed essential N-subgroups possesses a classical near-ring group $C(Q(E))_{C(Q(N))}$ of right quotients having no N-nilpotent right C(Q(N))-subgroups.

Definitions and notation

We begin with the notion of a fraction of a near ring group E_N .

A fraction of E_N is an N-map $f: A_N \to E_N$, where A_N is a dense N-subgroup of E_N . It is easy to see that for given two fractions f and g of E_N with domains Dom f and Dom g, respectively, the maps:

(i)
$$f + g : \text{Dom } f \cap \text{Dom } g \to E_N$$

$$x \to f(x) + g(x)$$

and (ii) for given two fractions f and $\frac{n}{1}$ $(n \in N)$ with domains Dom f and Dom $\frac{n}{1}$, and also $\frac{n}{1}$: Dom $\frac{n}{1} \to E_N$, $x \to nx$,

$$\left(f \cdot \frac{n}{1}\right) : \left(\frac{n}{1}\right)^{-1} (\text{Dom } f) \to E_N$$

$$\text{or } \left(f \cdot \frac{n}{1}\right) : \left(\frac{n}{1}\right)^{-1} (A_N) \to E_N$$

$$\left(A_N \subseteq E_N \Rightarrow \left(\frac{n}{1}\right)^{-1} (A_N) \subseteq \left(\frac{n}{1}\right)^{-1} (E_N) = \text{Dom}\left(\frac{n}{1}\right)\right)$$

$$x \to f\left(\left(\frac{n}{1}\right)(x)\right)$$

are also fractions of E_N .

Given two fractions f and g of E_N , f and g are '~' related (denoted 'f ~ g') if and only if they agree on the common part of their domains.

It is to be noted that if f and g are fractions of E_N , then $f \sim g$ if and only if there exists a dense N-subgroup D of such that f(x) = g(x) for all $x \in D$ and the relation ' \sim ' is an equivalence relation on the set of all fractions of E_N .

A near-ring group F_L with E_N as its sub-near-ring group is a *near-ring* group of quotients of E_N if $E_N \subseteq_r F_L$, where N is a sub-near-ring of near-ring L.

The near-ring group E_N satisfies the *N-Ore condition w.r.t a subset S of* N, if given $(x, r) \in E \times S$, there exists a common right multiple

$$xr' = rx'$$

such that $(x^{\prime}, r^{\prime}) \in E \times S$.

Let A be any sub-near-ring group of near-ring group E_N over near-ring N and $T\subseteq N$. Then

$$Ann_E(T) = \{a \in E \mid ax = 0 \text{ for all } x \in T\}$$

and $Ann_N(A) = \{x \in N \mid ax = 0 \text{ for all } a \in A\}.$

If (G, +) is a group and N is a near-ring, then G is said to be *Goldie near-ring group* when

- (i) G has no infinite independent family of non-zero N-subgroups, and
- (ii) annihilators of subsets of G in N satisfy the ascending chain condition (under set inclusion).

Every Goldie near-ring is clearly a Goldie near-ring group.

The right singular N-subgroup of E_N is the right N-subgroup

$$Z_1(E_N) = \{x \in E_N \mid xL = 0, \text{ for some strictly essential } N\text{-subgroup } L \text{ of } N\}.$$

The near-ring group E_N is called *non-singular* if $Z_1(E_N) = 0$.

A right N-subgroup A of E_N is 'N-nilpotent' if we have some $n \in N$, $\alpha \in \mathbb{Z}^+$, we have $An^{\alpha} = 0$.

An element 'a' is said to be 'N-nilpotent' if for some $n \in N$, $\alpha \in \mathbb{Z}^+$, $an^{\alpha} = 0$.

We shall call a near-ring group E_N 'semiprime' if E_N has no non-zero 'N-nilpotent' N-subgroup of E_N .

2. Preliminaries

Now we present the important notion of what we are intending.

Proposition 2.1. Let F_L be a near-ring group with E_N as a sub-near-ring group (where N is a sub-near-ring of near-ring L). Then F_L is a near-ring group of quotients of E_N if and only if for every $q \in L$, $q \neq 0$, we have $q^{-1}E_N \subseteq_r E_N$, $q(q^{-1}E_N) \supset (0)$ where $q^{-1}E_N = \{x \in E_N \mid qx \in E_N\}$.

Proof. Suppose $E_N \subseteq_r F_L$. Given $z \in q^{-1}E_N$ and $n \in N$. Then we get

$$q(zn) \in E_N$$

 $\Rightarrow zn \in q^{-1}E_N.$

Hence $q^{-1}E_N$ is a subset of F_L . $u, v \in F_L$, $v \neq 0$. Then $qu \in F_L$. Since $E_N \subseteq_r F_L$, there exists $t \in N$ such that $(qu)t \in E_N$ and $vt \neq 0$.

The first condition implies that $ut \in q^{-1}E_N$. Thus, given $u, v \in F_L$, $v \neq 0$, there exists $t \in N$ such that $ut \in q^{-1}E_N$ and $vt \neq 0$ leading there by $q^{-1}E_N \subseteq_r F_L$.

Since we have $q^{-1}E_N \subseteq E_N \subseteq F_L$ and $q^{-1}E_N \subseteq_r F_L$, it follows that $q^{-1}E_N \subseteq_r E_N$. Now $a \in E_N \cap qE_N$ gives $a \in E_N$, qE_N and hence there exists $b \in E_N$ such that a = qb. Since $qb = a \in E_N$, we have $b = q^{-1}E_N$. Hence $a(=qb) \in q(q^{-1}E_N)$. Thus, $q(q^{-1}E_N) \supseteq E_N \cap qE_N$.

Recalling $E_N \subseteq_r F_L$ and $E_N \subseteq_e F_L$, we see that $E_N \cap qE_N \supset (0)$, which gives $q(q^{-1}E_N) \supset (0)$.

Suppose $q^{-1}E_N \subseteq_r E_N$ and $q(q^{-1}E_N) \supset (0)$ hold and $p, q \in L$ with $q \neq 0$. Now we show that there exists $x \in E_N$ for which $px \in E_N$ and $qx \neq 0$. As $q(q^{-1}E_N) \subseteq qE_N$ and

$$q(q^{-1}E_N) = \{qx \mid x \in q^{-1}E_N\}$$
$$= \{qx \mid qx \in E_N\}$$
$$\subseteq E_N.$$

We get $q(q^{-1}E_N) \subseteq E_N \cap qE_N$ which in turn gives $E_N \cap qE_N \supset (0)$. Thus, there exists $b \in E_N$ such that a = qb. We note that $qb \neq 0$.

- (1) Suppose p = 0 and x = b. Then we get $px(= 0b = 0) \in E_N$ and $qx(= qb) \neq 0$.
 - (2) Suppose $p \neq 0$. Then $q^{-1}E_N \subseteq_r E_N$ gives $p^{-1}E_N \subseteq_r E_N$.

And we have $b, qb \in E_N$ with $qb \neq 0$. Hence there exists $y \in N$ such that $by \in p^{-1}E_N$ and $(qb)y \neq 0$. Again x = by gives $x \in E_N$ such that $px \in E_N$.

Thus, in both the cases p=0 and $p \neq 0$, there exists $x \in E_N$ with $px \in E_N$ and $qx \neq 0$. Hence $E_N \subseteq_r F_L$.

We see in this section that the fractions of E_N yield a near-ring group of quotients of E_N .

Let Q(E) be the set of all equivalence classes of \bar{f} , \bar{g} , ... into which the fractions f, g, ... of E_N are partitioned by the relation \sim , defined in Q(E) by the rule $\bar{f} + \bar{g} = \overline{f + g}$.

We see that '+' in Q(E) is justified. For, $f \sim h$ and $g \sim l$, let

 $x \in \text{Dom } f \cap \text{Dom } g \cap \text{Dom } h \cap \text{Dom } l.$

Now

$$(f+g)(x) = f(x) + g(x)$$
$$= h(x) + l(x)$$
$$= (h+l)(x).$$

Hence $f + g \sim h + l$. Thus, if $\overline{f} = \overline{h}$ and $\overline{g} = \overline{l}$, we have $\overline{f + g} = \overline{h + l}$.

Again, let Q(N) be the set of all equivalence classes $\frac{\overline{n}}{1}, \frac{\overline{\alpha}}{1}, \cdots$ into which the fractions $\frac{n}{1}, \frac{\alpha}{1}, \cdots$ of N are partitioned by the relation \sim . Then define in Q(E) the rule as follows:

$$\bar{f}\,\frac{\overline{n}}{1} = \overline{f\,\frac{n}{1}}.$$

We see that it is well-defined in Q(E). Suppose $f \sim g$ and $\frac{n}{1} \sim \frac{\alpha}{1}$.

Let $x \in \text{Dom} \frac{n}{1} \cap \text{Dom} \frac{\alpha}{1} \cap \left(\frac{\alpha}{1}\right)^{-1} (\text{Dom } f) \cap \left(\frac{\alpha}{1}\right)^{-1} (\text{Dom } \frac{n}{1})$. Then

$$\left(f\frac{n}{1}\right)(x) = f\left(\frac{n}{1}(x)\right)$$
$$= f\left(\frac{\alpha}{1}(x)\right)$$
$$= g\left(\frac{\alpha}{1}(x)\right) = \left(g\frac{\alpha}{1}\right)(x).$$

Hence $f \frac{n}{1} \sim g \frac{\alpha}{1}$. Thus, if $\bar{f} = \bar{g}$ and $\frac{\bar{n}}{1} = \frac{\bar{\alpha}}{1}$, then we have $f \frac{\bar{n}}{1} = g \frac{\bar{\alpha}}{1}$.

Proposition 2.2. The set Q(E) all equivalence classes of \bar{f} , \bar{g} , ... into which the fractions f, g, ... of E_N are partitioned by the relation \sim is a near-ring group defined by the rule $\bar{f} + \bar{g} = \overline{f + g}$ and $\bar{f} \bar{\alpha} = \overline{f \alpha}$, where $\bar{\alpha} \in Q(N)$, the near-ring of quotients.

Proof. Let us define $\mu: Q(E) \times Q(N) \to Q(E)$, $(\bar{f}, \bar{\alpha}) = \bar{f} \bar{\alpha} = \overline{f \alpha}$, for all $\bar{\alpha} \in Q(N)$, $\bar{f} \in Q(E)$.

Now for all $\overline{\alpha_1}$, $\overline{\alpha_2} \in N$, \overline{f} , $\overline{g} \in Q(E)$, we have

$$(\bar{f} + \bar{g})(\overline{\alpha_1}) = \overline{(f + g)\alpha_1}$$

$$= \overline{f\alpha_1 + g\alpha_1}$$

$$= \overline{f\alpha_1} + \overline{g\alpha_1}$$

$$= \bar{f} \overline{\alpha_1} + \overline{g} \overline{\alpha_1},$$

$$\bar{f}(\overline{\alpha_1} \overline{\alpha_2}) = \bar{f}(\overline{\alpha_1\alpha_2})$$

$$= \overline{f(\alpha_1\alpha_2)}$$

$$= (\overline{f\alpha_1})\overline{\alpha_2}$$

$$= (\bar{f} \overline{\alpha_1})\overline{\alpha_2},$$

Q(E) has an additive identity $\overline{0}$ given by the fraction $0:E_N\to E_N$, $x\to 0$.

For every $\bar{f} \in Q(E)$ we get a fraction

$$-f: \text{Dom } f \to E_N, \quad x \to -f(x).$$

Given $x \in \text{Dom } f$, we have

$$(f + (-f))(x) = f(x) - f(x) = 0,$$

$$0(x)=0,$$

$$((-f) + (f))(x) = -f(x) + f(x) = 0.$$

Hence
$$\overline{f + (-f)} = \overline{0} = \overline{(-f) + f}$$
 or $\overline{f} + \overline{(-f)} = \overline{0} = \overline{(-f)} + \overline{f}$.

Thus, every $\bar{f} \in Q(E)$ has an inverse $\overline{(-f)} \in Q(E)$. And so we have

$$\bar{f}0=0.$$

Hence $Q(E) = (Q(E), +, \mu)$ is a near-ring group over Q(N).

In particular, $Q(N) = (Q(N), +, \cdot)$ is a near ring and Q(E) is a near-ring Q(N) group.

Proposition 2.3. E_N is embedded in the near-ring group $Q(E)_{Q(N)}$. (and so N is embedded in the near-ring Q(N)).

Proof. For every $n \in N$, we get a left multiplication in the near-ring group of transformations of E_N ,

$$\frac{n}{1}: E_N \to E_N, \quad x \to nx.$$

Given $x \in E_N$, $p \in N$, we see that

$$\left(\frac{n}{1}\right)(xp) = n(xp)$$

$$= (nx) p$$

$$= \left(\frac{n}{1}\right)(x) p.$$

Thus, the left multiplication $\left(\frac{n}{1}\right)$ is an N-map and hence a fraction of E_N .

Consider the map $\alpha: E_N \to Q(E)_{Q(N)}, x \to \frac{\overline{x}}{1}$, for $x \in E_N$. Then for $x, y \in E_N$, we have

$$\alpha(x + y) = \frac{\overline{x + y}}{1}$$

$$= \frac{\overline{x}}{1} + \frac{\overline{y}}{1}$$

$$= \alpha(x) + \alpha(y).$$

Again, for $n \in N$, $x \in E_N$, we have

$$\alpha(xn) = \frac{\overline{xn}}{1} = \frac{\overline{x}}{1} \frac{n}{1}$$

$$= \frac{\overline{x}}{1} n$$

$$= \frac{\overline{x}}{1} n$$

$$= \alpha(x) n.$$

Thus, α is an *N*-homomorphism.

Now,

kernel
$$\alpha = \left\{ x \in E_N \mid \frac{\overline{x}}{1} = 0 \right\}$$

$$= \left\{ x \in E_N \mid x = 0 \right\}$$

$$= (0).$$

Hence α is an *N*-monomorphism.

Note 2.4. Since the map $\alpha: E_N \to Q(E)_{Q(N)}$ is a monomorphism, we shall identify $\alpha(E_N)$ with E_N and $\frac{\overline{n}}{1}$ with n, for simplicity of notation.

Proposition 2.5. If $D \subseteq_r E_N$ and $q \in Q(N)$, $q \neq 0$, then qD = (0) implies q = 0.

Proof. Let $q = \overline{t}$, where t is a fraction of N, and $n \in N$. Then qD = (0) implies that

$$\overline{t(n/1)} = (0)$$

or t((n/1)(x)) = 0 for every $x \in (n/1)^{-1}(\text{Domt}) \Rightarrow t(\text{Domt}) = 0$. Thus, $q = \bar{t} = 0$.

Proposition 2.6. If $q \in Q(N)$, t is a fraction of N, and f is a fraction of E such that $q = \bar{t}$, then $Dom f \subseteq q^{-1}E_N$.

Proof. Let $r \in \text{Dom } f$. Then

$$qr = \overline{t} \frac{\overline{r}}{1} = t\overline{(r/1)} = \overline{t(r)}/1 \in E_N$$

 $\Rightarrow r \in q^{-1}E_N.$

Hence Dom $f \subseteq q^{-1}E_N$.

As a corollary, we get

Corollary 2.7. If $q \in Q(E)_{Q(N)}$, then $q^{-1}E_N \subseteq_r E_N$, where $q^{-1}E_N = \{x \in E_N \mid qx \in E_N\}$.

Also,

Proposition 2.8. If $q \in Q(N)$, $q \neq 0$, then

$$q(q^{-1}E_N)\supset (0).$$

The proof immediately follows from Proposition 2.5.

Using the last two results and Proposition 2.1, we have

Theorem 2.9. $Q(E)_{Q(N)}$ is a near-ring group of quotients of E_N .

Proposition 2.10. Let E_N satisfy the N-Ore condition with respect to a multiplicatively closed subset S of N and have N-homomorphisms

$$\alpha: N \to Q(N)$$
,

$$\beta: E_N \to Q(E)_{Q(N)}$$

such that $r \in S$ implies $\alpha(r)^{-1} \in Q(N)$. Then the subset

$$ES^{-1} = {\beta(a)\alpha(r)^{-1} | (a, r) \in E \times S}$$

is a sub-near-ring group of $Q(E)_{Q(N)}$.

Proof. Let $\beta(a)\alpha(r)^{-1}$, $\beta(b)\alpha(s)^{-1} \in ES^{-1}$. Then we have (a, r), $(b, s) \in E \times S$. Since E_N satisfies the N-Ore condition w.r.t. S and (a, r), $(b, s) \in E \times S$, we get that there exists (r', s'), $(b', r'') \in E \times S$ such that rs' = sr' and br'' = rb'. And hence

(i)
$$\beta(rs') = \beta(sr')$$
 and

(ii)
$$\beta(br'') = \beta(rb')$$
.

Again, as N satisfies the Ore condition w.r.t. S and $(r, s), (p, r) \in N \times S$, we therefore get that there exist $(r', s'), (p', r') \in N \times S$ such that rs' = sr' and pr'' = rp'. And hence

(iii)
$$\alpha(rs') = \alpha(sr')$$
 and

(iv)
$$\alpha(pr'') = \alpha(rp')$$
.

Now

$$\beta(a)\alpha(r)^{-1} - \beta(b)\alpha(s)^{-1}$$

$$= \beta(a)(\alpha(s')\alpha(sr')^{-1} - \beta(b)(\alpha(r')\alpha(rs')^{-1})) \text{ (using (iii))}$$

$$= \beta(a)\alpha(s')\alpha(rs')^{-1} - \beta(b)\alpha(r')\alpha(rs')^{-1}$$

$$= (\beta(a)\alpha(s') - \beta(b)\alpha(r'))\alpha(rs')^{-1} \in ES^{-1}.$$

Again, let $\alpha(n)\alpha(r)^{-1} \in NS^{-1}$. Then

$$\beta(b)\alpha(s)^{-1}\alpha(n)\alpha(r)^{-1}$$

$$= \beta(b)\alpha(rs')\alpha(r')^{-1}\alpha(n)\alpha(r)^{-1} \quad \text{(using (iii))}$$

$$= \beta(b)\alpha(rs')\alpha(n')\alpha(r_1')^{-1},$$

where

$$\alpha(r')^{-1}\alpha(n) = \alpha(n')\alpha(r'_1)^{-1}$$
$$= \beta(b)\alpha(rs'n')\alpha(rr'_1)^{-1}$$
$$\in ES^{-1}.$$

Hence ES^{-1} is a sub-near-ring group of $Q(E)_{O(N)}$.

Remark 2.11. We note that if in Proposition 2.10., $1 \in S$, then the nearring group ES^{-1} has $\beta(1)$ as its identity.

Thus, we get

Proposition 2.12. Let E_N be a near-ring group and S be a multiplicatively closed subset of N containing 1, $\alpha: N \to Q(N)$, $\beta: E_N \to Q(E)_{Q(N)}$ are homomorphisms satisfying the condition $\alpha(r)^{-1} \in Q(N)$, for $r \in S$ and the condition $\beta(a) = 0$, for $a \in E_N$ implies that there exists $t \in S$ with at = 0.

Also, if the subset ES^{-1} is a sub-near-ring group of $Q(E)_{Q(N)}$, then E_N satisfies the N-Ore condition with respect to S.

Proof. Let $(a, r) \in E \times S$. Then $a \in E_N$ and $r \in S$. Since $r \in S$ implies $\alpha(r)^{-1} \in Q(N)$, $\alpha(r)^{-1}$ and $\alpha(1)^{-1}$ exist and as ES^{-1} is a sub-nearring group, we get

$$\beta(1)\alpha(r)^{-1}\beta(a)\alpha(1)^{-1} \in ES^{-1} \Rightarrow \alpha(r)^{-1}\beta(a) \in ES^{-1}.$$

It follows from the definition of ES^{-1} , that for some $(b, s) \in E \times S$ such that

$$\alpha(r)^{-1}\beta(a) = \beta(b)\alpha(s)^{-1} \Rightarrow \beta(a\alpha(s)) = \beta(\alpha(r)b)$$
$$\Rightarrow \beta(a)\alpha(s) = \alpha(r)\beta(b)$$
$$\Rightarrow \beta((a\alpha(s)) - \alpha(r)b) = 0.$$

Thus, there exists $t \in S$ such that

$$(a(\alpha(s)) - \alpha(r)b)t = 0 \Rightarrow a\alpha(st) - \alpha(r)bt = 0.$$

Putting $bt = a^{/}$ and $st = r^{/}$, we see that given $(a, r) \in E \times S$, we have $(a^{/}, r^{/}) \in E \times S$ such that $\alpha(r)a^{/} = a\alpha(r^{/})$, i.e., E_N satisfies N-Ore condition with respect to S.

We now present our main result of the paper. In this part, we deal with the classical near-ring group of quotients of a near-ring group and with the Goldie character in such structures.

3. Main Results

It is easy to note that S is a multiplicatively closed subset of N, moreover every $s (\in S)$ is invertible in Q(N).

The following is a criterion when the set described below may appear as a subgroup of $Q(E)_{O(N)}$.

Proposition 3.1. Let S be the set of non-zero divisors of N. If E_N satisfies the N-Ore condition with respect to S and $s \in S$, then $sE_N \subseteq_r E_N$.

Proof. Clearly, sE_N is an N-subgroup of E_N . Let $a, b \in E_N$, $b \neq 0$. Then $(a, s) \in E \times S$ and hence there exists a common right multiple as' = sa' such that $(a', s') \in E \times S$. Since $sa' \in sE_N$ and s' is a non-zero divisor and $b \neq 0$, we have $bs' \neq 0$. Thus, $sE_N \subseteq_r E_N$.

Because of Note 2.4, we regard E_N as a sub-near-ring group of $Q(E)_{Q(N)}$.

Following result gives how the *N*-ore condition is connected with classical near-ring group of quotients.

Proposition 3.2. If E_N satisfies the N-Ore condition w.r.t. S, then the subset $C(Q(E)) = \{xr^{-1} \in Q(E) | (x, r) \in E \times S\}$ is a sub-near-ring group of $Q(E)_{Q(N)}$.

C(Q(E)) is the classical near-ring group of quotients of E_N .

Proof. Let α and β be the embeddings

$$\alpha: N \to Q(N)$$
 and $\beta: E_N \to Q(E)_{Q(N)}$
$$r \to r \qquad \qquad x \to \frac{\overline{x}}{1}.$$

Also, for any $r \in S$, $\alpha(r)^{-1} \in Q(N)$. Thus,

$$C(Q(E)) = \{xr^{-1} \in Q(E) | (x, r) \in E \times S\}$$
$$= \{\beta(x)\alpha(r)^{-1} \in Q(E) | (x, r) \in E \times S\}$$
$$= ES^{-1}.$$

As ES^{-1} sub-near-ring group of $Q(E)_{Q(N)}$, $C(Q(E))_{c(Q(N))}$ is a sub-near-ring group of $Q(E)_{Q(N)}$ (where C(Q(N)) is the classical near-ring of quotients of near-ring N).

As in [2, Lemma 2.1.1], we have

Proposition 3.3. Let C(Q(N)) be the complete near-ring of quotients of N. If $s_1, s_2, ..., s_n \in S$, then there exist $x_1, x_2, ..., x_n \in N$ and $s \in S$ such that $s_i^{-1} = x_i s^{-1}$, i = 1, 2, ..., n.

Proposition 3.4. If J be a right N-subgroup of E_N , then the subset $JS^{-1} = \{xs^{-1} \in Q(E) | (x, s) \in J \times S\}$ is a right C(Q(N)) subgroup of $C(Q(E))_{C(Q(N))}$.

Proof. Let $p \in C(Q(E))_{C(Q(N))}$, $q \in C(Q(N))$. Then $p = as^{-1}$, $q = xt^{-1}$, where $a \in J$, $x \in N$, s, $t \in S$ and

$$pq = (as^{-1})(xt^{-1})$$

= $a(s^{-1}xt^{-1})$.

Since $xt^{-1} \in C(Q(N))$, $s^{-1} = 1 s^{-1} \in NS^{-1} = C(Q(N))$, we get

$$S^{-1}(xt^{-1}) \in C(Q(N)).$$

Let $s^{-1}(xt^{-1}) = bu^{-1}$, $b \in N$, $u \in s$. Then $ab \in J$ gives $pq \in JS^{-1}$. Hence the result.

Proposition 3.5. If $\{J_1, J_2, ..., J_t\}$ be an independent family of right N-subgroups of E_N , then $\{J_1S^{-1}, J_2S^{-1}, ..., J_tS^{-1}\}$ is an independent family of right C(Q(N))-subgroup of $C(Q(E))_{C(Q(N))}$.

Proof. If possible, let $\{J_1S^{-1}, J_2S^{-1}, ..., J_tS^{-1}\}$ be not an independent family. Then there is an m, $1 \le m \le t$ such that $J_mS^{-1} \cap \sum_{n \ne m} J_nS^{-1} \ne 0$.

Then there is a non-zero element, $j_m s_m^{-1} = j_1 s_1^{-1} + \dots + \widehat{j_m s_m} + \dots + j_t s_t^{-1}$ (\wedge stands for deletion of the term underneath) in the intersection.

By Proposition 3.3, for $s_1, ..., s_t \in S$, we get $x_1, ..., x_t \in N$ and $s \in S$ such that

$$s_i^{-1} = x_1 s^{-1}, \quad 1 \le i \le t.$$

Now,

$$j_m x_m s^{-1} = j_1 x_1 s^{-1} + \dots + \widehat{j_m} x_m s^{-1} + \dots + j_t x_t s^{-1}$$
$$= (j_1 x_1 + \dots + \widehat{j_m} x_m + \dots + j_t x_t) s^{-1}.$$

And this gives

$$j_m x_m = j_1 x_1 + \dots + \widehat{j_m x_m} + \dots + j_t x_t \neq 0.$$

So, $J_m \cap \left(\sum_{n \neq m} J_n\right) \neq (0)$ and is a contradiction, for $\{J_1, ..., J_t\}$ is an

independent family of N-subgroup of E_N .

Therefore, $\{J_1S^{-1},...,J_tS^{-1}\}$ is an independent family of C(Q(N))-subgroup of $C(Q(E))_{C(Q(N))}$.

Proposition 3.6. If J is an annihilator N-subgroup of near-ring group E_N (i.e., $J = Ann_E(T)$ for some $T \subseteq N$), then $JS^{-1} \cap E = J$.

Proof. Here $x \in J$ gives $x = x1^{-1} \in JS^{-1}(1 \in S)$. So, $x \in JS^{-1} \cap E$ giving there by $J \subseteq JS^{-1} \cap E$.

Next, $y \in JS^{-1} \cap E$ gives $y = as^{-1} = x$, where $a \in J$, $s \in S$, $x \in E$. Now $as^{-1} = x \in E$, xT = 0 and we get $as^{-1} \in Ann_E(T)$ in E_N . Thus, $y(=as^{-1}) \in J$ which gives $JS^{-1} \cap E \subseteq J$.

Hence the result.

Proposition 3.7. If $C(Q(E))_{C(Q(N))}$ is the classical near-ring group of quotients of E_N , $T \subseteq N$ and $J = Ann_E(T)$, then $JS^{-1} = Ann_{C(Q(E))}(T)$.

Proof. Here $x \in Ann_{C(Q(E))}(T)$ gives $x \in C(Q(E))_{C(Q(N))}$ and xT = 0.

Since $x \in C(Q(E))_{C(Q(N))}$, $x = as^{-1}$ for some $a \in E_N$, $s \in S$. Then $as^{-1}T = (0)$. Therefore, $a \in Ann_E(T)$, or $a \in J$ and hence, $x = as^{-1} \in JS^{-1}$. It follows that $Ann_{C(Q(E))}(T) \subseteq JS^{-1}$.

To see the opposite inclusion, $y \in JS^{-1}$ gives $y = js^{-1}$, $j \in J$, $s \in S$. Since $j \in J = Ann_{C(Q(E))}(T)$, $j \in C(Q(E))_{C(Q(N))}$ and jT = 0 which gives $js^{-1}T = 0$ or $js^{-1} \in Ann_{C(Q(E))}(T)$. Thus, $y \in Ann_{C(Q(E))}(T)$, or $JS^{-1} \subseteq Ann_{C(Q(E))}(T)$.

Hence the result.

Proposition 3.8. Let $C(Q(E))_{C(Q(N))}$ be the classical near-ring group of right quotients of E_N . If E_N is additively commutatively, then so also is $C(Q(E))_{C(Q(N))}$.

Proof. Let $x, y \in C(Q(E))_{C(Q(N))}$. Then $x = ab^{-1}$, $y = cd^{-1}$ for some $a, c \in E_N$, $b, d \in S$.

Now from Proposition 3.3, there exist $t_1, t_2 \in \mathbb{N}$, $s \in S$ such that

$$b^{-1} = t_1 s^{-1}, \quad d^{-1} = t_2 s^{-1}.$$

Therefore, $x = ab^{-1} = at_1s^{-1} = us^{-1}$, where $u = at_1 \in E_N$ and $y = cd^{-1} = ct_2s^{-1} = vs^{-1}$, where $v = ct_2 \in E_N$. Since $(E_N, +)$ is abelian, the result follows.

Proposition 3.9. If the near-ring group $C(Q(E))_{C(Q(N))}$ is Goldie, then so is E_N .

Proof. If possible, then let there be a strictly ascending chain of right annihilators of subsets of E_N ,

$$J_1 \subset J_2 \subset \cdots$$
, where $J_i = Ann_E(T_i)$, $T_i \subseteq N$.

Then by Proposition 3.7, the chain

$$J_1 S^{-1} \subseteq J_2 S^{-1} \subseteq \cdots$$

is an ascending chain of right annihilator of subsets of $C(Q(E))_{C(Q(N))}$. The near-ring group $C(Q(E))_{C(Q(N))}$ being Goldie, we therefore get $m \in Z^+$ such that

$$J_m S^{-1} = J_{m+1} S^{-1} = \cdots$$

This gives $J_m S^{-1} \cap E = J_{m+1} S^{-1} \cap E = \cdots$.

And by Proposition 3.6, we get $J_m = J_{m+1} = \cdots$, a contradiction. Therefore, E_N cannot have an infinite strictly ascending chain of right annihilators of subsets of E_N .

Next, if $\{J_i\}$ is an infinite independent family of N-subgroups of E_N , then by Proposition 3.5, the set $\{J_iS^{-1}\}$ is an infinite independent family of right C(Q(N))-subgroup of $C(Q(E))_{C(Q(N))}$. And this is not possible because $C(Q(E))_{C(Q(N))}$ is Goldie. Therefore, E_N cannot have an infinite independent family of right N-subgroups of E_N . Therefore, E_N is Goldie.

Proposition 3.10. Let A, B, C be right N-subgroups of E_N such that $A \subseteq B \subseteq C \subseteq E_N$ and A is N-essential in B, B is N-essential in C. Then A is N-essential in C.

Proof. Let D be a (non-zero) N-subgroup of E_N and $D \subseteq C$. Since B is N-essential in C, we get $D \cap B \neq (0)$. And since A is N-essential in B, this gives

$$(D \cap B) \cap A \neq (0).$$

Now $D \cap A \supseteq D \cap B \cap A \neq (0)$. Thus, $D \cap A \neq (0)$. Hence A is N-essential in C.

Proposition 3.11. If every essential N-subset of N contains a non-zero divisor, then E_N is non-singular.

Proof. Let $x \in Z_l(E_N)$. Then there exists $L \subseteq_e N$ such that xL = (0). Since $L \subseteq_e N$, by given condition, there exists a non-zero divisor $l \in L$. It follows that xL = 0. Since L is a non-zero divisor, we have x = 0. Thus, $Z_l(E_N) = 0$.

Lemma 3.12. Let M and H be N-subgroups of a near-ring group E_N

such that H is N-essential in M. If $a \in M$, $a \neq 0$, then there is an essential right N-subgroup L of N such that $aL \neq 0$, $aL \subseteq H$.

Proof. Let $L = \{n \in N \mid an \in H\}$. Then L is right N-subset of N and $aN \subseteq M$ (since M is an N-subgroup of E_N and $a \in M$). Also $aN \neq 0$ (for $l \in N$ implies $a \in aN$). Since H is N-essential in M, we get $aN \cap H$ $\neq 0$ and $h = an(\neq 0) \in H$ gives $aL \neq 0$.

We now show that L is an essential right N-subset of N. Let $I(\neq 0)$ be a right N-subset of N. We claim that $I \cap L \neq 0$. Now, aI = 0 gives $aI \subseteq H$. So, $I \subseteq L$ giving thereby $I \cap L \neq 0$. And if $aI \neq 0$, then aI is an N-subgroup of E_N and $aI \subseteq M$.

Since *H* is *N*-essential in *M*, $aI \cap H \neq 0$. Hence for some $x(\neq 0) \in I$, $ax \in H$. Thus, $x \in L$. Therefore, $I \cap L \neq 0$ and this implies that *L* is an essential right *N*-subset of *N*.

And we get

Corollary 3.13. For $a \in M$, $a^{-1}H = \{n \in N \mid an \in H\}$ is an right essential N-subset of N.

Lemma 3.14. Let E_N be a Goldie near-ring group whose non N-nilpotent elements are distributive. If $x \in E_N$ is such that A(x) = 0, then xN is an essential N-subgroup of E_N .

Proof. Since A(x) = 0, x is non N-nilpotent and thus it is distributive. Let M be an N-subgroup of E_N such that $M \cap xN = 0$. Now, for a non-nilpotent $\alpha \in N$ and for a fix $s \in Z^+$ and for $t \le s$, let

$$y \in \left(\sum_{n \neq t} x \alpha^n N\right) \cap x \alpha^t N, (x \alpha^0 = x, n = 0, 1, ..., s).$$

Then
$$y = \sum_{n \neq t} x \alpha^n p_n = x \alpha^t p_t$$
, p_n , $p_t \in N$, i.e.,

$$xp_0 = x\alpha^t p_t - x\alpha^s p_t - \dots - x\alpha p_1$$

= $x(\alpha^t p_t - \alpha^s p_t - \dots - \alpha p_1)$ (since x is distributive).

Thus, $xp_0 \in M \cap xN$ which gives $xp_0 = 0$. It follows that

$$x\alpha^t p_t - x\alpha^s p_t - \dots - x\alpha p_1 = 0$$
, for $A(x) = 0$.

Similarly, we get $x\alpha p_1 = x\alpha p_2 = \cdots = x\alpha p_t = 0$. Therefore,

$$\left(\sum_{n\neq t} x\alpha^n N\right) \cap x\alpha^t N = 0 \text{ for all } s \in Z^+ \text{ and } t \le s.$$

Thus, the family $\{M, xN, x\alpha N, x\alpha^2 N, ...\}$ is an independent family. E_N being Goldie, there exists $u \in Z^+$ such that $x\alpha^{u+1}N = 0$. So, for any $m \in M$, $m\alpha^{u+1} = 0$ which gives m = 0. Therefore, M = 0. Thus, $M \cap xN = 0$ implies M = 0. Hence xN is an essential N-subgroup of E_N .

Lemma 3.15. If N is a semiprime Goldie near-ring where non-nilpotent elements are distributive, then every distributively closed right essential N-subset of N contains a regular element.

Proposition 3.16. A semiprime abelian Goldie near-ring group E_N in which non N-nilpotent elements are distributive with distributively closed right essential N-subgroups has a classical near-ring group $C(Q(E))_{C(Q(N))}$ of right quotients which has no N-nilpotent right C(Q(N))-subgroups.

Proof. Choose $x, y \in E_N$, A(x) = 0, E_N being Goldie, by Lemma 3.14, xN is an essential in E_N . Then, by Corollary 3.13, the set $\lambda = \{r \in N \mid xr \in yN\}$ is an essential in N. Therefore, by Lemma 3.15, λ contains a regular element, say r'. Thus, xr' = rx' for some $x' \in E_N$. Thus the right N-Ore condition with respect to the set S of regular elements of N is satisfied in E_N . So by Proposition 3.2, E_N has a classical near-ring group of right quotients, say $C(Q(E))_{C(Q(N))}$.

Next, let J be a C(Q(N))-subgroup of $C(Q(E))_{C(Q(N))}$ such that $J\alpha^2=0,\ \alpha\in N.$ Now $J\cap E$ is a right N-subgroup of E_N . Because of Proposition 3.4,

$$(J \cap E) C(Q(E)) = \{xc^{-1} \mid x \in JN, c \in S\}.$$

Now, $x \in J$, $x = ys^{-1}$, $y \in E$, $s \in S$. So, $xs = y \in JN$.

Thus,

$$x = (ys)s^{-1} \in (JN)C(Q(E)).$$

Conversely, if $ys^{-1} \in (J \cap E)C(Q(E))$, $y \in J \cap E$, $s \in S$, then $ys^{-1} \in J$. Hence $J = (J \cap E)C(Q(E))$. Again, $J\alpha^2 = 0$ gives $(J \cap E\alpha^2) \subseteq J\alpha^2 = 0$.

Therefore, $J \cap E$ is an N-nilpotent right N-subgroup of E_N and E_N is semiprime. Hence $J \cap E = 0$. Thus, it follows from what we have showed above that J = 0.

Example 1. $N = \{0, 1, 2, 3, 4, 5, 6\}$ is a near-ring under addition modulo 7 and multiplication defined by the following table:

•	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	4	4	2	1
2	0	2	4	1	1	4	2
3	0	3	6	5	5	6	3
4	0	4	1	2	2	1	4
5	0	5	3	6	6	3	5
6	0	6	5	3	3	5	6

It has no non-zero zero-divisors. Hence, every essential *N*-subset of this nearring contains a non-zero-divisor. It follows from Proposition 3.11 that the near-ring group is non-singular.

Example 2. $N = \{0, a, b, c\}$ under the addition and multiplication defined by the following tables:

+	0	a	b	c
0	0	a	b	С
a	а	0	c	b
b	b	c	0	a
c	С	b	a	0
•	0	a	b	c
0	0	<i>a</i> 0	<i>b</i> 0	0
0 a				
	0	0	0	0
a	0	0	0 a	0 a

Its *N*-subsets are $\{0\}$, $\{0, a\}$ and $\{0, a, b, c\}$. Of these, the second and the third are essential. It is at once seen that the near-ring does not satisfy the condition of Proposition 3.11, but is non-singular.

Example 3. $N = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ is a near-ring under addition modulo 8 and multiplication as defined by the following table:

							<i>'</i>	
•	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	0	2	0	4	4	2
2	0	0	0	4	0	0	0	4
3	0	0	0	6	0	4	4	6
4	0	0	0	0	0	0	0	0
5	0	0	0	2	0	4	4	2
6	0	0	0	4	0	0	0	4
7	0	0	0	6	0	4	4	6

Here near-ring group $_NN$ has only two non-trivial N-subgroups $\{0, 4\}$ and $\{0, 2, 4, 6\}$ such that $\{0, 4\} \cap \{0, 2, 4, 6\} \neq 0$. That is each of them has non-zero intersection with other N-subgroups of $_NN$. Therefore,

$$\{0, 4\} \subseteq_{e} NN, \{0, 2, 4, 6\} \subseteq_{e} NN.$$

In this example, we see that $\{0, 4\} \subseteq_e \{0, 2, 4, 6\}$. This shows the validity of Proposition 3.10.

Example 4. Consider the near-ring $N = \{0, 1, 2, 3, 4, 5, 6, 7\}$ under addition modulo 8 and multiplication defined by the following table:

•	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7
2	0	2	4	6	0	2	4	6
3	0	3	6	1	4	7	2	5
4	0	4	0	4	0	4	0	4
5	0	5	2	7	4	1	6	3
6	0	6	4	2	0	6	4	2
7	0	7	6	5	4	3	2	1

Here $\{0, 4\}$ and $\{0, 2, 4, 6\}$ are ideals of ${}_{N}N$ such that $\{0, 4\} \cap \{0, 2, 4, 6\} \neq 0$. Hence $\{0, 4\}$ and $\{0, 2, 4, 6\}$ are essential ideals of ${}_{N}N$.

Example 5. In Klein 4-group, the near-ring N without unity w.r.t. the operations addition defined in Table 1 and the multiplication defined in the Table 2 has the invariant subsets, $\{0, b\}$, $\{0, a, b\}$. But for any invariant subsets, say $L(\neq 0)$ of N, we get $L^n \neq 0$ for any $n \in Z^+$. Hence N has no non-zero nilpotent invariant subsets. In this sense, N is strongly semi-prime.

п		. 1		4
	าล	h	P	•

+	0	а	b	С
0	0	а	b	c
a	а	0	С	b
b	b	c	0	a
c	c	b	а	0

Table 2

•	0	а	b	С
0	0	0	0	0
a	0	a	0	a
b	0	0	b	b
c	b	a	b	С

Example 6. Consider a non-zero symmetric near-ring $N(=D_8)$ without unity w.r.t. the addition and multiplication defined by Tables 3 and 4, respectively.

Table 3

+	0	а	2 <i>a</i>	3 <i>a</i>	b	a + b	2a + b	3a + b
				3 <i>a</i>				
a	а	2a	3 <i>a</i>	0	a + b	2a + b	3a + b	b
				a				
3 <i>a</i>	3 <i>a</i>	0	a	2a	3a + b	b	a + b	2a + b
b	b	3a + b	2a + b	a + b	0	3 <i>a</i>	2a	a
a + b	a + b	b	3a + b	2a + b	a	0	3 <i>a</i>	2 <i>a</i>
2a + b	2a + b	a + b	b	3a + b	2a	a	0	3 <i>a</i>
3a + b	3a + b	2a + b	a + b	b	3 <i>a</i>	2a	а	0

Table 4

*	0	а	2 <i>a</i>	3 <i>a</i>	b	a + b	2a + b	3a + b
0	0	0	0	0	0	0	0	0
a	0	a	2a	a	0	0	0	2a
2a	0	2a	0	2a	0	0	0	0
3 <i>a</i>	0	3 <i>a</i>	2a	3 <i>a</i>	0	0	0	2a
b	0	b	b	b	b	b	b	b
a + b	0	a + b	2a + b	a + b	b	b	b	2a + b
2a + b	0	2a + b	b	2a + b	b	b	b	b
3a + b	0	3a + b	2a + b	3a + b	b	b	b	2a + b

The non-zero proper left *N*-subsets are $\{0, b\}$, $\{0, b, a + b\}$, $\{0, b, 2a + b\}$, $\{0, b, 2a, 2a + b\}$, $\{0, 2a, b, 2a + b, 3a + b\}$, etc.

Here we note for any subsets L of N, there exist no left N-subsets X of N such that $X^nL = 0$, for any $n \in Z^+$.

Example 7. Consider the near-ring $N(=Z_8)$ without unity w.r.t. addition modulo 8 and multiplication defined by the following table:

•	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	0	0	2	0	4	4	2
2	0	0	0	4	0	0	0	4
3	0	0	0	6	0	4	4	6
4	0	0	0	0	0	0	0	0
5	0	0	0	2	0	4	4	2
6	0	0	0	4	0	0	0	4
7	0	0	0	6	0	4	4	6

Here *N* has proper left *N*-subsets viz. $\{0, 1\}$, $\{0, 2\}$, $\{0, 4\}$, $\{0, 4, 5\}$, $\{0, 4, 6\}$, $\{0, 2, 4, 6\}$, $\{0, 4, 6, 7\}$, $\{0, 2, 3, 4, 6\}$, etc.

Now
$$\{0, 4, 5\}\{0, 5\} = \{0, 4\} (\neq 0)$$
 and $\{0, 4, 5\}^2 \{0, 5\} = 0$.

It is easy to see that if $\{0, 5\}$ is replaced by $\{0, 4, 5\}^3 = 0$ and thereby $\{0, 4, 5\}$ is found as nilpotent subset of N.

Example 8. In the near-ring $N(=Z_8)$ without unity w.r.t. addition modulo 8 and multiplication defined by the following table, the only proper left *N*-subset is $\{0, 2\}$:

•	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0	1	0	1	1	1	1	1
2	0	2	0	2	2	2	2	2
3	0	3	0	3	3	3	3	3
4	0	4	0	4	4	4	4	4
5	0	5	0	5	5	5	5	5
6	0	6	0	6	6	6	6	6
7	0	7	0	7	7	7	7	7

Hence for any subset $L(\neq 0)$ of it different from $\{0, 2\}$, we have $\{0, 2\}L \neq 0$. But $\{0, 2\}^2L = 0$.

References

- [1] M. N. Barua, Near-rings and near-ring modules, Ph.D. Thesis, Gauhati University, 1984.
- [2] K. C. Chowdhury, Goldie theorem analogue for Goldie near-rings, IJPAM 20(2) (1989), 141-149.
- [3] K. C. Chowdhury, Goldie near-rings, Bull. Calcutta Math. Soc. 8 (1988), 161-269.

186 Khanindra Chandra Chowdhury and Dipti Nath

- [4] J. R. Clay, Near-rings: Genesis and Applications, Oxford University Press, 1992.
- [5] G. Grainger, Left modules for left near-ring, Ph.D. Thesis, University of Arizona, Tucson, 1988.
- [6] N. Jacobson, Structure of Rings, American Math. Soc., 190 Hope Street, Providence, R.I., Reprinted 1968.