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Abstract 

It is proved that for any positive number X, any 0>P  and for all but 

( )DXlog  prime numbers ,48
5 ε−

≤ Xk  the following is true: For 

any positive integers ,ib  { },2,1∈i  ( ) ,1, =kbi  all but ( )PLXkO −−1  

sufficiently large integers XN ≤  satisfying ( )kbbN mod21 +≡  can 

be written as ,21 ppN +=  where ,ip  { }2,1∈i  are prime numbers 

that satisfy ( ).mod kbp ii ≡  

1. Introduction 

The binary Goldbach conjecture states that every even integer larger than 
2 can be written as the sum of two prime numbers. In 1975, Montgomery and 

Vaughan considered the corresponding exceptional set ( )XE  defined as 

( ) { }.,primesanyfor,2:#: 2121 ppppNNXNXE +≠|≤=  
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They could show that 

( ) δ−< 1XXE  

for a small positive number .0>δ  It was later shown in [11] that δ can be 
chosen as large as .086.0=δ  Lavrik [13] investigated a special case of the 
binary Goldbach conjecture requiring that the two prime summands belong 
to a given arithmetic progression. In particular, he considered the following 
exceptional set: 

( ) { ( ) 2121,, ,mod:#:21 ppNkbbNXNXE bbk +≠+≡≤=  

( ) },2,1,modprimesanyfor =≡ ikbp ii  

( )

( )

( ).max 21

1,21
21

,,
,1

XEXE bbk
kbb

k

kbb =
≤≤

=  

He show that for ( )cXk log≤  and any ,0>A  

 ( ) ( ) .log 1−− kXXXE A
k  (1.1) 

Using a different approach, Liu and Zhan [18] shown that the following 

estimate holds for all δ≤ Xk  for a small :0>δ  

 ( ) ( ),11 1 kXXEk
−δ− φ  (1.2) 

for a small, positive constant .1δ  In this paper, we show the following result: 

Theorem 1. There exists a positive constant D such that for all but 

(( ) )DXO log  prime numbers ,48
5 ε−

≤ Xk  we have 

 ( ) ( ) P
k XXkXE −− log1  (1.3) 

for any .0>P  

Compared to (1.2), we increase the permissible size of k, for all but 

(( ) )DXO log k, to 
ε−

48
5

X  at the cost of a slightly smaller exceptional set 

( ).XEk  
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The proof of Theorem 1 uses the concept of X-exceptional zeros 
introduced in [4]. We set 

( ) ( )∑
≥

χ=χ==
1

2 ,,,loglog,log
n

sn
nsLXLXL  

where χ is a Dirichlet character. For a prime number Nkk ≤,  and a fixed 

positive integer V, we define 

[ ] [ ] ( ){ }.,mod0:,,, 22
kk

VV
k ImkmmPLkkkLkI ∈≡∈== N∪  

For a fixed, very small δ, we call a Dirichlet character χ to a module q 
satisfying 

 XqX ≤≤δ  (1.4) 

an X-exceptional character if there exists at least one complex number 
its +σ=  such that 

 ( ) ,0,,,1 2 =χ≤−>σ sLXtL
EL  (1.5) 

where E is a fixed, positive number to be defined later. We call s an 
X-exceptional zero and we call an integer q an X-exceptional integer if there 
exists an X-exceptional character χ modulo q. 

Using the concept of X-exceptional zeros, Theorem 1 is a direct 
consequence of Theorems 2 and 3: 

Theorem 2. For a given prime number ,48
5 ε−

≤ Xk  if none of the 

integers kPq ∈  is X-exceptional, then (1.3) is true for this k. 

Theorem 3. There exists a positive constant D such that for all but 

(( ) )DXO log  prime numbers ,1, Xkk ≤≤  none of the integers kPq ∈  is 

X-exceptional. 

Theorem 3 follows directly from [4, Theorem 3]. The reminder of this 
paper is dedicated to the proof of Theorem 2. 
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The ternary Goldbach theorem with primes in arithmetic progressions 
has been extensively studied in [1, 3-5, 7-9, 14, 17, 18, 21-23, 25-27]. The 
case of large k was considered in [4, 5, 9, 27]. The methods applied in the 
publications cannot be simply applied to prove Theorem 1. 

In particular, in [4, 5, 9, 27], estimates for Dirichlet polynomials were 
used to estimate the error term induced by the integral over the major arcs. 
The application of these estimates for Dirichlet polynomials requires a 
‘good’ upper bound when estimating partial singular series associated with 
triplets of primitive characters. In particular, if r is the greatest common 

denominator of the modules of three primitive characters, a factor 21−r  is 
obtained when estimating the associated partial singular series. For the binary 
case, such a factor cannot be obtained for all major arcs. In particular, it can 
only be used for major arcs where the denominator of the center of the major 
arc is not divisible by the prime number k. In order to deal with some of the 
remaining major arcs, we use an estimate for exponential sums over primes 
in progressions from [27]. 

2. Outline of the Proof of Theorem 2 

For the proof of Theorem 2, we only consider integers N lying in the 

range ( ) .log XNXX P ≤<−  The contribution of the exceptional N 

satisfying ( ) PXXN −≤ log  can be estimated trivially. We denote by [ ]21, aa  

and ( )21, aa  the least common multiple and the greatest common divisor of 

two integers 1a  and ,2a  respectively. c is a positive constant that can take 

different values at different occasions. ( )Nd  is the divisor function. We 

know from [18] that Theorem 2 holds true for ,δ≤ Xk  where δ is a small 

positive constant. Therefore, we assume throughout the document that 

 ,δ> Xk  (2.1) 

where δ is chosen as in (1.4). In this paper, we do not distinguish between the 
quantities k and ( )kφ  used in (1.2) and (1.3), respectively, as k is a prime 
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number. We use the familiar notation 

( )

∑ ∑
≤≤ ≤≤

=

=≤<⇔
qa qa

qa

RrRRr
1 1

*

1,

.:,2~  

We write ( ) απ=α iee 2  and the variables p and ip  always denote prime 

numbers. For a given integer k, we set ( )., qkkq =  For a given integer m, 

we write qkm ||  if ., 1 qkqk mm +|  Further, if ,qkm ||  then we define 

 .m
q qks −=  (2.2) 

Throughout this paper, we keep the numbers 1b  and 2b  used in (1.2) fixed 

and omit them from all of the following definitions: 

( ) ( ) ( )

( ) { }

∑

∈≡
=+
≤<

ΛΛ=

2,1,mod
21

4
21 ,,

ikibip
Nnn

i NnN
nnkNI  

( ) ( )

( )

∑
≡

=
⎟
⎠
⎞

⎜
⎝
⎛χ=χ

q

m
hbm

q
maemabhqC

mod
1

.,,,,  

We set 

( )21,,,, χχhqNZ  

( )
( ) ( )

( )

∑
=

=
⎟
⎠
⎞⎜

⎝
⎛ −χχ

φ
=

q

a
qa

q
aNeabhqCabhqC

q
1,

1
22112 ,,,,,,,,,1  

( ) ( ) ( ) ( )∑
≤<

λ=λχχ=
NnN

qq neThqNZhqNA
4

,0,0 ,,,,,,,,  

( ) ( ) ( ) ( ) ( ) ( )

( )

∑ ∑
≡

≤< ≤<

αΛ=ααΛ=α

kbn
NnN NnN

nenSnenbkS

mod
4 4

.,,,  
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For a given k, we define 

 ,,,, 322
21

BBBB LNkQLkPkLPLP −−====  (2.3) 

where the constant 0>B  will be specified later. For a fixed prime integer    

k and N being an integer satisfying ( ),mod21 kbbN +≡  we define the 

singular series 

 ( )
( ) ( ) ( )

( )

∏
=

≥
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

φφ
=σ

1,
2

2 .
1

11,

kNp
p pkNk

kNkN  (2.4) 

Using the circle method, we define the major arcs M as follows: We set 

 ( ) ⎥⎦
⎤

⎢⎣
⎡ +−= qQq

a
qQq

aqaM 1,1,  (2.5) 

and 

,321 MMMM ∪∪=  

( )
( )

∪ ∪
Pq qa

qaMM
≤ =

=
1,

1 ,,  

( )
( )

∪ ∪
qk
Pq qa

qaMM

||
≤ =

=

1 1,
2 ,,  

( )
( )

∪ ∪
qk

Pq qa

qaMM

||

≤ =

=

2
2 1,

3 .,  (2.6) 

We note that in the summation defining of ,1M  ,qk  as .Pk >  Finally, 

the minor arcs m are defined as: 

.\11,1 MQQm ⎥⎦
⎤

⎢⎣
⎡ −−=  
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Thus, we can write 

( ) ( ) ( )∫ ∏
−

− =

ααα−= Q

Q i
i dbkSNekNI

11
1

2

1
,,,  

( ) ( ) ( ) ( )∫ ∏ ∫ ∏
= =

ααα−+ααα−=
M

i
m

i
ii dbkSNedbkSNe

2

1

2

1
,,,,  

( ) ( ).: ,, kRkR mNMN +=  (2.7) 

We can prove Theorem 2 by proving the following two statements: 

1. If for a given prime number 
ε−

≤ 48
5

Xk  none of the integers kPq ∈  

is X-exceptional, then for all ,0>A  and all but ( )PLXkO −−1  integers N 

satisfying ,XNXL P ≤≤−  and ( ),mod21 kbbN +≡  

 ( ) ( ) ( ).2, 1
,

A
MN LNkONkNkR −−+σ=  (2.8) 

2. For any given prime number ,48
5 ε−

≤ Xk  any 0>A  and all but 

( )PLXkO −−1  integers N satisfying ,XN ≤  and ( ),mod21 kbbN +≡  there 

is 

 ( ) .1
,

A
mN LNkkR −−  (2.9) 

We see from (2.4) that the main term on the RHS of (2.8) is larger than 

( ) ., 11 −−− ≥σ kXLNkkNN P  Noting that (2.8) and (2.9) both hold for 

any ,PA >  Theorem 2 follows. 

In the next section, we will use Dirichlet’s theorem on rational 
approximation according to which any rational number α can be written as 

 ,1, qQq
a ≤λλ+=α  (2.10) 

where ( ) ,1, =qa  ,Qq ≤  and Q is as defined above. 
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3. Minor Arcs 

For the estimation of the contribution of the integral over the minor arcs, 
we need the following lemma: 

Lemma 3.1. For an integer r and any real number α, we write 

,1, 2
1

11
1

1
qq

ar ≤λλ+=α  

.1, 2
2

22
2

22

qq
ar ≤λλ+=α  

Then for ( ) ,1, =br  

.,, 321
2

21
21

65

21
21

1 LqN
r
N

rq
N

rq
Nqbr

q
aS ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++++⎟

⎠
⎞

⎜
⎝
⎛ λ+  

Proof. See [27]. 

Lemma 3.2. For integers a, q, r, b satisfying ( ) ( ) ,1,,1, == brqa  and 

setting ( ),, qrh =  

.,, 3
52

54

21

2121

21 L
r
N

h
Nq

rq
hNbrq

aS ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟

⎠
⎞⎜

⎝
⎛  

Proof. See [2]. 

We now argue as in [26] and apply Lemmas 3.1 and 3.2 to estimate the 
integral over the minor arcs. If ,m∈α  then we see from (2.10) that 

,λ+=α
q
a  where ( ) ,1,,11 =≤λ −− qaQq  where q does not belong to 

the summation range defining ,, 21 MM  and 3M  in (2.6). 

1. For ,qk  HLkq 2
3

>  with sufficiently large H and ,112 FLNk −≤  

we obtain from Lemma 3.2 via partial summation for ,2,1=i  
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 ( ) 2
1

1,,
++−−α

GP

i LXkbkS  (3.1) 

for ( )., PAFF >  We apply Lemma 3.1 in the remaining cases as follows: 

2. For ,qk  and ,23 HLkq ≤  we see from the definition of m that 

.21
BLqqq >==  

3. For ,qk ||  we see that .21
BLkqqqq >==>  

4. For ,2 qk ||  we see .2
21

BLkqqkqqq >=>=>  

Noting that in cases 2, 3 and 4, we have ≤≤≤< qqqLB
12  

,32 BLNk −−  we derive (3.1) from Lemma 3.1 for FLNk −≤ 112  and >F  

( ) ( ).,,, PABBPAF >  

It follows from Parseval’s identity and (3.1), 

  ( ) ( )

( )

∑ ∑
≤<

+≡
≤<

≤
XNX

kbbN
XNX

mNmN kRkR
2

mod21
2

2
,

2
,  

( ) ( )∫ ααα=
m

dbkSbkS 2
21 ,,,,  

( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ ααα ∫∈α

1

0
2

2
2

1 ,,,,max dbkSbkS
m

 

,33 PALkX −−−  

which implies (2.9). 

4. Preliminary Lemmas for the Major Arcs 

Lemma 4.1. For any natural number ,21qqq =  ( ) ,1, 21 =qq  and 

characters 

( ) ( ) ( ),modmodmod 21 21 qqq ccc χχ=χ  
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( ) ( ) ( ),modmodmod 21 21 qqq ddd χχ=χ  

there is: 

(a) 

( )dcqkqNZ χχ ,,,,  

( ) ( ).,,,,,,,, 222111 21 dcqdcq kqNZkqNZ χχχχ=  

(b) If χ modulo βp  is a both non-primitive and non-principal character, 

i.e., χ is induced by ∗χ  modulo ,1, β<α≤αp  then for ( ) ,1, =pab  and 

,0 β<γ≤  we have 

( ) .0,,,, =χ γβ abppC  

Proof. The proof follows the proof of Lemma 3.2 in [4]. 

Lemma 4.2. Set ( ) ,1, =qa  and ( ) 1, =qb  throughout the parts (a) and 

(b). 

(a) Let χ be a character modulo q. Then 

( ) .,,1,, 21qabqC χ  

(b) 

( )abkqC qq ,,,,,0χ  

( ) ( ) ( )
⎪⎩

⎪
⎨

⎧
≡=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
μ=

.,0

,mod1,1,,

otherwise

kktqkkqif
k
tbaekq qqqq

q
q  

(c) For any two characters 21, χχ  modulo ,2k  we have: 

( ) ,,0,,,, 2121
2 χχ⇒≠χχkkNZ  are primitive characters modulo .2k  

(d) For any two primitive characters iχ  modulo ,ir  2,1=i  with ,2 rk ||  

where [ ] ,,, 21 qrrrr |=  and the principal character 0χ  modulo q, we have: 



The Binary Goldbach Conjecture with Restrictions on the Primes 97 

( ) .21,0,,,, 2
0201 ≤≤||⇒≠χχχχ irkkqNZ i  

(e) For any ,1χ  2χ  modulo ,2k  where k is prime, and an integer N 

satisfying ( ),mod21 kbb +≡  

( ) .,,,, 1
21

2 −χχ kkkNZ  

Proof. The parts (a) and (b) are proved in [4, Lemma 3.3]. Parts (c) and 
(d) are derived from Lemma 4.1 in the same way [4, Lemma 3.3] is derived 
from [4, Lemma 3.2]. For the proof of part (e) we know from Lemma 4.2(c) 
that we only have to consider characters ,iχ  ,2,1=i  that are primitive 

modulo .2k  We see 

 ( ) ( ) ( )∑
=

⎟
⎠
⎞

⎜
⎝
⎛ +

+χχ=χ
k

s

i
iiiiii

k
aksabeskbbabkkC

1
2

2 .1,,,,  (4.1) 

Thus, 

( )
( )

( )
( ) ( )∑∑

∏
+χ+χ

φ

χ

=χχ =
k

s

k

s

i
ii

ksbksb
k

b
kkNZ

1 2
22211122

2

1
21

2 11,,,,  

( )∑
∗

=
⎟
⎠
⎞

⎜
⎝
⎛ ++−+×

2

1
2

2121 .
k

a k
ksksNbbae  (4.2) 

Using that ,21 MkNbb =−+  ,Z∈M  we can write the inner sum in 

(4.2) as: 

( ) ( )∑ ∑
∗

=

−

=
⎟
⎠
⎞

⎜
⎝
⎛ ++=⎟

⎠
⎞

⎜
⎝
⎛ ++

2

1

1

1

21
2

21
k

a

k

a k
ssMaek

k
ssMake  

( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧
−

≡++−
=

.else,
,mod0if,1 21

k
kssMkk
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Obviously, 

 ( ){ } .mod0,,1:, 212121 kkssMkssss =≡++≤≤  (4.3) 

Since ( ) ,2≤φ kk  we obtain from (4.2) and (4.3): 

( ) .,,,, 134
21

2 −− =χχ kkkkkNZ  

Lemma 4.3. For an integer k and integers Nbb ,, 21  satisfying 1bN ≡  

( ),mod2 kb+  there is 

( )
( )

( )
( )
( )

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

=|−

|==β−

==β−

φ
=

ββ
β−βββ

β

.,0

,1,,,

,,1,,1,1

,1,,1,1

1,, 12

else

kkpkppp

Npkpp

kNp

p
kpNA

pp

 

Proof. This follows from Lemma 4.2(b). 

Lemma 4.4. Consider two primitive characters ( ),2,1mod =χ irii  the 

principal character [ ],,,mod 210 rrrq =χ  a number k which is either equal 

to 1 or a prime number, and a positive number .NM ≤  

(a) If { },2,1, ∈|| mrkm  then 

 ( )∑
|
≤

−χχχχ

qr
Mq

LkkqNZ .,,,, 21
0201  (4.4) 

(b) If ( ) ,1, =kr  then 

 ( )∑
|
≤

χχχχ

qr
Mq

LkqNZ .,,,, 2
0201  (4.5) 

(c) If ( ) ,1, =kr  then 

 ( )∑
|

≤

−χχχχ

qkr
Mq

LkkqNZ .,,,, 21
0201  (4.6) 
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Proof. (a) Applying Lemma 4.1(a), we can write ( ) =...,,, kqNZ  

( ) ( ),1,,...,,, lNAkrNZ ′  where ( ) ,,1, rrlr ′|=′  and every prime factor 

that divides r′  also divides r. From Lemma 4.1(b), we see that ( )...,,, krNZ ′  

0=  if .rr ≠′  Using the notation introduced in (2.2) and again Lemma 

4.1(a), we find ( ) ( ) ( )....,,,...,1,,...,,, kkNZsNZkrNZ m
r=  Thus, the 

proof can focus on terms ( )...,, qNZ  that can be written as ( ) =...,,, kqNZ  

( ) ( ) ( ),1,,...,,,...,1,, lNAkkNZsNZ m
r  where ( ) 1, =lr  and ( ) .1, =ksr  

In consequence, the right-hand side of (4.4) can be estimated as 

 ( ) ( ) ( )

( )

∑
=

≤
1,

1
,1,,...,,,...,1,,

kl
rM

m
r lNAkkNZsNZ  (4.7) 

where ( ) .1, =ksr  We use Lemma 4.2(a) to estimate 

 ( ) ....,1,, 2
2LsNZ r  (4.8) 

In order to estimate ( ),...,,, kkNZ m  for ,1=m  we use the fact that by 

definition ( ) 1,,,, ≤χ abkkC  whereas for ,2=m  we use Lemma 4.2(e). 

Thus, 

 ( ) ....,,, 1−kkkNZ m  (4.9) 

Lemmas 4.1(a) and 4.3 imply 

( ) ( )

( )

∑ ∏ ∑
= ≤

≤ | ≤

−φ⎟
⎠
⎞⎜

⎝
⎛

−
+

1,

2
1

111,,

kl Mp
rMl Np rMl

lplNA  

( ) .1 LNN −φ  (4.10) 

The lemma follows from (4.7)-(4.10). For the proof of (b), we argue 
similarly and find that we need to estimate the expression 

 ( ) ( )∑
≤ rMl

lNArNZ .1,,1,,  (4.11) 
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Arguing similarly to the proof of part (a) and using Lemma 4.1, we see that 

( ) ( ) ( )

( )

∑ ∑∑
≤ ≤≤≥

=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+≤

rMl rMlrMkm

mm

kl
m

lNAkkNAlNA

1,

.1,,,,11,,
,1

 

 (4.12) 

For k prime, a trivial estimate shows 

 ( )∑ ∑
≤≥ ≤≥

−−

rMkm rMkm

mmm

m m
kkkkNA

,1 ,1

1.,,  (4.13) 

For ,1=k  in (4.12), the sum ( )∑
≤≥ rMkm

mm

m
kkNA

,1
,,  is not needed in 

the estimate (4.12). Similar to (4.8), 

 ( ) .1,, 2
2LrNZ  (4.14) 

Part (b) of the lemma follows from (4.10)-(4.14). For the proof of part 
(c), we follow the argument in (4.11) and estimate 

 ( ) ( )∑
|

≤
lk

rMl
klNArNZ .,,1,,  (4.15) 

Using Lemma 4.2(b), we see that ( ) 0,, =klNA  if .lk |2  Applying again 

Lemma 4.3 and using (4.10), we obtain 

( ) ( ) ( )

( )

∑ ∑
| =

≤ ≤

−

lk kl
rMl rkMl

LklNAkkNAklNA

1,

.1,,,,,, 1  (4.16) 

Part (c) of the lemma follows from (4.14)-(4.16). 

Lemma 4.5. (a) For any prime k, 

( ) ( )

( )

∑
=

≥

−

1,

.1,, 1

kq
Uq

UNLdqNA  
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(b) For any prime k and ,kU ≥  

( ) ( )∑
|
≥

−

qk
Uq

UNLdkqNA .,, 1  

(c) For any prime k, 

( )
( )

( )∑
≥

σ=
φ1

2 ,,
,,

q q

q kN
kk

kqNA
 

where ( )kN ,σ  is defined in (2.4). 

Proof. For the proof of (a), we use Lemma 4.3 and obtain 

( )
( )

( )( )

( )

∑ ∑
=

≥ ≥

φ
φ

≤

1,

,1,, 2

kq
Uq Uq

Nq
q

kqNA  

( ) ( )∑ ∑
| ≥

−− φφ≤
Nd dUq

qd 21  

( ).13
2 NdUL −  (4.17) 

For the proof of (b), we similarly derive from Lemmas 4.1(a) and 4.3, 

( ) ( ) ( ) ( )

( )

∑ ∑ ∑
| =
≥ | ≥

− φφ≤

qk kq
Uq kd dUq

kqNAdkkqNA

1,

,,,, 2  

( ) ( ) ( )∑
|

−− φφ
kd

NddULdk 13
2

2  

( ) .1−LUNd  (4.18) 

(c) We see from parts (a) and (b) of this lemma that the left-hand side of 
(4.17) is absolutely convergent. Thus, it is equal to its Euler product. 
Applying Lemma 4.3, we see 
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( )
( )
( )∑

≥ φφ 1
22

,,1

q q

q

kk

kqNA

k
 

( )
( ) ( )∑

≥
φ

φ
=

1

2
2 ,,1

q
qq kkqNA

k
 

( ) ( ) ( )
( )

( )

∏ ∏
= |

≥ =
⎟
⎠
⎞⎜

⎝
⎛

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−
−

φ
=

1,
2 1,

22 1
11

1
111

kNp Np
p kp

ppk
 

( )∏ ∑
| ≥

−

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−+⋅

|
kp b

bb

kbp

pp
1

11  

( ) ( ) ( )
( )

∏
=

≥
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

φφ
=

1,
2

2 .
1

11

kNp
p pkNk

kN  

5. The Major Arcs 

According to (2.6), we split the integral over the major arcs as follows: 

( ) ( ) ( )∫ ∏++ =
αα−α=

321

2

1
, ,,

MMM i
iNM dNebkSkR  

( ) ( ) ( ).: 321 kGkGkG ++=  (5.1) 

We first consider ( ).1 kG  As ,qk  we find 

( ) ( ) ( )

( )
( )

∑ ∑
∗

≡
≡

= ≤<

+λΛ⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛ λ+

q

g NnN
i

qgn
kibn

LOnenq
gaebq

aS
1 4

2

mod
mod

.,  
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We introduce the Dirichlet characters ξ mod k and χ mod q and obtain 

( ) ( )
( ) ( )λχ

φφ
=⎟

⎠
⎞

⎜
⎝
⎛ λ+ TabqC

qk
b

q
aS ii ,,1,,1, 0  

( ) ( ) ( ) ( ) ( )∑ ∑
ξ χ

ξχλχξ
φφ

+
k q

ii WabqCbqk
mod mod

,,,1,,1  

( ),2LO+  (5.2) 

where 

( ) ( ) ( ) ( ) ( ) ( )∑
≤<

λχ−χλΛ=χλ
NnN

TEnnenW
4

0 ,,  

( )
⎭
⎬
⎫

⎩
⎨
⎧ χ=χ

=χ
otherwise.,0

,if,1 0
0E  

In the sequel, we will neglect the error term ( ).2LO  We will see that its 

contribution will be dominated by other, larger error terms. Inserting (5.2) 
into (5.1), we obtain 

 ( ) ( ) ( ),,1,11 kGkGkG eM +=  (5.3) 

where 

( )
( ) ( )

( )∑ ∑∏
≤ = =

∗

⎟
⎠
⎞⎜

⎝
⎛−χ

φφ
=

qk
Pq

q

a i
iM Nq

aeabqC
qk

kG
1

2

1
022,1 ,,1,,1  

( ) ( )∫− λλ−λ×
qQ

qQ
dNeT

1

1
2 ,  

( )
( ) ( )∑ ∑

≤ =

∗

⎟
⎠
⎞⎜

⎝
⎛−

φφ
=

qk
Pq

q

a
e Nq

ae
qk

kG
1

22,1
1  

( ) ( ) ( )∫ ∏ ∑ ∑−
= ξ χ

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ξχλχξ×

qQ

qQ
i k q

ii WabqCb
1

1

2

1 mod mod
,,,1,,  
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( ) λλ−× dNe  

( ) ( )∑∑ ∑
= ≤ =

∗

⎟
⎠
⎞⎜

⎝
⎛−

φφ
+

2

1 1
22

1

i Pq

q

a
qk

Nq
ae

qk
 

( ) ( )∫ ∏ ∑ ∑−
= ξ χ
≠

⎜
⎜

⎝

⎛
χξ×

qQ

qQ
j k q

jj

ij

abqCb
1

1

2

1 mod mod
,,1,,  

( ) ( ) ( ) ( ) λλ−λχ⎟
⎟

⎠

⎞
ξχλ× dNeTabqCW i ,,1,,, 0  

∑ ∑+=
1 2

.:  (5.4) 

We first evaluate the main term ( )kG M,1  using Lemma 4.4(b): 

( )
( )

( ) ( ) ( )∑ ∫
≤ −

λλ−λ
φ

=

qk
Pq

M dNeTqNA
k

kG
21

21
2

2,1 1,,1  

( )
( )

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

λ
λφ

+ ∑ ∫
≤

qk
Pq

qQ
dqNA

k
O

21

1 22
11,,1  

( )
( )

( )∑
≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

φ
+

φ
=

qk
Pq k

QPLONqNA
k 2

2

2 21,,1  

( )
( ) ( )∑

≤

−−+
φ

=

qk
Pq

ALXkONqNA
k

,21,,1 1
2  (5.5) 

where we have used (2.1). We have also used ( )
λ

λ 1T  and 

 ( ) ( ) ( )∫− +=λλ−λ
21

21
2 .12 ONdNeT  (5.6) 
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In the sequel, we will without further mentioning use the fact that for  

any character χ induced by a primitive character ,∗χ  we have ( ) =χλ,W  

( ) ( )., 2LOW +χλ ∗  We also note for further usage that for a prime number k, 

each non-principal character χ mod k is a primitive character mod k and the 
principal character mod k is induced by the primitive character mod 1. Using 

Lemma 4.4(b), we estimate ∑
1

:  

∑
1

 

( ) ∑ ∑ ∑ ∑ ∑
≤ χ χ ξ ξφ

≤

qk
Pq q q k kk mod mod mod mod

2
1 2 1 2

1  

( ) ( )∫ ∏−
=

λξχλχχ×
qQ

qQ
j

jj dWqNZ
1

1

2

1
21 ,,,1,,  

( ) ∑ ∑ ∑ ∑ ∑ ∑
≤ ≤ χ χ ξ ξ

∗∗

φ
≤

1
1

2
2 11 22 1 2mod mod mod mod

2
1

rk rk
Pr Pr r r k kk

 

( ( ) ) ( )

[ ]

[ ]

[ ]
∫ ∏ ∑−

= ≤
|

χχχχλ+ξχλ×
Qrr

Qrr
j Pq

jj

qrr

qNZdLW21

21

2,1
1

,1

,1

2

1
0201

2 ,,1,,,  

( ) ( )
∑ ∑ ∑ ∑ ∑ ∑
≤ ≤ χ χ

∗

ξ χ=ξ

∗∗

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+

φ
1

1
2

2 11 22 1 01mod mod mod 1mod
2

2

rk rk
Pr Pr r r kk

L  

( )
( ( ) )

[ ]

[ ]
∫ ∏∑ ∑ −

=

∗

ξ χ=ξ

λ+ξχλ
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+×

Qrr

Qrr
j

jj
k

dLW21

21
2 02

,1

,1

2

1

2

mod 1mod
.,  (5.7) 



Claus Bauer 106 

In the following, we will neglect the error terms 2L  in the last integral   
in (5.7) as their contribution will be dominated by other terms. We see from 
(2.2) and (5.7), 

∑ ∑ ∑ ∑ ∑ ∑ ∑
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

++

|| || ||
≤ ≤ ≤ ≤ ≤ ≤

−

1

22

1
1

2
2

1
1

2
2

1
1

2
2

rk
k

rk
k

rk
k

rk rk rk
Pr Pr Pr Pr Pr Pr

Lk  

( )
[ ]

[ ]
∑ ∑ ∫ ∏

χ χ
−

=

∗∗ λχλ×
11 22

21

21mod mod

,1

,1

2

1
,

r r

Qss

Qss
j

j
rr

rr
dW  

∑ ∑ ∑++=
1,1 2,1 3,1

,:  (5.8) 

where each ∑
i,1

stands for one of the multiple sums in (5.8). We see 

 ∑ −

1,1

221 ,AWLk  (5.9) 

where 

( )
( )

∑ ∑ ∫
|
≤ χ

−
∗− ⎟

⎠
⎞

⎜
⎝
⎛ λχλ=

rk
kPr r

rQk

rQkA dWkW
mod

21
221 .,  

Arguing similarly, we obtain 

 ( )∑ ∑ ++ −

2,1 3,1

221 ,BBA WWWLk  (5.10) 

where 

( )
( )

∑ ∑ ∫
≤ χ

−
∗− ⎟

⎠
⎞

⎜
⎝
⎛ λχλ=

rk
Pr r

rQ

rQB dWkW
mod

211

1
221 .,  
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In the same way, we find 

( ) ( )∑ ∫ +⎟
⎠
⎞

⎜
⎝
⎛ λ

−≤λ

−

2

211

1
2

1
21 max BA

Q

QQ
WWdlTLk  

( ).2121
BA WWXLk +−  (5.11) 

We see from (5.4) and (5.8)-(5.11): 

 ( ) ( ).21212221
,1

B
ABBAAe WXWXWWWWLkkG ++++−  (5.12) 

For ,2Mq ∈  we see 

( ) ( )

( )
( )

( )

∑ ∑
≡

≡
≡

= ≤<

∗ λΛ⎟
⎠
⎞⎜

⎝
⎛=⎟

⎠
⎞⎜

⎝
⎛ λ+

q

g NnN
i

kibg
qgn
kibn

nenq
gaebq

aS

mod
mod
mod

1 4
,  

( ) ( )

( )( )

∑ ∑
≡ ≡

= ≤<

∗ λΛ⎟
⎠
⎞⎜

⎝
⎛=

q

g NnN
kibg qgn

nenq
gae

mod mod
1 4

 

( )
( ) ( )λχ

φ
= TabkqC

q i ,,,,1
0  

( ) ( ) ( )∑
χ

χλχ
φ

+
q

i WabkqCq
mod

.,,,,,1  (5.13) 

Inserting (5.13) into (5.1), we obtain 

 ( ) ( ) ( ),,2,22 kGkGkG eM +=  (5.14) 

where 

( ) ( ) ( ) ( )∑ ∫
||
≤

−
λλ−λ=

qk
Pq

M dNeTkqNAkG
1

21

21
2

,2 ,,  

( )
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

λ
λ

+ ∑ ∫
||
≤

qk
Pq

qQ
dkqNAO

1

21

1 2
1,,  
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( )∑
||
≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

qk
Pq

k
qQLONkqNA

1

2

2,,  

( ) ( )∑
||
≤

−−+=

qk
Pq

ALXkONkqNA
1

,2,, 1  (5.15) 

where we have used Lemma 4.4(a) and (5.6). Further, we see 

( )
( )

( ) ( )∑ ∑ ∫ ∏ ∑
||
≤ =

−
= χ

∗
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
χλχ

φ
=

qk
Pq

q

a

qQ

qQ
i q

ie WabkqC
q

kG
1 1

1

1

2

1 mod
2,2 ,,,,,1  

λ⎟
⎠
⎞⎜

⎝
⎛ λ−−× dNNq

ae  

( )
( ) ( )∑∑ ∑ ∫ ∏ ∑

= ≤ =
−

= χ
|| ≠

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
χλχ

φ
+

2

1 1

1

1

2

1 mod

*
2

1

,,,,,1

i Pq

q

a

qQ

qQ
j q

j

qk ij

WabkqC
q

 

( ) ( ) λ⎟
⎠
⎞⎜

⎝
⎛ λ−−λχ× dNNq

aeTabkqC i ,,,,0  

∑ ∑+=
3 4

.:  (5.16) 

We estimate ∑
3

as 

∑
3

 

( )∑ ∑ ∑
|
≤ χ χ

χχ≤

qk
Pq q q

kqNZ
1 1 2mod mod

21,,,,  

( )∫ ∏−
=

λχλ×
qQ

qQ
j

j dW
1

1

2

1
,  
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∑ ∑∑ ∑ ∑ ∑ ∑ ∑
χ χ

∗∗

≤ ≤ ≤ ≤ ≤ ≤ ⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

++

| | |
11 22

1
11

2
12

1
11

2
12

1
11

2
12 mod modr rPr Pr Pr kPr kPr kPr

rk rk rk rk rk rkw w w

 

( ( ) ) ( )

[ ]

[ ]

[ ]
∫ ∏ ∑−

= ≤

|
|

χχχχλ+χλ×
Qrr

Qrr
j Pq

j

qk
qrr

kqNZdLW21

21

2,1
1

,1

,1

2

1
0201

2 ,,,,,  

∑∑
=

=
3

1 ,3
.:

i i
 (5.17) 

The condition qk |  in the sum 

[ ]

∑

|
|

≤

qk
qrr

Pq
2,1

1

 is only necessary for the sum ∑
3,3

.  In 

the other cases, [ ]21, rrk |  implies .qk |  We will make use of this condition 

when estimating ∑
3,3

.  In the following, we again neglect the error term 2L  as 

it is dominated by other terms. We use Lemma 4.4(a) to estimate ∑
1,3
:  

∑ ∑ ∑ ∑ ∑
| |
≤ ≤ χ χ

∗∗−

1,3 mod mod

21

1
11

2
22 11 22

rk rk
Pr Pr r r

Lk  

( ( ) )
[ ]

[ ]
∫ ∏−

=

λ+χλ×
Qrr

Qrr
j

j dLW21

21

,1

,1

2

1

2,  

,: 221
CWLk−=  (5.18) 

where 

( )∑ ∑ ∫
|
≤ χ

−
∗ ⎟

⎠
⎞

⎜
⎝
⎛ λχλ=

rk
Pr r

rQ

rQC dWW
1 mod

211

1
2 .,:  
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Similarly, we see using Lemmas 4.4(a) and (c), 

 ( )∑ ∑ ++ −

2,3 3,3

221 ,DDC WWWLk  (5.19) 

where 

( )∑ ∑ ∫
≤ χ

−
∗ ⎟

⎠
⎞

⎜
⎝
⎛ λχλ=

rk
kPr r

rQ

rQD dWW

w
1 mod

211

1
2 .,:  

For ∑
4

,  we obtain in the same way 

( ) ( )
21

221

4
⎟
⎠
⎞

⎜
⎝
⎛ λλ+ ∫∑ −

MDC dTWWLk  

( ).2121
DC WWXLk +≤ −  (5.20) 

We see from (5.16)-(5.20), 

( ) ( ).21212221
,2 DCDDCCe WXWXWWWWLkkG ++++−  (5.21) 

Using Lemma 4.2(d) and arguing similar to the estimation of ( ),2 kG  we see 

 ( ) ( ) ( ),,3,33 kGkGkG eM +=  (5.22) 

where 

 ( ) ( ) ( ) ( )∑ ∫
||

≤
−

λλ−λ

qk
Pq

qQ

qQM dNeTkqNAkG

2
2

1

1
2

,3 ,,,  (5.23) 

( ) ( ),21221
,3 EEe WXWLkkG +−  (5.24) 

where 

( )∑ ∑ ∫
||

≤ χ
−

∗ ⎟
⎠
⎞

⎜
⎝
⎛ λχλ=

rk
Pr r

rQ

rQE dWW

2
2 mod

211

1
2 .,:  
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Further, we see from Lemma 4.2(b) that 

 ( ) .0,,2 =⇒| kqNAqk  (5.25) 

Thus, we see from (5.5), (5.15), (5.23), and (5.25) for sufficiently large 
( ),ABB =  

( ) ( ) ( )kGkGkG MMM ,3,2,1 ++  

( )
( ) ( ) ( )∑ ∑

≤ ≤

−−

||

++
φ

=

qk qk
Pq Pq

ALXkONkqNANqNA
k

w
1

1
2 2,,21,,1  

( )
2

, NkNσ=  

( )
( ) ( )

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+
φ

+ −−

> >
∑ ∑

||

A

Pq Pq
LXkkqNAqNA

k
XO

qk qk

1
2

1

,,1,,1

w

 

( ) ( ( ) ),
2

, 1 ALkNXdONkN −−+σ=  (5.26) 

for ( ).ABB >  Here, we have used Lemma 4.5 and (5.25). We note that for 

any prime k and integer b with ( ) ,1, =bk  

( )

( )( )( )

∑ ∑ ∑ ∑
≡ ≡ ≡

≤

−

= ≤ ≤

=

kbn kan kabn
XN

k

a Xn nXn
Nd

mod mod1
1

mod2
12

1

1
1 

( )

∑ ∑
−

= ≤

−−

≡

1

1

1
1

1

mod1
1

k

a Xn
kabn

nXk  

( )
∑ ∑
−

= −≤

−−−
1

1

112 .
k

a kabXl
LXklXk  
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Thus, ( ) 1+PLNd  for all but ( )PLXkO −−1  integers XNXL A ≤≤−  

satisfying ( ).mod21 kbbN +≡  We note that in (5.26) the constant A can 

take any positive value by adjusting the constant implied in the ( )..O  term 

accordingly. Setting ,1++= PAA  we can thus derive from (5.26) that 

( ) ( ) ( ) ( ) ( ),
2

, 1
,3,2,1

A
MMM LXkONkNkGkGkG −−+σ=++  (5.27) 

for all but ( )PLXkO −−1  integers xN ≤  satisfying ( ).mod21 kbbN +≡  

Further, using the relation ,22 baab +  we see from (5.12), (5.21), 

and (5.24): 

( ) ( ) ( ) ( )
{ }
∑

∈

− +++
EDCBAF

FFeee WXWLkkGkGkG
,,,,

21221
,3,2,1 .  (5.28) 

In summary, we see from (5.1), (5.3), (5.14), (5.22), (5.27), and (5.28) 
that the proof of (2.8) reduces to the proof of the following lemma: 

Lemma 5.1. For ,48
5 ε−

≤ Xk  then for { },,, DBAF ∈  

 A
F LXW −2

1

 (5.29) 

for any .0>A  For 
ε−

≤ 48
5

Xk  and if none of the integers kPq ∈  is         

X-exceptional, then (5.29) holds for { }., ECF ∈  

6. Proof of Lemma 5.1 

In order to prove the lemma for ,AF =  it is enough to show that 

 ,212
1

,
A

RA LkXW −  (6.1) 
where 

( )
( )

∑ ∑ ∫
|

χ
−

∗ ⎟
⎠
⎞

⎜
⎝
⎛ λχλ=

rk
Rr r

rQk

rQkRA dWW
~ mod

21
2

, ,  
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for .PkR ≤  Applying Lemma 1 [6], we see 

( )∫− λχλ
rQk

rQk
dW 2,  

( ) ( ) ( ) ( )∫ ∑ ∑
≤< ≤<

+≤< +≤<

− χ−χΛ
N

N
kQrtmt Qrtmt

dtEmmkRQ

NmN NmN

8

2

0
2 .1

4 4

 (6.2) 

We note that ( ) 00 =χE  because of kR ≥  and the primitivity of the 

characters. We set ( )tNX ,4max=  and ( ).,min krQtNYX +=+  We 

apply a slight modification of Heath-Brown’s identity ([10]) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )∑
=

−− ζ−
ζ
ζ′−ζζ′−⎟

⎠
⎞

⎜
⎝
⎛=

ζ
ζ′−

K

j

Kjjj sMsssMss
j

K
s

1

11 ,11  

with 5=K  and 

( ) ( )∑
≤

−μ=
51Nn

snnsM  

to the sum 

( ) ( )∑
+≤<

χΛ
YXmX

mm .  

Arguing exactly as in part III, [24] we find by applying Heath-Brown’s 
identity and Perron’s summation formula that the inner sum of (6.2) is a 

linear combination of ( )cLO  terms of the form 

101 ...,, aa IIS  

( )( ) ( )
( )∫−

−
++

+
+

−+
⎟
⎠
⎞⎜

⎝
⎛ χ+

π
=

T

T

iuiu
NLTOdu

iu

XYXiuF
i

,

2
1,

2
1

2
1 21

2121
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where ,2 NT ≤≤  

( ) ( ) ( ) ( ) ( )∏ ∑
= ∈

−χ=χχ=χ
10

1
,,,,,

j In

s
jjj

j

nnnasfsfsF  

( )
( )

( ]
⎪⎩

⎪
⎨
⎧

≤≤=
≤≤μ
≤<

=
= ,101,2,

,106,
,511,

,1,1orlog
jNNI

jn
j

jn
na jjjj  

∏
=

≤≤≤
10

1

51 .106,,
j

jj jNNNNN  

Since 

( )( ) ( )
( ( ) )12

1
2
1

1
2121

1,min

2
1

−−−
++

+
+

−+ uNNQRk
iu

XYX iuiu
 

by taking NT =  and ( ) ,1
0

−= kQRNT  we conclude that for a sufficiently 

large ( ),MGG =  
101 ...,, aa IIS  is bounded by 

∫−
−− ⎟

⎠
⎞⎜

⎝
⎛ χ+

0

0
,2

12
1

1 T

T
duiuFNQRk  

.,2
1 22

1

0
Lu

duiuFN
TuT

+⎟
⎠
⎞⎜

⎝
⎛ χ++ ∫ ≤≤

 

Thus, we see from (6.2) that in order to prove (6.1), it is enough to show that 
for :PkR ≤  

∑∑ ∫
|

χ

−∗ ⎟
⎠
⎞⎜

⎝
⎛ χ+

rk
Rr

T ALkXdtitF
~ 0

21210 ,,
2
1  (6.3) 
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.,,2
1

101
2121

~

2 1

1
TTTLTQRkXdtitF A

Rr

T

T
rk

≤<⎟
⎠
⎞⎜

⎝
⎛ χ+ −−−

χ

∗∑∑ ∫
|

 (6.4) 

Inequalities (6.3) and (6.4) are both derived from the following lemma 
which is shown for 1=m  in [15, Lemma 5.2] and for the general case 

1≥m  in [16, Lemma 2.1]. 

Lemma 6.1. Let ( )χ,sF  be defined as above. Then for any 1≥R  and 

,02 >T  

∑∑ ∫
|

χ

∗
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟

⎠
⎞⎜

⎝
⎛ χ+

rm
Rr

T

T
cLNNT

m
RT

m
RdtitF

~

2 2110321
2212

22

2
.,

2
1  

 (6.5) 

Using (2.1) and (2.3), the estimates (6.3) and (6.4) follow from Lemma 

6.1 by setting 02 TT =  and ,12 TT =  respectively, provided that .51 ε−≤ Nk  

In order to prove the lemma for ,BF =  it is sufficient to show that 

 ,2
1

,
A

RB LXW −  (6.6) 

where RBW ,  is defined as 

 ( )
( )

∑ ∑ ∫
χ

−
∗ ⎟

⎠
⎞

⎜
⎝
⎛ λχλ=

Rr r

rQ

rQRB dWW
~ mod

211

1
2

, ,  (6.7) 

for .PR ≤  We note that in (6.7), we omit the factor 21−k  included in the 

definition of BW  as we can derive the desired estimate without taking it into 

account. Arguing as in the case ,AF =  we can estimate the sum on the 

right-hand side of (6.7) by using the zero expansion of the von Mangoldt-
function: 
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( ) ( ) ( )∑ ∑
+≤< +≤<

χ−χΛ
YXmX YXmX

Emm 10  

( )∑
≤ρ

ρρ
⎟
⎠
⎞⎜

⎝
⎛+

ρ
−

ρ
+

T
L

T
XOXYX

Im

2  

∑
≤ρ

−β ⎟
⎠
⎞⎜

⎝
⎛+

T
L

T
XONQR

Im

21 ,  (6.8) 

where ρ runs over the non-trivial zeros of the L-function corresponding       

to χ mod r with T≤ρIm  and .Reρ=β  We now use the fact that 

( )χ+σ ,itL  with χ mod r and DLr ≤  has no zeros in the region (see [20, 

VIII Satz 6.2]) 

( )
( )( )

,,
2loglog

1:1 54
0 Tt
Tr

cT ≤
++

−=δ−≥σ  

where 0c  is an absolute constant. We now make using of the following 

lemma from [12]: 

Lemma 6.2. Let ( )qTN ,,α∗  denote the number of zeros it+σ  of all 

L-functions to primitive characters modulo q within the region ,α≥σ  

.Tt ≤  Then for any positive integer m and :121 ≤α≤  

( )
( )

∑
|
≤

α−⎟
⎠
⎞⎜

⎝
⎛ ε+

∗
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
α

qm
Pq

m
TPqTN .,,

15
12

2
 

Taking ,31NT =  we apply Lemma 6.2 and derive from (6.2) and (6.8), 

( )
∑ ∑ ∑

χ ≤ρ

+−β∗ +
Rr r N

B
RB LkNNNW

~ mod Im

25361121
,

31
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( )

( ) ( ) ε−−ββ−⎟
⎠
⎞⎜

⎝
⎛ ε+

δ−≤β≤
+

⎟
⎟
⎟
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⎞

⎜
⎜
⎜

⎝

⎛
2
1

2

11
5
4

1
2
1

21 max NNNLN
T

c  

( )5121 exp cLX −  (6.9) 

as .48
5 ε−

≤ Xk  For the proof of the case ,CF =  we define RCW ,  similarly 

to RAW ,  in (6.1) as 

( )
( )

.,
~ mod

211

1
2

, ∑ ∑ ∫
|

χ
−

∗ ⎟
⎠
⎞

⎜
⎝
⎛ λχλ=

rk
Rr r

rQ

rQRC dWW  

Taking VLkT 22=  and arguing as in (6.9), we obtain by using (1.5) and the 
assumptions of Theorem 2, 

∑ ∑ ∑
|
≤ ≤ρ

−−β∗ +

rk
VPr rX Lk

A
RC LNNNW

1 22~ Im

21121
,  

( ) A

L
EL

C LNNNLN −−ββ−⎟
⎠
⎞⎜

⎝
⎛ ε+⎟
⎠
⎞⎜

⎝
⎛ ε−

−≤β≤
+

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
2111

5
122

12
5

1
2
1

21

2
max  

,21 ALX −  (6.10) 

for sufficiently large ( ) ( ),,, AVVAEE =ε=  and .36
5 ε−

≤ Nk  In order to 

prove the lemma for ,DF =  we need to show 

,2
1

,
A

RD LXW −  

where RDW ,  is defined as 
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 ( )
( )

∑ ∑ ∫
χ

−
∗ ⎟

⎠
⎞

⎜
⎝
⎛ λχλ=

Rr r

rQ

rQRD dWW
~ mod

211

1
2

, ,  (6.11) 

for .1
BLkPR =≤  We see from (6.7) and (6.11) that 

 .,, RBRD WW =  (6.12) 

We also see that the respective maximum size of R is P for BF =  and 
kP1  for DF =  and that by (2.3) .1 kPP =  Thus, for DF =  the lemma 

follows from (6.6) and (6.12). 

For the case ,EF =  we argue as in the case .CF =  Here, the upper 

bound 
ε−

48
5

Nk  is required. 

References 

 [1] R. Ayoub, On Rademacher’s extension of the Goldbach-Vinogradov theorem, 
Canad. J. Math. (1953), 482-491. 

 [2] A. Balog and A. Perelli, Exponential sums over primes in an arithmetic 
progression, Proc. Amer. Math. Soc. 93 (1985), 578-582. 

 [3] C. Bauer, On Goldbach’s conjecture in arithmetic progressions, Studia Sci. Math. 
Hungar. 37 (2001), 1-20. 

 [4] C. Bauer and Y. Wang, On the Goldbach conjecture in arithmetic progressions, 
Rocky Mountain J. Math. 36(1) (2006), 35-66. 

 [5] C. Bauer, The ternary Goldbach conjecture with primes in thin subsets, Rocky 
Mountain J. Math. 38(2) (2008), 1-22. 

 [6] P. X. Gallagher, A large sieve density estimate near ,1=Σ  Invent. Math.           

11 (1970), 329-339. 

 [7] K. Halupczok, Zum ternären Goldbachproblem mit Kongruenzbedingungen an  
die Primzahlen, Proc. of Elementary and Analytic Number Theory, Paderborn, 
Germany, 2004, pp. 57-64. 

 [8] K. Halupczok, On the number of representations in the ternary Goldbach problem 
with one prime number in a given residue class, J. Number Theory 117(2) (2006), 
292-300. 



The Binary Goldbach Conjecture with Restrictions on the Primes 119 

 [9] K. Halupczok, On the ternary Goldbach problem with primes in arithmetic 
progressions of a common module, 25th Journées Arithmétiques, Edinburgh, 
2007. 

 [10] D. R. Heath-Brown, Prime numbers in short intervals and a generalized 
Vaughan’s identity, Canad. J. Math. 34 (1982), 1365-1377. 

 [11] Hongze Li, The exceptional set of Goldbach numbers (II), Acta Arith. 92(1) 
(2000), 71-88. 

 [12] N. M. Huxley, Large values of Dirichlet polynomials III, Acta Arith. 26 (1975), 
435-444. 

 [13] A. F. Lavrik, The number of k-twin primes lying on an interval of a given length, 
Dokl. Akad. Nauk SSSR 136 (1961), 281-283; Soviet Math. Dokl. 2 (1961),       
52-55. 

 [14] J. Y. Liu, The Goldbach-Vinogradov theorem with three primes in a thin subset, 
Chinese Ann. Math. Ser. B 19 (1998), 479-488. 

 [15] J. Y. Liu and M. C. Liu, The exceptional set in the four prime squares problem, 
Illinois J. Math. 44 (2000), 272-293. 

 [16] J. Y. Liu, On Lagrange’s theorem with prime variables, Quarterly Journal of 
Mathematics 54(4) (2003), 453-462. 

 [17] J. Y. Liu and T. Zhan, The ternary Goldbach problem in arithmetic progressions, 
Acta Arith. 82(3) (1997), 197-227. 

 [18] M. C. Liu and T. Zhan, The Goldbach problem with primes in arithmetic 
progressions, London Math. Soc. Lecture Notes 247, Analytic Number Theory, 
edited by Yoichi Motohashi, Cambridge University Press, 1997, pp. 227-251. 

 [19] H. L. Montgomery and R. C. Vaughan, On the exceptional set in Goldbach’s 
problem, Acta Arith. 27 (1975), 353-370. 

 [20] K. Prachar, Primzahlverteilung, Berlin, Heidelberg, New York, Springer Verlag, 
1978. 

 [21] H. A. Rademacher, Über eine Erweiterung des Goldbachschen problems, Math. 
Zeit. 25 (1926), 627-660. 

 [22] D. I. Tolev, On the number of representations of an odd integer as as um of three 
primes, one of which belongs to an arithmetic progression, Proc. Steklov Inst. 
Math. 218 (1997), 414-432. 

 [23] D. Wolke, Some applications to zero-density theorems for L-functions, Acta 
Math. Hungar. 61 (1993), 241-258. 



Claus Bauer 120 

 [24] T. Zhan, On the representation of a large odd integer as a sum of three almost 
equal primes, Acta Math. Sinica 7(3) (1991), 259-272. 

 [25] Z. F. Zhang and T. Z. Wang, The ternary Goldbach problem with primes in 
arithmetic progressions, Chinese Annals of Mathematics 17 (2001), 679-696. 

 [26] C. Zhen, The ternary Goldbach problem in arithmetic progressions, to appear. 

 [27] C. Zhen, The ternary Goldbach problem in arithmetic progressions (II), Acta 
Math. Sinica Chinese Ed. 49(1) (2006), 128-138. 

 

 


