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THE BINARY GOLDBACH CONJECTURE WITH
RESTRICTIONS ON THE PRIMES
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Abstract

It is proved that for any positive number X, any P > 0 and for all but

(log X)P prime numbers k < X% the following is true: For
any positive integers by, i e {1 2}, (b, k) =1, all but O(Xk L)
sufficiently large integers N < X satisfying N = b, + by(mod k) can
be written as N = p; + py, where p;, ie {1, 2} are prime numbers

that satisfy p; = bj(mod k).
1. Introduction

The binary Goldbach conjecture states that every even integer larger than
2 can be written as the sum of two prime numbers. In 1975, Montgomery and
Vaughan considered the corresponding exceptional set E(X ) defined as

E(X)=#{N < X :2|N, N # p; + p, for any primes p;, p,}.
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They could show that
E(X)< X1

for a small positive number & > 0. It was later shown in [11] that & can be
chosen as large as & = 0.086. Lavrik [13] investigated a special case of the
binary Goldbach conjecture requiring that the two prime summands belong
to a given arithmetic progression. In particular, he considered the following
exceptional set:

Ek,bl,bz(x)3:#{N <X :N=b +by(modk), N = p; + p,
for any primes p; = b;(modk), i =1, 2},

Ex(X)= max E X).
k(X) i k,by, by (X)
(bibp, k)=1

He show that for k < (log X )° and any A > 0,

Ec(X) < X(log X ) Akt (1.1)

Using a different approach, Liu and Zhan [18] shown that the following

estimate holds for all k < X for asmall & > 0:

Ec(X) < X7 Y(k), (1.2)
for a small, positive constant &;. In this paper, we show the following result:

Theorem 1. There exists a positive constant D such that for all but
S e
O((log X )P) prime numbers k < X 48, we have

Ec(X) < Xk Y(log X)™P (1.3)
forany P > 0.
Compared to (1.2), we increase the permissible size of k, for all but

5
——
O((log X)P)k, to X 48  at the cost of a slightly smaller exceptional set

E (X).
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The proof of Theorem 1 uses the concept of X-exceptional zeros
introduced in [4]. We set

L=1log X, Ly, =loglog X, L(s,y)= ZL?)
n>1
where y is a Dirichlet character. For a prime number k, k < N and a fixed
positive integer V, we define

I = [k kLY JU[K?, k2], B ={me N:m=0(modk), me I }.

For a fixed, very small 5, we call a Dirichlet character y to a module g
satisfying

X% <q< X (1.4)

an X-exceptional character if there exists at least one complex number
S = o + it such that

EL,

c>1- C

It|< X, L(s, %) =0, (1.5)

where E is a fixed, positive number to be defined later. We call s an
X-exceptional zero and we call an integer g an X-exceptional integer if there
exists an X-exceptional character y modulo g.

Using the concept of X-exceptional zeros, Theorem 1 is a direct
consequence of Theorems 2 and 3:
5,
Theorem 2. For a given prime number k < X438 | if none of the

integers q € B is X-exceptional, then (1.3) is true for this k.

Theorem 3. There exists a positive constant D such that for all but
O((log X)) prime numbers k, 1< k < X, none of the integers q € R is
X-exceptional.

Theorem 3 follows directly from [4, Theorem 3]. The reminder of this
paper is dedicated to the proof of Theorem 2.
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The ternary Goldbach theorem with primes in arithmetic progressions
has been extensively studied in [1, 3-5, 7-9, 14, 17, 18, 21-23, 25-27]. The
case of large k was considered in [4, 5, 9, 27]. The methods applied in the
publications cannot be simply applied to prove Theorem 1.

In particular, in [4, 5, 9, 27], estimates for Dirichlet polynomials were
used to estimate the error term induced by the integral over the major arcs.
The application of these estimates for Dirichlet polynomials requires a
‘good’ upper bound when estimating partial singular series associated with
triplets of primitive characters. In particular, if r is the greatest common

denominator of the modules of three primitive characters, a factor r_l/2 is
obtained when estimating the associated partial singular series. For the binary
case, such a factor cannot be obtained for all major arcs. In particular, it can
only be used for major arcs where the denominator of the center of the major
arc is not divisible by the prime number k. In order to deal with some of the
remaining major arcs, we use an estimate for exponential sums over primes
in progressions from [27].

2. Outline of the Proof of Theorem 2

For the proof of Theorem 2, we only consider integers N lying in the
range X(log X)_P < N < X. The contribution of the exceptional N
satisfying N < X (log X )7 can be estimated trivially. We denote by [a;, a,]
and (ay, a,) the least common multiple and the greatest common divisor of
two integers & and ap, respectively. c is a positive constant that can take

different values at different occasions. d(N) is the divisor function. We

know from [18] that Theorem 2 holds true for k < X%, where & is a small
positive constant. Therefore, we assume throughout the document that

k> X9, 2.1)

where & is chosen as in (1.4). In this paper, we do not distinguish between the
quantities k and ¢(k) used in (1.2) and (1.3), respectively, as k is a prime
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number. We use the familiar notation

r~R< R/2<r <R, Z = Z

1<a<q 1<a<q
(a,q)=1

We write e(a) = e2™% and the variables p and p; always denote prime

numbers. For a given integer k, we set k; = (k, q). For a given integer m,

we write k™ [|q if k™|q, k™ 4 q. Further, if k™||q, then we define
Sq = gk~ (2.2)

Throughout this paper, we keep the numbers b; and b, used in (1.2) fixed

and omit them from all of the following definitions:

o= S AmAM),
N/4<nj<N
m+np=N
pi=bj(modk),ie{1, 2}

q
Cranba)= D xmd ™

m=1
m=b(mod h)

—

We set

Z(N, a, h, x1, x2)

q

a. b, by, 2)C(zz, 4, h, by, @) .
:1
( ,q)=1

AN, g, h)=Z(N,d, h 70 70,q) TAW= D, en),
N/4<n<N

S(o, k,b)=" D A(me(na), S(@)= D A(n)e(na),
N/4<n<N N/4<n<N
n=b(modk)
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For a given k, we define
P=L8 P =kB P =k%B 0Q=nNk?L3B (2.3)

where the constant B > 0 will be specified later. For a fixed prime integer
k and N being an integer satisfying N = by + by(modk), we define the
singular series

o(N, k) = q)(k)q)(kN) 11 ( o 1)} (2.4)

p=2
(p,kN)=1

Using the circle method, we define the major arcs M as follows: We set

_la_1 a 1
M, q)_[q qQ’q+qQ} 9

and

M=) J M@,

q<P (a,q)=1

M2=U U M(a, 9),

q<R (a,q)=1
kllg

M3=U U M(a, q). (2.6)

a<P; (a,q)=1
k(g

We note that in the summation defining of My, k 1 g, as k > P. Finally,

the minor arcs m are defined as:

1 1}\M.

3
I
1
Ol
PN
|
O|
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Thus, we can write

1 2
I(N, k) = 11_15 e(-Ne) [ ] S(ev, k, by)dor
i) i=1

2 2
- IM e(-Na) [ T S(ex. &, bi)da+j e(-Na) [ T S(ex. k, by)der
i1 m i1

= Ry, m (K) + Ry, m (k). 2.7)

We can prove Theorem 2 by proving the following two statements:
5

1. If for a given prime number k < X438  none of the integers q € B
is X-exceptional, then for all A > 0, and all but O(Xk‘lL‘P) integers N
satisfying XL'7 < N < X, and N = by + by(mod k),

Ry w (k) = o(N, k)%+O(Nk‘1L‘A). 2.8)

5

2. For any given prime number k < X48 | any A >0 and all but

O(Xk~1L7P) integers N satisfying N < X, and N = by + by(mod k), there
is
| Ry m(K) | < Nk~IL7A, (2.9)

We see from (2.4) that the main term on the RHS of (2.8) is larger than
No(N, k) > Nkt > XL"Pk™L. Noting that (2.8) and (2.9) both hold for
any A > P, Theorem 2 follows.

In the next section, we will use Dirichlet’s theorem on rational
approximation according to which any rational number o can be written as

azgm, 12| <1/qQ, (2.10)

where (a, q) =1, q < Q, and Q is as defined above.
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3. Minor Arcs

For the estimation of the contribution of the integral over the minor arcs,
we need the following lemma:

Lemma 3.1. For an integer r and any real number o, we write

ra=ﬁ+kl, |7\,1|Si2,
Sl o))

I’zocza—2+k2, |>\,2|Si2
a2 a2

Then for (r, b) =1,

5/6
S(3+x, r, bj < ql+ﬁ+L2+ N —+ N]/2q12/2 13
q il rqu/ Y
Proof. See [27].

Lemma 3.2. For integers a, q, r, b satisfying (a, q) =1, (r, b) =1, and
setting h = (r, q),

a hN q1/2N1/2 N4/5 3
S(Q’r'b)<<(rq]/2+ 172 + 775 L”.

Proof. See [2].

We now argue as in [26] and apply Lemmas 3.1 and 3.2 to estimate the
integral over the minor arcs. If a € m, then we see from (2.10) that

a=212 where || <q'Q7! (a q) =1 where q does not belong to
q

the summation range defining M1, M,, and M3 in (2.6).

3
1. Fork{q, q> k2" with sufficiently large H and k < N2/11L_F,

we obtain from Lemma 3.2 via partial summation for i =1, 2,
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_P+G+1
|S(at, k, bj)| < XkIL 2 (3.1)

for F > F(A, P). We apply Lemma 3.1 in the remaining cases as follows:
2. For k{q, and g < k3/2LH, we see from the definition of m that
a=0 =g > L%
3. For k||qg, we seethat g > oy = g = q/k > LB.
4.For k?||q, wesee q > g = q/k >qp = q/k2 > LB,

Noting that in cases 2, 3 and 4, we have LB <P < <9<

Nk2L3B, we derive (3.1) from Lemma 3.1 for k < N1 F and F >
F(A, P), B > B(A, P).

It follows from Parseval’s identity and (3.1),

Z |RN,m(k)|2 = Z |RN,m(k)|2

X[2<N<X X/2<N<X
N =by +bp (mod k)

_ Im| S(at, K, by)S(a, k, by)[dor

< max| S(a, k, by) |2(I:| S(a, K, b2)|2doaJ

< X3KS3LAP

which implies (2.9).

4. Preliminary Lemmas for the Major Arcs

Lemma 4.1. For any natural number q = qdo, (g, gp)=1 and

characters

1c(mod g) = x¢, (mod gy) xc, (Mod ),
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%d(mod q) = yq, (mod ¢ ) xq, (Mod gy),
there is:
(a)

Z(N, q, kg» xc» xd)
= Z(N' ql' kql’ XCl’ Xdl)Z(N’ q2’ qu' XC2’ Xdz)

(b) If ¥ modulo pB is a both non-primitive and non-principal character,

i.e., x is induced by " modulo p%,1<a <, then for (ab, p) =1, and
0 <y < B, we have

C(x, pP, p?, b, a)=0.
Proof. The proof follows the proof of Lemma 3.2 in [4].
Lemma 4.2. Set (a, ) =1, and (b, ) = 1 throughout the parts (a) and
(b).
(a) Let ¢ be a character modulo g. Then
C(x,q,L b a)< qj/z.
(b)
C(%0,q» 0 Kg» b, @)
tha . _
— “(q/kq)e k_ ’ If (q/kq’ kq) = 11 tq/kq = 1(m0d kq)1

q
0, otherwise.

(c) For any two characters 4, x», modulo k2, we have:
Z(N, k?, Kk, X1, X2) # 0 = %1, 12, are primitive characters modulo k2,

(d) For any two primitive characters yx; modulo r;, i =1, 2 with k? [T,

where [r, r,] =1, r|q, and the principal character y modulo g, we have:
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Z(N, a, K, %170, 7%2%0) # 0 = K2, 1<i<2

(e) For any y;, x» modulo k?, where k is prime, and an integer N
satisfying = by + by(mod k),

Z(N, k2 K, A1 A2) <K kL

Proof. The parts (a) and (b) are proved in [4, Lemma 3.3]. Parts (c) and
(d) are derived from Lemma 4.1 in the same way [4, Lemma 3.3] is derived
from [4, Lemma 3.2]. For the proof of part (e) we know from Lemma 4.2(c)
that we only have to consider characters y;, i =1, 2, that are primitive

modulo k2. We see

K
Clui K%k, by, @) = i) D7l + Esk)e(W)

s=1

(4.1)

Thus,

2
HXl(b) K
2(k ) ZZX1(1+ bysik) 12 (1 + bysyk)
1 S2

*

XkZ:e(a(bl+b2—N +51k+32k)} 4.2)

2
a=1 k

Z(N, k%, K, 1, %2) = =L ——

Using that by + b, — N = Mk, M e Z, we can write the inner sum in
(4.2) as:

2

Z [ak(M +sl+sz)j kz: (a(M +S1+52))

a=1

B k(k—l), if M +5 + S EO(mOdk),
s else.
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Obviously,
£{s1, Sp :1< 8,5 <k, M +5 +5, =0(modk)} = k. 4.3)

Since k/¢(k) < 2, we obtain from (4.2) and (4.3):

| Z(N, kz, K, x1, x2) | < kK3 = kL

Lemma 4.3. For an integer k and integers by, by, N satisfying N = b,
+ by(mod k), there is

1, B=1 (p, kN)=1
AN, pP k)= 2 IPh B=1(pk)=1 pIN,
o%(pP) | pP - pP plk,(pB/kps,kps)ﬂ,
0, else.

Proof. This follows from Lemma 4.2(b).

Lemma 4.4. Consider two primitive characters y; mod r;(i = 1, 2), the
principal character yqmod g, r = [, r,], a number k which is either equal
to 1 or a prime number, and a positive number M < N.

@ 1f k™||r, m e {1, 2}, then

D 1Z(N, g, k, xaxo x2%0) | < kM2 (4.4)

q<M
riq

(b) If (r, k) =1, then

D 1Z(N, 6,k o, x2x0) | < L2 (4.5)

g<M
riq

() If (r, k) =1, then

D 1ZIN, .k g, x2x0) | < KT (4.6)

g<M
kr|q
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Proof. (a) Applying Lemma 4.1(a), we can write Z(N, g, k, ...) =
Z(N, r', k, .)JA(N, I,1), where (r',1)=1, r|r’, and every prime factor
that divides r" also divides r. From Lemma 4.1(b), we see that Z(N, r', k, ...)
=0 if r" = r. Using the notation introduced in (2.2) and again Lemma
4.1(a), we find Z(N, r, k,..)=Z(N, s, 1 ..)Z(N, k™, k, ..). Thus, the
proof can focus on terms Z(N, g, ...) that can be written as Z(N, g, k, ...) =
Z(N, s;, 1, ..)Z(N, k™ k, ..)A(N, I, 1), where (r,1)=1 and (s, k) =1.
In consequence, the right-hand side of (4.4) can be estimated as

< Z(N, s, 1 )Z(N K™ K, ) DT AN, 1L ), 4.7)

1<M/r
(1,k)=1

where (s, k) = 1. We use Lemma 4.2(a) to estimate
Z(N, s, 1, ..) < L3. (4.8)

In order to estimate Z(N, k™, k, ...), for m =1, we use the fact that by
definition | C(y, k, k, b, a) | <1 whereas for m = 2, we use Lemma 4.2(e).
Thus,

Z(N, k™ k,..) < kL. (4.9)

Lemmas 4.1(a) and 4.3 imply

D IAN L)< ] (1+ pl_lj P ()

I<M/r pIN I<M/r
(I, k)=1 p<M
-1
< N (N)< L. (4.10)

The lemma follows from (4.7)-(4.10). For the proof of (b), we argue
similarly and find that we need to estimate the expression

|Z(N, 1) D) AN, L D). (4.11)

I<M/r
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Arguing similarly to the proof of part (a) and using Lemma 4.1, we see that

DUIAN L1+ > AN K™ K™Y AN, 1L 1),
I<M/r m>1,kM<M/r I(Ist/l)g

(4.12)
For k prime, a trivial estimate shows

> AN KM KM < Y kM <k (413)
m>1,kM<M/r m>1,kM<M/r

For k =1, in (4.12), the sum > JA(N, k™, k™)] is not needed in
m>1,kM<M/r

the estimate (4.12). Similar to (4.8),
|Z(N, 1, 1)| < L3 (4.14)

Part (b) of the lemma follows from (4.10)-(4.14). For the proof of part
(c), we follow the argument in (4.11) and estimate

[Z(N, )] Y AN, LK), (4.15)
I<M/r
K|l
Using Lemma 4.2(b), we see that A(N, I, k) = 0 if k?|l. Applying again
Lemma 4.3 and using (4.10), we obtain

D TAN LK< AN, K K| DT AN, LD < kL (4.16)
I<M/r 1<M/rk

k|l (1,k)=L
Part (c) of the lemma follows from (4.14)-(4.16).

Lemma 4.5. (a) For any prime k,

D IAN, g, )< Ld(N)U ™,
q=U
(9,k)=1
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(b) For any prime kand U > Kk,

D 1A, g, k)| < Ld(N)U™
q=U
klg

(c) For any prime k,

—A(N’q’ kq)ch k
qzﬂ $(k/kq) (M-

where o(N, k) is defined in (2.4).

Proof. For the proof of (a), we use Lemma 4.3 and obtain

DIRECEDIED I, L 4((a N))

q=U q=U Z(q)
(a,k)=1
<Y o) D ()
d|N q>U/d
< Bu ). (4.17)

For the proof of (b), we similarly derive from Lemmas 4.1(a) and 4.3,

DA, 4, k)< 072() D od) D [AN, g k)]
q=U d |k q=U/d
kig (a,k)=1

<97 (k) D ¢(d)L3dUd(N)
d|k

< d(N)LU™L (4.18)

(c) We see from parts (a) and (b) of this lemma that the left-hand side of
(4.17) is absolutely convergent. Thus, it is equal to its Euler product.
Applying Lemma 4.3, we see
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1 A(N, q, kq)
¢2(k>qzzl 9 (k/kq)

k

)67 (kq)

¢ (k) g>1

_ 1 1 1
_(I)Z(k) p=2 (1 (p_]-)ZJ H (1+(p_1)j

> (p,k)=1
(p.kN)=1 PIN

plk b>1
pP 1k

¢(k)¢(kN) H ( (p— 1)2J
(p, kN)l
5. The Major Arcs

According to (2.6), we split the integral over the major arcs as follows:

RM,N(k)zjl HS(a K, by )e(—aN )do

|V|1+M2+|V|3
= G]_(k) + Gz(k) + G3(k) (5.1)

We first consider G;(k). As k t g, we find

s(% A, bij _ gile(%j N/ESN A(me(mh) + O(L2).

n=bj (modk)
n=g(mod q)
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We introduce the Dirichlet characters & mod k and x mod q and obtain

s[% vy bi] = mc(m g, 1 by, a)T(R)

where

1 = ga—
+Wa%k Ely) Y C(x a1 by, AW( &)

x mod q

+0(L?), (5.2)

W)= D Ae(m)x(n) - Eg()T(),

N/4<n<N
1 if x=1yo,
E -
o) {O, otherwise.

In the sequel, we will neglect the error term O(LZ). We will see that its

contribution will be dominated by other, larger error terms. Inserting (5.2)
into (5.1), we obtain

where

Gi(k) = Gy, m (k) + Gy e (k), (5.3)

*

q

2
Gy, m (k) = Z S S ZHC(XO’ q, 1 by, a)e(—%N)

S 02 (00%(a) i
kfqg

< Y99 12 e(- i) d,
0Q

*

Grol) = ;ie(—%N)

R A O LRGP
ktqg

YaQ 2 _ _
XJ—VqQ H[ D> EbB) D) CX a1 by, AW (R, &x)

i=1 \ & modk ¥ mod g
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x e(~AN)dA
q*
a
IV
Zlq;wk)(b (q)aZl( )
ktq
2
le/qQ H[ Y. Ebj) D, C(xalbj a)
YR G emodk  ymodg

j#
x W (A, &x)JC(xO, a9, 1, by, a)T(L)e(-=AN)dxr
=22 (5.4)
1 2
We first evaluate the main term Gy y (k) using Lemma 4.4(b):

Gy m (k) =

ve_ o,
i )q;A(N 1)'[_]/2T(x) e(—N2.)dA
ktq

¢(>q;' AN )'L/omz

kfq
1)
(I) (k) q<P 2 2(k)
ktqg
o (k)q; AN, g, 1)—+O(Xk_1L_A) (5.5)
ktq

where we have used (2.1). We have also used T(A) < ﬁ and

Y2 2 N
| o TOVe(NR)O = 5 o). (5.6)
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In the sequel, we will without further mentioning use the fact that for

any character y induced by a primitive character y*, we have W(X, ) =

WL, ")+ O(LZ). We also note for further usage that for a prime number k,
each non-principal character y mod k is a primitive character mod k and the
principal character mod k is induced by the primitive character mod 1. Using

Lemma 4.4(b), we estimate > :
1

¢ (k) gq<P x1modq yo modq & modk &, modk
kta

x|Z(N, q,1 %, X2)|I

2
140 11|W(7»- %j&j) [dr

¢ (k) <P <P yymodnr yp,modr, & modk & modk

ki kir
Y. r2]Q 2
XI H(I (v i€+ ) D> Z(N, 0,1, xaxo, x2%0)]
-1/[n, 12]Q oy
[, r2]la

%
IR
r1<P <P yymodr ypmodr, \&modk & =yp(modl)

kim kir

[ >y }jl/“ H(| (., %j&5) |+ L2)dA. (5.7)
&2=x0(mod1)

&p mod k Y. 2]Q
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In the following, we will neglect the error terms L? in the last integral
in (5.7) as their contribution will be dominated by other terms. We see from
(2.2) and (5.7),

I PPN IPIP)

n<h <k <P R<P <P <P
kiln ki k|l kirp ki kir

1/5r1 Srz 2 _
<22 e srz]Q@wa,xmdx

ypmodnr y2 modry
=33y (5.8)
, 13

where each Z stands for one of the multiple sums in (5.8). We see
1i

Z < k72w2, (5.9)
1,1

where

2

Wa=k¥2y Y *U_k/Q (W, %) dx)]/

r<Rh x(modr)
k|r

Arguing similarly, we obtain

Do+ < kTHAWAWg +WE), (5.10)
1,2 1,3

where

Wg =k V23 > U_l/ W, >|2dx]m

r<P x(modr)
kir
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In the same way, we find

1,2 Y2
kL T(A)|dl Wa +W
2 < Kme/(QU—l/Q| (] Wa )

< kI2XY2 (W, +Wg).
We see from (5.4) and (5.8)-(5.11):

Gpo(k) < KHPWE +WaWg +WE + XYAW, + XYANB),

For g € M5, we see

S(%-ﬁ-?\,,bi): i *e(gaj Z A(n)e(nh)

g=1 f N/4<n<N
g=hj (mod k) n=bj (mod k)
n=g(modq)
q 0
= el == A(n)e(nr
Y 8] Y amem)
g=1 N/4<n<N
g=bj (modk) n=g(modq)
——C(x0, o k, bj, &)T(2)
¢( ) !

S X OOk b AW )

¥ mod q
Inserting (5.13) into (5.1), we obtain

Ga(k) = Gy, m (k) + Gy e(k),
where

Gom(k)= > AN, q k)I T(1)2e(~NA)da

a<hR
kilg

A(N, g, k)
q;ll ljJ/Q |x|
kilg

(5.11)

(5.12)

(5.13)

(5.14)
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2
=3 AN g k) o(%}
4<R
kllg

= > AN, g, KD+ O(XKILA), (5.15)

a<h
kilg

where we have used Lemma 4.4(a) and (5.6). Further, we see

2
L[y { qzqkmhmwamﬂ
/qQ i=1 \y modq

Gy o(k) =
Z()“@m>
kilg

x e(—%N - xdex

N

i=1q<R ¢2(Q)a 1/QQ 121 mod g ER :
kila i

x Clxo. 0. k. by, a)T(x)e(—% N xdek

=Y+ (5.16)
3 4

We estimate ) as
3

gz Z Z | Z(N, a, k, x1, x2)|

q<P xgmodqg o modq
klg

2

W“Iﬂwummx



The Binary Goldbach Conjecture with Restrictions on the Primes 109

*
N PADIEDIED NI VDI ID IR
n<h n<R /<P n<R/k A<R/k p<R/k |y modn x; modr,
kin kirp  kin  kir kvn  kump

1/[n,2]Q
Xf H(IW(% ) [+ L2)dh > |ZN, d, K, aor 2%0)]

Atz a<h
[r.r2]lq
kiq
3
= (5.17)
i=1 31

The condition k|q in the sum z is only necessary for the sum z In
qQ<h 3,3

[n,r2llq
klg

the other cases, k|[r, ;] implies k|g. We will make use of this condition

when estimating z In the following, we again neglect the error term L2 as

3,3
it is dominated by other terms. We use Lemma 4.4(a) to estimate Z:
31
Z SLICDIDIED NS I
n<R <P yymodr yp modr
kin  kir
Y[, r2]Q 2
A, + L%)da
) H<| (1) |+ 1)
= kI2wg, (5.18)

where

We =2 > U (W, X)|2d7~j1/2

r<p y modr
k|r



110 Claus Bauer

Similarly, we see using Lemmas 4.4(a) and (c),

D+ <k WWp +W5), (5.19)
3,2 33

where

1/2
|W (2, 7)[2dA
rizil:r/kxn%r (I )

For Z , We obtain in the same way
4
1/2

2.

4

A +WD)UM 1T2(0) |dx)

< k72X Y2 (Wi +Wp). (5.20)
We see from (5.16)-(5.20),
Gy o(k) < kKI2WE +WeWp +WE + XY2We + Xx¥2Wp).  (5.21)

Using Lemma 4.2(d) and arguing similar to the estimation of G,(k), we see

Ga(k) = G3 m (k) + G3 ¢(k), (5.22)
where
Yo _
Gym(K) < > [ANN, g, k)|j T()2e(-NA)dr,  (5.23)
a<P,
k?|lq
Gy (k) < k7H2WE + XYAWg), (5.24)
where

We:= > > U 10 (W, x)|2d7¥)]/2

r<P, y modr
k2|



The Binary Goldbach Conjecture with Restrictions on the Primes 111
Further, we see from Lemma 4.2(b) that
k?]qg = AN, g, k) = 0. (5.25)

Thus, we see from (5.5), (5.15), (5.23), and (5.25) for sufficiently large
B = B(A),

Gy, m (k) + Gg, m (k) + G3 m (k)

1 N N -1, —-A
= AN, q,1)—= + AN, g, k)= + O(Xk™L™")
¢2(k)q§3 2 qSZPl 2
kiq kilg
_ (N, k)%
¢21k) S IAN, gD+ 3 [AN, g, k)| [+ Xk LA
q>P >R
kg ilg
= (N, k)%+O(Xd(N)k_1L_A), (5.26)

for B > B(A). Here, we have used Lemma 4.5 and (5.25). We note that for
any prime k and integer b with (k, b) =1,

k-1
2 dm=2 > > 1
N<X a=l m<X np<X/m
n=b(modk) m=a(modk) ny=ba(modk)
k-1
<Xk ot
a=1 n1£X

m=ba(modk)

k-1
< Xk~2 Z Z It < xk7L.
a=1 I<(X -ba)/k
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Thus, d(N) < L™ for all but O(Xk™L"P) integers XL™A < N < X
satisfying N = by + by(mod k). We note that in (5.26) the constant A can
take any positive value by adjusting the constant implied in the O(..) term
accordingly. Setting A = A+ P +1, we can thus derive from (5.26) that

Gy m (k) + Go w1 (K) + Gg m (k) = o(N, k)% +Oo(Xk7ILRY),  (5.27)

for all but O(Xk 1) integers N < x satisfying N = by + by(mod k).

Further, using the relation ab <« a® +b?, we see from (5.12), (5.21),
and (5.24):

Gre(k)+Gye(k) +Gge(k) < kM2 > WE+xYAWg). (5.28)
Fe{AB,C,D,E}

In summary, we see from (5.1), (5.3), (5.14), (5.22), (5.27), and (5.28)
that the proof of (2.8) reduces to the proof of the following lemma:
S e
Lemmab5.1. For k < X48  thenfor F € {A, B, D},
1
Wg < X2L°A (5.29)
S e
for any A>0. For k < X4 and if none of the integers q e B is

X-exceptional, then (5.29) holds for F € {C, E}.
6. Proof of Lemma 5.1

In order to prove the lemma for F = A, it is enough to show that
1

W g < X 2KY2LA, (6.1)
where

=% 3 ([0 wenfa]”

r~R y(modr)
k|r
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for R < Pk. Applying Lemma 1 [6], we see

K/rQ ,

[ g WO )P
2

<R T Amum-E) Y 1 d 62

N/8
/ t<m<t+Qr/k t<m<t+Qr
N/4<m<N N/4<m<N

We note that Ey(y) = 0 because of R >k and the primitivity of the
characters. We set X = max(N/4,t) and X +Y = min(N, t + rQ/k). We
apply a slight modification of Heath-Brown’s identity ([10])

’ K . ) ) ’
o3[ wredtomio-Feu- mer,
€ S\ o

with K =5 and
M(s)= D umn™®
nle/s
to the sum
> Am)y(m).
X<m<X+Y

Arguing exactly as in part I11, [24] we find by applying Heath-Brown’s
identity and Perron’s summation formula that the inner sum of (6.2) is a

linear combination of O(L®) terms of the form

S'al""' a0

du + O(TINL?),

(2+iu) _ y (1/2+iu)
1 JT F(l-fiuyxj(x +Y) + X +iu

27'Ci -T 2 1_’_ iu
2
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where 2 <T <N,

10
Fs, 0 =] fils 2 fi(s, 00 = D ajmx(mn~>,
j=1

nelj

lognorl, j=1,

aj(n): 1, 1<j£5, Ij:(Nj’ZNj]' 1Sj£10,
u(n), 6 < j <10,
10
N<]InN; <N, Nj<NY 6< <0
j=1
Since
(I/2+iu) _  (1/2+iu) 211
(X+Y) : X < min(QRKIN"Z, NZ(Ju|+ 1))
§+iu

by taking T = N and Ty = N(QR/k)‘l, we conclude that for a sufficiently
large G = G(M), S,al,_“’ lago is bounded by

F(%-‘riu, Xj

1 . du 2
F(§+Iu, X)‘m‘i—l_ .

Thus, we see from (6.2) that in order to prove (6.1), it is enough to show that
for R < Pk:

ZZJOTO‘ F(%+ it, Xj‘dt < XY2AY2 A, (6.3)

r~R
klr %

To

1
< QRKIN 2 J' du

_TO

1

?
T()S‘ u ‘ST
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T

2T

( +it, Xj‘dt < X V2QRk Y2 LA Ty < [Ty | <T. (6.4)

Inequalities (6.3) and (6.4) are both derived from the following lemma
which is shown for m =1 in [15, Lemma 5.2] and for the general case
m >1 in [16, Lemma 2.1].

Lemma 6.1. Let F(s, x) be defined as above. Then for any R >1 and
T2 > 0,

ZZJ

2T,

2
( +it, X) dt < [R—TZ L ENE L Nl/zJLC
wi?
(6.5)
Using (2.1) and (2.3), the estimates (6.3) and (6.4) follow from Lemma
6.1 by setting T, = Tp and T, = Ty, respectively, provided that k < NY5-E,

In order to prove the lemma for F = B, it is sufficient to show that

1
WB,R << XZL_A, (66)

where Wg g is defined as

Wg R = Z Z U W (%, %) |2d7v)]/2 (6.7)

r~R y(modr)

for R < P. We note that in (6.7), we omit the factor kY2 included in the
definition of Wg as we can derive the desired estimate without taking it into
account. Arguing as in the case F = A, we can estimate the sum on the

right-hand side of (6.7) by using the zero expansion of the von Mangoldt-
function:



116 Claus Bauer

D Amx(m-Eolx) D, 1

X<m<X+Y X<m<X+Y
poyp
< X+Y)P  XP +o(1 |_2)
| Imp]|<T P P T
<R Y NB—1+0(1 sz, 6.8)
Impl<T T

where p runs over the non-trivial zeros of the L-function corresponding
to x mod r with |[Imp|<T and B =Rep. We now use the fact that

L(c +it, ) with y mod r and r < L® has no zeros in the region (see [20,

VIII Satz 6.2])

Co
logr + (log(T + 2))4/5 '

621-8(T)=1- [t|<T,
where cp is an absolute constant. We now make using of the following

lemma from [12]:

Lemma 6.2. Let N*(a, T, q) denote the number of zeros o + it of all
L-functions to primitive characters modulo g within the region o > a,

|t| < T. Then for any positive integer mand 1/2 < a. < 1:

D N, T, g) <

<P
miq

m

( o2 )(%%j (1-a)

Taking T = N]/?’, we apply Lemma 6.2 and derive from (6.2) and (6.8),

Wgr < N¥237 30 v % B N3 582
r~R x(modr) |imp|<NY3



The Binary Goldbach Conjecture with Restrictions on the Primes 117

< XY2 exp(—cLY®) (6.9)

—=—¢
as k < X 48 For the proof of the case F = C, we define W¢ g similarly

to Wp g in(6.1) as

Wer=D2, *U_l/l;?dw(?w X)|20|7‘j1/2

r~R y(modr)
K|r

Taking T = k’L? and arguing as in (6.9), we obtain by using (1.5) and the
assumptions of Theorem 2,

We g < N2 31 % NP NY2LA

r<h X~r |Imp|<k?L?
k|r

< NY21€  max N(152 j(lsz )(1_‘3),\,13—1 L NY2 A

Lpa B2
2 L

< XY2 A, (6.10)

5
——¢
for sufficiently large E = E(A, ),V =V(A), and k < N3¢ _ In order to

prove the lemma for F = D, we need to show

1
Wp g < X274,

where Wp, g is defined as
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Wp R = Z Z *UJ/rQ |W (2, X)|2d7bj1/2 (6.11)

r~R yx(modr) YrQ
for R< PR /k = LB. We see from (6.7) and (6.11) that
WD‘R :WB7R. (6.12)

We also see that the respective maximum size of R is P for F = B and
R/k for F =D and that by (2.3) P = B//k. Thus, for F = D the lemma

follows from (6.6) and (6.12).

For the case F = E, we argue as in the case F = C. Here, the upper

5
——¢
bound k < N48 s required.
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