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Abstract 

As one of the techniques for robust speech recognition under noisy 
environments, audio-visual speech recognition (AVSR) using lip 
dynamic scene information together with audio information is 
attracting attention, and the research has made strides in recent years. 
However, in visual speech recognition (VSR), when a face turns 
sideways, the shape of the lip as viewed by the camera changes and 
the recognition accuracy degrades significantly. Therefore, many of 
the conventional VSR methods are limited to situations in which the 
face is viewed from the front. This paper proposes a VSR method to 
convert faces viewed from various directions into faces that are 
viewed from the front using Active Appearance Models (AAM). In the 
experiment, even when the face direction changes about 30 degrees 
relative to a frontal view, the recognition accuracy improves 
significantly. 
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1. Introduction 

In recent years, audio speech recognition (ASR) software for PCs and 
mobile phones has become widely used and is attracting attention as a hands-
free technology replacing the input from a keyboard. However, in current 
ASR technologies, the recognition performance degrades under noisy 
environments, which is a significant problem in regard to making practical 
use of it in speech recognition. 

Human beings use a variety of information comprehensively when 
understanding the content of an utterance. For example, when it is hard to 
hear the voice, the listener pays attention to the speaker’s lip movement and 
tries to understand what is being said. Conversely, in the case where the lip 
movement does not match with the speech, he may misunderstand what is 
being said. This is called the McGurk effect, and it indicates that 
phonological perception is not decided only by audio information but also by 
visual information, such as lip movement. Thus, it is important for speech 
recognition to integrate lip information and audio information. 

A technology to recognize speech content from lip motion is called 
visual speech recognition (VSR). VSR is not influenced by noise, whereas 
ASR is sensitive to noise, and its recognition rate degrades significantly 
under noisy environments. Therefore, as one of the techniques for robust 
speech recognition under noisy environments, audio-visual speech 
recognition (AVSR), using VSR together with ASR, is attracting attention 
[1]. 

However, in VSR, when a face turns sideways, the shape of the lip, 
viewed from a camera fixed in front of the user, changes, and the recognition 
accuracy degrades significantly. Thus, many of the conventional VSR 
approaches are limited to situations in which the face is viewed from the 
front. Therefore, there is a great need to be able to recognize visual speech 
from arbitrary face directions. 

VSR locates the lip ROI (Region of Interest) and extracts the lip features. 
For detection of lip ROI, traditional image processing techniques, such as 
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color segmentation [2] and edge detection [3], were employed, along with 
statistical modeling techniques, such as Snakes [4], Active Shape Models 
(ASM) [5] and Active Appearance Models (AAM) [6]. For the visual 
features, appearance-based features, such as PCA [7] and DCT [8], and 
shape-based features, such as the width and height of the lip [9], were 
employed. Furthermore, a combination of both appearance and shape 
features, such as AAM parameters [10] has been employed recently. 

In regard to research of VSR from various face directions, there is a 
method that trains the transformation matrices from the profile view to the 
frontal view and transforms the faces from side to front [11]. However, this 
technique requires transformation matrices in each direction. Thus, it is 
difficult to recognize visual speech with arbitrary face directions. In this 
paper, we propose a method to extract the lip area automatically in various 
face directions and to recognize visual speech by converting the sideways lip 
figure into a frontal one using Active Appearance Models (AAM). The 
experiment results show that the proposed method provides better 
performance in comparison to the conventional approaches. 

2. Overview of Visual Speech Recognition 

Figure 1 shows the processing flow. First, the face area is detected based 
on AdaBoost, using the Haar-like features on the input image. This is 
because the extraction of the feature points using AAM greatly depends on 
the initial search area. Therefore, the extraction accuracy of the feature points 
is improved by applying the detected face area to AAM as an initial search 
area. After detecting the face area, AAM is applied to the detected face area, 
and the facial feature points are extracted. Then AAM generates the model 
parameters most similar to the input image. The speaker’s face direction is 
estimated from the generated parameters using the method described in 
Subsection 4.2. After estimating the face direction, using the method 
described in Subsection 4.3, a face in any direction is converted to a frontal 
face (we call this operation “normalization”). Finally, the lip features are 
extracted, and the visual speech is recognized using Hidden Markov Models 
(HMMs). 
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Figure 1. System flow. 

The lip feature employed is an AAM model parameter [10] that includes 
shape information and texture information. In this paper, AAM is applied to 
the whole face area in order to estimate the face direction accurately, but the 
AAM model parameters also contain information other than the lip and its 
movement when whole face AAM is applied. Therefore, after normalization 
of face direction, some dimensions that include the lip information 
predominantly in the AAM parameters are extracted and recognized. These 
dimensions are extracted, from among all the dimension combinations, as the 
best combinations with the highest recognition accuracy of the visual speech. 

In this paper, the audio signal is converted to MFCCs (mel-frequency 
cepstral coefficients) that are commonly used in a standard speech 
recognition system. In training, audio and visual HMMs are independently 
constructed using each feature vector extracted from the same movie. 

3. Active Appearance Models 

AAM is a technique used to express a facial model using low-
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dimensional parameters [6, 10]. The subspace is constructed by applying 
PCA to the shape and texture of face feature points. 

3.1. AAM construction 

The shape vector s, the feature points on the face images, and mean 
shape s  are computed from the training image set. The inner texture of s is 
normalized to mean shape. The shape vector s and the texture vector g are 

given: ( ) ,,...,,, 11
T

nn yxyx=s  ( ) ,...,,1
T

mgg=g  where ( )niyx ii ≤,  

are the coordinates of the feature points. ( )mjg j ≤  is the intensity value at 

each pixel in ,s  and mean intensity value g  can be computed from the 

training image set. 

s and g are expressed by using eigenvector matrices sP  and ,gP  obtained 

by applying PCA to deflection from s  and ,g  as shown in Equation (1) and 

Equation (2): 
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sb  and gb  are called the shape parameter and the texture parameter, 

respectively, and shape vector s and texture vector g are converted to each of 
them, respectively. Moreover, sb  and gb  are combined and reduced as 

shown in Equation (3) and Equation (4) by applying PCA because there is a 
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where sW  is the matrix that normalizes the difference of the unit of the 
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shape vector and the texture vector. Q is an eigenvector matrix. c is a vector 
of combined shape and texture parameters. This parameter controls both 
shape and texture as follows: 

( ) ,1 cQWPscs sss
−+=  (5) 

( ) .cQPgcg gg+=  (6) 

Thus, it becomes possible to treat shape and texture together by 
controlling only parameter vector c. 

3.2. Combined parameter 

Since the images showing the mouth opening and closing are included in 
the training data of AAM, the various movements of the lip can be expressed 
by changing the c parameter. Since the c parameter has information on 
detailed shape and the intensity value of the lip, we utilize the c parameter as 
the visual feature. As an extraction method of the c parameter, an error e 
between the image ( )cg  generated using AAM (this is called a model image) 

and the input image is calculated as follows: 

( ) ( ) ( )( ) ,, 2pWIcgpce i−=  (7) 

where ( )( )pWIi  is the image obtained using the affine transform to the input 

image .iI  p represents the affine parameters of scaling, rotation and 

translation, and W represents a function that executes the affine transform. 
The optimal c parameter is obtained using the steepest descent algorithm, 
which minimizes the error. 

4. Normalization of the Face Direction 

A normalization method of the face direction was introduced in [12], and 
the expanded approach is proposed in this paper, where a multiple regression 
model is used to estimate the visual feature instead of a single regression 
model. Each regression model in our method depends on a phoneme class. 
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(a) Face direction 0=                                  (b) Face direction φ=  

Figure 2. Schematic of a face viewed from the head top. 

4.1. Regression model 

Figure 2 shows a schematic of a face viewed from the top of the head. 
The face is regarded as a sphere with radius r. A vertical line is drawn to the 
image plane from the center of the head. Then, the facial feature point at the 
angle α from the vertical line is projected onto the coordinates Xa of the 
image plane as shown in Figure 2(a). Furthermore, the facial feature point is 
projected onto the image plane Xb when the face rotates by the angle φ as 
shown in Figure 2(b). ,xΔ  the distance between two feature coordinate 
points, is expressed as shown in Equation (8): 

ab xxx −=Δ  

( ) α−α+φ= sinsin rr  

.sinsincoscossin α−αφ+αφ= rrr  (8) 

A regression model can be derived considering r and α as constants, as 
shown in Equation (9): 

,sincos φ+φ+= 210 cccc  (9) 
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where ,0c  1c  and 2c  are the regression coefficient vectors estimated from 

the training data using the minimum mean squared error algorithm. 

4.2. Estimation of the face direction 

When AAM is applied to a new input image with no information of face 
direction, parameter c′  is generated. Then, the direction φ can be estimated 
as shown in Equation (10) using Equation (9): 

( ),
sin

cos
0ccB −′=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

φ

φ
+  (10) 

where +B  is the pseudo inverse matrix of ( ):21 cc  

( ) .1 TT BBBB −+ =  (11) 

Therefore, the direction φ is estimated as shown in Equation (12) using 
φcos  and φsin  in Equation (10): 

.cos
sintan 1 ⎟

⎠
⎞⎜

⎝
⎛

φ
φ=φ −  (12) 

4.3. Converting of the directional face to frontal face 

When AAM is applied to the input image, parameter c′  is generated 
using AAM, and face direction φ is obtained using Equation (12). Then, the 
residual vector resc  is estimated as shown in Equation (13): 

( ).sincos φ+φ+−′= 210res ccccc  (13) 

The directional face is expressed as shown in Equation (14) using Equation 
(13): 

.sincos res210new ccccc +θ+θ+=  (14) 

If ,0=θ  then a face direction is converted to the front. Figure 3 shows the 

result of the conversion from directional face image to frontal face image. 
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Figure 3. Examples of conversion from directional face image to frontal face 
image. 

4.4. Multiple regression model 

In this paper, a multiple regression model of Equation (9) is estimated in 
order to decrease the variation mismatching that occurs between frontal face 
image and directional face image. The ith regression model is represented as 
follows: 

.sincos φ+φ+= i
2

i
1

i
0

i cccc  (15) 

Each regression model is estimated using only training data for a phoneme. 
In this paper, six regression models are estimated using the training data        
for the Japanese vowels: ///,//,//,//,/ oeuia  and the nasal /,/ N  

respectively. 

In the process of conversion to a frontal face, first, inc  is obtained by 

applying AAM to the test image. Next, the face direction θ is estimated using 
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inc  according to Equation (12). The optimal regression model is selected so 

that the minimum distance between ( )θic  and inc  is achieved as follows: 

( ) .minargˆ in
i

i
cci −θ=  (16) 

Then, as described in Subsection 4.3, the face direction is converted to a 
frontal view. 

5. Audio-visual Integration 

Audio and visual HMMs are trained separately. In testing, a final 
likelihood is calculated using the late integration of likelihoods from audio 
HMMs and visual HMMs as follows: 

( ) ,10,1 ≤α≤α+α−=+ VAVA LLL  (17) 

where AL  and VL  are likelihoods of audio and visual features, respectively. 

α is the combination weight. 

6. Experiment 

6.1. Experimental condition 

Two subjects spoke ATR phoneme-balanced words (216 words) 10×  
sets for a frontal face, the same 216 words 1×  set for a 15-degree face and 
30-degree face, respectively. Resolution was 240320 ×  pixels, and the 
frame rate was 30 fps. 

The leave-one-out method was applied to 216 words 10×  sets, where 
216 words 9×  sets for the frontal face image were used for training HMMs, 
the remaining one set for the frontal face image and the 216 words for the 
directional faces were used for test, and the recognition rate was the average 
over the 10 sets. Monophone HMMs were constructed with 5 states and 16 
mixtures. 

The number of AAM training images was 108, and the number of feature 
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points on each image was 63. As a result of feature extraction (described in 
Section 3), the AAM parameter for two subjects was reduced to 5 dimensions 
and 9 dimensions, respectively, for 95% of the cumulative proportion. 
Including the AAM parameter, its delta and delta-delta parameters, were then 
used as the visual features. 12-dimensional MFCC parameters, along with 
their delta and delta-delta parameters, were used as the audio features. 

A visual feature using the minimum cross-pose variance (MCPV) has 
been proposed in [13], where MCPV highlights the DCT feature component 
most robust to changes in head pose. MCPV has been commonly used for 
lipreading, and this visual feature was also used in order to compare the 
proposed c visual feature in this experiments. 

6.2. Experimental results 

Table 1 shows the results of pose estimation for a 0-degree face, 15-
degree face, and 30-degree face. The average direction of pose estimation for 
the 0-degree face, 15-degree face, and 30-degree face is 0.97 degrees, 14.27 
degrees, and 32.63 degrees, respectively. As shown in these results, good 
performance was obtained for pose estimation. 

Table 1. Results [deg] of pose estimation for 0 degrees, 15 degrees and 30 
degrees (The upper and lower bounds of the 95% confidence interval are also 
shown) 

Face direction Average Upper Lower 

0 degrees 0.97 2.9 –0.95 

15 degrees 14.27 17.73 10.82 

30 degrees 32.63 37.77 27.5 

Table 2 shows the recognition rates for only visual features without 
normalization of face direction. “Front” indicates the recognition rate of the 
frontal face image. “15 degrees” and “30 degrees” indicate the recognition 
rate of the 15-degree face and 30-degree face images, respectively. As shown 
in Table 2, although a high recognition rate is obtained for “front”, the 
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recognition rates for the directional faces degrade seriously. This is because 
the shape of the lip viewed by the camera changes for the directional faces. 
Therefore, the recognition rates are affected seriously. 

Table 2. Visual recognition rates [%] without normalization of face direction 

 Front 15 degrees 30 degrees 

c parameter 80.67 13.39 1.30 

DCT (MCPV mask) 74.23 29.01 2.67 

Table 3. Visual recognition rates [%] with normalization of face direction 

 Front 15 degrees 30 degrees 

c parameter (single regression) 78.67 54.32 42.35 

c parameter (multiple regression) 79.56 54.72 49.37 

DCT (MCPV mask) 74.84 52.34 47.61 

Table 3 shows the recognition rates for only visual features with 
normalization of face direction. The recognition rate of “15 degrees” 
improved by about 41.3 points and the recognition rate of “30 degrees” 
improved by about 48.1 points compared with Table 2. Thus, it was 
confirmed that the proposed method is effective for directional face images, 
and the performance of the multiple regression approach is better than that of 
the single regression approach. However, the recognition rate of “30 
degrees” is lower by about 5.35 points compared to “15 degrees”. One of the 
reasons for this is that the extraction accuracy of the feature points using 
AAM degrades when the face direction angle becomes large. Moreover, 
when converting directional faces, there is a possibility that the lip 
information is collapsed slightly, causing the recognition rate to degrade. 

Table 3 also shows the comparison with the performance of the AAM-
based features with that of the conventional DCT-based features using 
MCPV. 20 components of the 2D DCT feature were selected using MCPV, 
and including the MCPV feature, its delta and delta-delta features, were then 
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used as the visual features. As shown in Table 3, it was confirmed that the 
AAM-based features using multiple regression are more effective than the 
conventional MCPV-based features. 

 

Figure 4. Audio-visual recognition results at SNR of 20 dB. 

 

Figure 5. Audio-visual recognition results at SNR of 10 dB. 

In order to integrate the visual result with the audio result under noisy 
environments, the likelihoods from visual HMMs and audio HMMs were 
integrated according to Equation (17). Figure 4, Figure 5 and Figure 6 show 
the audio-visual recognition results at SNRs of 20 dB, 10 dB and 0 dB, 
respectively. The combination weight was increased by 0.1 from 0.0 to 1.0, 
where the weight 0 corresponds to the audio feature only, and 1.0 to the 
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visual feature only. As shown in both figures, the recognition rate is 
improved by taking the optimum value of the weight. Although the 
recognition rate using only audio HMMs greatly decreased in the strong 
noisy environment at SNR of 0 dB, it could be improved by increasing the 
weight to the image. 

 

Figure 6. Audio-visual recognition results at SNR of 0 dB. 

7. Conclusion 

We proposed the method to recognize visual speech by converting 
directional face images into frontal face images. The experimental results 
showed that the recognition rate of the directional face images was improved 
in comparison to those without face direction conversion. Also, it could be 
confirmed that the recognition rate is improved in comparison to that having 
only audio features by integrating the visual features and audio features 
under noisy environments. Future work will include the recognition of 
utterances spoken by more people, expansion to continuous speech 
recognition, and recognition of speech with spontaneous tone. 
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