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Abstract 

Using differential element method, the electric potential on a coaxial 
circle established by a charged ring is expressed in terms of complete 
elliptic integral. The electric force between two charged coaxial rings 
is then achieved. The characteristics of the force, symbolic symmetry 
and geometric symmetry, and the physical significance are analyzed 
and illustrated. The force magnitude has its maximum, which reason is 
explained and numerical solution is sought. The force between the ring 
and a point charge on the central is treated as a special case. Two 
ways, making use of field intensity and the principle of virtual work, 
are present to calculate that force. Their consistency is demonstrated. 

1. Introduction 

Electric force, as a general phenomenon, exists in electromagnetic 
devices. It is one of interesting topics studied in recent years. In [1] and [2], 
the electric force on the walls of some transmission lines was studied. 
Charged ring is extensively used in electronic equipment. The electric force 
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between charged rings would affect the electromagnetic properties of such 
devices [3]. Thus, it is worth to investigate the electric force between two 
charged circular rings. 

The aim of this paper is focused on this problem. With the aid of 
complete elliptic integral, the electric potential on coaxial circle set up by a 
charged ring is calculated first. After finding the field intensity, the force 
between two charged coaxial rings is determined. Two kinds of symmetries 
as well as their physical significance are discussed. It stands out that the 
force magnitude has its maximum, which is illustrated and sought by using 
numerical method. The expression of the force between the ring and a point 
charge on the central axis, treated as a special case, is drawn from the general 
result. Two ways are employed to determine the force. Their consistency is 
analyzed. 

2. Electric Potential 

A system, which consists of two parallel coaxial circular rings of radius 

1r  and 2r  with separation l, is sketched in Figure 1. A cylindrical coordinate 

system is established. 
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Figure 1. Two charged coaxial rings. 

Suppose the lower ring is charged uniformly. The linear charge density 
on that ring is .1λ  For a point on the upper ring, say ( ),,0,2 lr  the electric 
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potential produced by a segment, ,1 ϕdr  at ( )0,,1 ϕr  on lower ring is 
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Therefore, the potential of upper ring set up by lower ring is calculated as 
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Introducing a transformation 

.2θ−π=ϕ  (3) 

Equation (2) then becomes 
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where ( )kK  is the complete elliptic integral of the first kind. The modulus k 

is 
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3. Force between Two Charged Rings 

If the upper ring is also uniformly charged with linear density ,2λ  now 

we compute the electric force between two rings. 

Due to symmetry, the electric force between two rings must be along z 
axis. Our attention is focused on the field component in z direction. At the 
point ( )lr ,0,2  on the upper ring, the z component of electric field produced 

by lower ring is 

.dl
dUEz −=  (6) 
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Substituting Equation (4) in previous equation yields 
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Therefore, the electric force between two rings is 
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Note [4] 
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where ( )kE  is the complete elliptic integral of the second kind. Thus, 

Equation (8) becomes 
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4. Maximum Magnitude of the Force 

Equation (10) demonstrates the quantitative relation of the force, f, 
versus the separation, l and the radii, 1r  and .2r  Introduce dimensionless 

force 
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The graph of f~  versus the relative quantities, 2rl  and ,21 rr  is plotted in 

Figure 2. 
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Figure 2. The graph of dimensionless force versus relative separation and 
radius. 

Figure 2 shows there is maximum magnitude of the force. That can be 
explained qualitatively. On the one hand, due to the symmetry, the force 
must be zero when ,0=l  which is the case of two rings in the same plane. 

On the other hand, the force is zero as l approaches infinity. So, the 
magnitude of f, as a continuous nonnegative function of l, should reach its 
maximum somewhere [5]. 

To determine that maximum of the force quantitatively, differentiating 
Equation (11) with respect to l and letting it be zero 

0
~
=dl

fd  (12) 

which is the necessary condition for the position where the force reaches the 
maximum magnitude. Although we cannot obtain analytic solution for 
Equation (12), we can find its numerical solution with the aid of some 
mathematical software, such as Mathematica [6]. The operation program is as 
follows: 
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Clear[df,f,k,l,n,r1,r2]; 

n=Input[n]; 

k=2*Sqrt[r1*r2/((r1+r2)^2+l^2)]; 

f=l*k^3/Sqrt[r1*r2] *(EllipticK[k^2]+EllipticE[k^2]/(1-k^2)); 

df=D[f,l]; 

r2=1; r1=n; 

FindRoot[df==0,{l,Sqrt[n]}];  

l=l/.%; 

f; 

Print["l=",l,"r2"] 

Print["fmax=",f] 

In the program, according to the rules of Mathematica, the modulus in 

elliptic integral should be written as 2k  instead of k. 

Take an example. Under the condition of ,2 21 rr =  inputting 2=n  from 

the keyboard, we approximately obtain a numerical solution 216911.1 rl =  

and .17007.4~
max =f  This situation can be clearly seen in Figure 3. 
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Figure 3. The function curve of dimensionless force versus relative 
separation ( ).2 21 rr =  
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5. Two Kinds of Symmetry 

5.1. Symbolic symmetry 

If we exchange the indexes 1 and 2 in Equation (10), then the result 
keeps the same. That means there is a symbolic symmetry in the expression 
of the force. The physical significance is the electric force exerted on one 
ring has the same magnitude on another. This is the inevitable deduction 
from Newton’s third law. 

5.2. Geometric symmetry 

Equation (11) implies that f~  is the odd function of l. If we replace l with 

,l−  then f~  has the same magnitude and opposite direction. Therefore, the 

graph of f~  has geometric symmetry about the origin O. Figures 2 and 3 

reflect that central symmetry. 

6. Special Case 

In term of the charge on a ring, ,2 λπ= rq  Equation (10) becomes 
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Suppose the upper ring diminishes to a point charge .2q  Letting 02 =r  in 

Equation (5) leads to .0=k  Note 

( ) ( ) .200 π== EK  (14) 

From Equation (13), we derive 
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Since the electric field for the points on the central axis of a charged ring is 
well known by us 
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using Eqf 2=  we also get Equation (15). That supports the correctness of 

our general result in this special case. 

7. Principle of Virtual Work 

The potential energy of the two charged rings is 

.2UqW =  (17) 

Take l as general coordinate. Employing the principle of virtual work, we 
have 

.
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Combining Equations (17) and (18), we arrive at 

.2 dl
dUqf −=  (19) 

Substituting Equation (4) into Equation (19) then using similar calculation, 
we may obtain the same result for the force as above. That demonstrates two 
ways, making use of field intensity or the principle of virtual work, are 
consistent. 

Actually, it is easy to reason this consistency out. Putting Equation (6) in 
Equation (19) yields 

zEqf 2=  (20) 

which is in the same form as Equation (8). 

8. Conclusion 

The electrical potential on coaxial circle produced by a charged ring can 
be expressed by complete elliptic integral. Then the force between the two 
charged coaxial rings is calculated. The force has a maximum magnitude, 
which solution can be obtained by numerical method. The force expression 
demonstrates both symbolic symmetry and geometric symmetry. Taking as a 
special case, the force between the ring and a point charge on the central axis 



Electric Force Between Two Charged Coaxial Rings 143 

is deduced from the general result. Two ways, making use of field intensity 
and the principle of virtual work, are pointed out. The consistency of these 
two methods in physics is displayed. 
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