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Abstract

In this paper, Cesaro statistical core of double sequences have been
obtained. The concept of RH regularity of four dimensional matrices
in Pringsheim’s sense has been used to find the analogues of the
results for statistical core of sequences.

1. Introduction and Preliminaries

The concept of statistical convergence was first introduced by Fast [2]
and further studied by Salat [13], Fridy [3] and many others. Mursaleen and
Edely [9] and Moricz [8] introduced and studied the same concept for double
sequences, separately in the same year. Many related concepts have been
introduced and studied so far, for example, statistical limit points, statistical
cluster point, statistical limitsuperior, statistical limit inferior and statistical

core. Moricz [7] defined the concept of statistical (C, 1)-summability and

studied some Tauberian theorems. Recently, Alotaibi [1] introduced (C, 1) -
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analogues of the above mentioned concepts and studied C; -statistical core of
complex sequences and established some results on C; -statistical core. Here,
we introduce (C, 1.1) analogues of the above mentioned concepts and
mainly study C; | statistical core of double sequences and establish some

results on C; | statistical core.

Let K < NxN be a two dimensional set of positive integers and let
K(n, m) be the numbers of (i, j) in K such that i <n, j<m. Then the

two dimensional natural density of K can be defined as follows.

The lower asymptotic density of a set K < N x N is defined as

K(n, m)

3, (K) = limp, y inf e

Similarly the upper asymptotic density of K is defined as

52(K) = limg, sup

K(n, m e . .
In case, the sequence (%) has a limit in the Pringsheim’s sense,

then we say K has double natural density and it is defined as

KO g, )

limp,

For example, let K = {(i%, j?):i, j € N}. Then
JA

nm

3, (k) = lim, W < limy 0,

i.e., the set K has double density zero, while the set {(i, 2j): i, j € N} has
double density 1/2.

Definition 1.1. A real double sequence is said to be statistically
convergent to the number | if for each € > 0, the set

{(J,k), j<nand k <m:|xj —1|> ¢}
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has double natural density zero. In this case, we write st — lim j Xj = |

and denote the set of all statistically convergent double sequences by st,.

Define the first means o, , of a double sequence (X jk) by setting

1 n m
Onm = ﬁzjﬂzk:lxlk’
we say that X = (X ) is statistically summable (C, 1.1) to I, if the sequence

o = (opy) is statistically convergent to | in Pringsheim’s sense, that is,

sty-lim, m oy = 1. We denote by C; j(st;), the set of all double sequences

which are statistically summable (C, 1.1).

2. Known Results

We recall some concepts and results on the double sequences which are
already known. These results will be used in this paper.

A double sequence X is bounded if there exists a positive number M such
that [Xj | <M forall jandk, i.e., if

I X[ = supj k|Xjk| < .

Note that on contrast to the case for single sequences, a convergent
double sequence need not be bounded.

Let A= [a??(n ]T k—o be a doubly infinite matrix of real numbers for all

m,n=0,1,2,.... Forming the sum

Ymn = Zj:ozkzoalk Xjk» 2.1)

called the A-means of the double sequence X yields a method of summability.
We say that a sequence X is A-summable to the limit s if the A-means exist for

all myn=0,1, 2, .., and converges in the sense of Pringsheim,
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hmpq—mz k 0 Jka—ymn

and

limpn_500 Ymn = S.

A two dimensional matrix transformation is said to be regular if it maps
every convergent sequence into a convergent sequence with the same limit.
In 1926, Robison [12] presented a four dimensional analogue of regularity
for double sequences in which he added an additional assumption of
boundedness. A four dimensional matrix A is said to be bounded-regular or
RH-regular if it maps every bounded P-convergent sequence (or convergent
in the Pringsheim sense) into a P-convergent sequence with same P-limit.
The following is a four dimensional analogue of the well-known Silverman-
Toeplitz theorem.

Theorem 2.1. The four dimensional matrix A is bounded-regular or RH-
regular if and only if

(RH;) P-limy nafl® =0 (j, k=0,1,..)
(RHy) P-limp, Z‘]"k“; 0.0k =1
(RH3) thng 0|a "=0(k=0,1,..)

(RHy) thmnzk 0|a "=0(j=0,1,..)

(RH5) ZJ k0,08 aji’ is P-convergent, and

(RHg) there exist positive integers A and B such that ). M<A

j, k> BIa
(see Hamilton [4] and Robison [12]).

The core (or K-core) of a real number sequence is defined to be the

closed interval [liminf X, limsup X]. The well-known Knopp core theorem
states as follows (see Knopp [5] and Maddox [6]).
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Theorem 2.2. In order that L(Ax) < L(x) for every bounded sequence

X = (x), it is necessary and sufficient that A = (a,,) should be regular
and ) |an | =1.

Patterson [10] extended this idea for double sequences by defining the
Pringsheim core as follows:

Let P-C,{x} be the least closed convex set that includes all points x jk
for j, k > n. Then the Pringsheim core of the double sequence x = [xjc] is
the set

P-C{x} = M1 [P-Caix}].

Note that the Pringsheim core of a real valued bounded double sequence

is the closed interval [liminf X, limsup X].

In this regard, Patterson [11] proved the following:

Theorem 2.3. If A is a four dimensional matrix, then for all real valued
double sequences X,

P-lim sup[ AX] < P-lim sup X (2.2)
if and only if
(1) A'is an RH-regular summability matrix, and

(2) P'1imm,n Zc}ifmm,n, j,k| =1

Alotaibi [1] proved the following:

Theorem 2.4. If the matrix A satisfies | A|| < oo, then K-core (Ax) <

Ci(st) for every x e |, if and only if

(i) A is regular and limp, ZK€E|ank | =0 whenever §(E)=0 for

E < N;

(ii) limy| ap | = 1.
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Patterson [10] proved the following:

Theorem 2.5. If A is a non-negative RH-regular summability matrix,
then P — C{Ax} < P — C(x) for any bounded sequence {x} for which {Ax}
exists.

Lemma 2.1. If {annkilkico.o 1S real or complex-valued four

dimensional matrix such that (RH;), (RH3), (RH4) and

P-limsupmy D, °\ " |8y | = M
hold, then for any bounded double sequence {x},

P-lim sup{| Ax |} < M(P — limsup{| x|}),
where

0, 00

= a X 1.
Ymn Zk,l:o,o m, n, k, 1%k, |

In addition, there exists a real-valued double sequence {x} such that if

am,n.k,1 is real with 0 < P-limsup{| x|} < oo, then
limsup{| y |} = M(P-limsup{| x|}).
3. Main Results

We first define the following:

Definitions 3.1. (i) A double sequence X =(Xjc) is said to be
lower C, ,-statistically bounded if there exists a constant M such that
3{(J, k):ojk <M} =0, or equivalently, we write 8¢, {(J, k): Xjx <M}=0.

(ii) A double sequence X = Xji is said to be upper C; ;-statistically
bounded if there exists a constant N such that 8{(j, k): jx > N} =0, or

equivalently, we write 8¢, {(J, k): Xjx > N} =0.



Cesaro Statistical Core of Double Sequences 267

(i) If x = Xji is both lower and upper C  -statistically bounded, we

say that x = (Xji) is Cjj-statistically bounded, equivalently written X is
C; 1 (st)-bdd.

We denote the set of all ¢;; (st)-bdd sequences by ¢; 1(Styy, ).

Definition 3.2. For M, N € R, let
Ky = (M 8(1(J, K): o < M})= 0},
Ly = {N :8({(j, k) : o > N}) =0}
Then
¢ 1(sty)-superior of X = inf Ly, 3.1
¢ 1(sty )-inferior of X = sup K. (3.2)

Remark

Note that every bounded double sequence is Pringsheim bounded and

every Pringsheim bounded double sequence is C; ; statistically bounded but

not conversely, in general.

The following is an example of X = (Xji) which is neither bounded

above nor bounded below, but the Pringsheim limit superior and inferior are
both finite numbers:

J if k=0,

‘ -k, if j=0,
TNt i =k,
0, otherwise.

Thus P-liminf[x] = -1 and P-limsup[x] = 1.

Now let us define the following notions:
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Definition 3.3. The number X is said to be a (C, 1.1)-statistical limit

point of the double sequence X = (Xji) provided that there is a nonthin
subsequence X = {Xjy(r)}-)» thatis, (C, 1.1) summable to 2.

Definition 3.4. The number T is said to be a (C, 1.1)-statistical cluster

point of the double sequence Xx = (X jk) provided that for every & > 0, the

set {(J, k) e NxN:[oj —T| < &} does not have density zero.

Now we adopt the notion: if X is a double sequence such that Xijg

satisfies property P for all j, k except a set of natural density zero, then we

say that X satisfies P for “almost all jk” and we write “ X satisfies P for
a.a.j,k”.

Definition 3.5. For any double sequence X = (Xjk), let C(xy) denote the
collection of all closed convex sets that contain o j for almost all j, k. Then
the C, | -statistical core of x is defined by

C;1(sty)-core(x) = ﬂGeC(X,X)G.

Note that in defining C; ;(st,)-core(x), we simply replaced X by its

Cj.;-mean in the definition of Pringsheim’s Core in the same manner as

Alotaibi [1] has defined C;(st)-core(x). Hence it follows
C; 1(sty)-core(x) = P-Core(x). (3.3)
It is easy to see that for a bounded double sequence x = (X jk ),
C; 1(sty)-core(x) = [P-liminf &, P-limsup 5],
where 6 = opyp.

Now we prove the following theorems.
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Theorem 3.1. If A is a non-negative RH-regular summability matrix,
then

C; 1(sty)-core[Ac] < C; (sty)-core[c]
for any bounded C; ; -summable sequence (x) for which (Ac) exists.

Proof. We have

1 n m
G =0y = ﬁzjzlzkzl Xk (3.4)
_ _ LS m-mny
Ac = Aoy, = mZj:lzkzlajk Xk (3.5)

If C; 4(sty)-core(c) is the complex plane, then the result is trivial. Now
we consider the cases when (x) is bounded or unbounded and establish the

required result. In both cases, the result will be established by proving the
following:

If there exists a q such that for o ¢ C; (st;)-coreq(c), then there
exists a p such that o ¢ Cj(sty)-corep(Ac). When (x) is bounded,

o ¢ Cy 1(sty)-core[c] is not in the complex plane, thus there exists an
o & C; {(sty)-core[c]. This implies that there exists a q for which

¢ Cy 1(sty)-corey(o). Since o is finite, we may assume that ® = 0 by the
linearity of A. Since we are also given that C; j(st,)-coreq(o) is a convex
set, we can rotate Cj j(st;)-corey(c) so that the distance from zero to
C;.1(sty)-coreq(c) is the minimum of {|c|: o e C; j(sty)-coreq(c)}, and

is on the positive real axis; say that this minimum is 3d. Since

Ci.1(sty)-coreg(o) is convex, all points of C; j(st;)-corey(c) have a real

X.
part which is at least 3d. Let M = max{| mj::l} By regularity conditions

(RH;)-(RHy) and the assumption arjr|1(n > 0, there exists an N such that for
m, n > N, the following hold:
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m _ d m _ d
Zj,keBl Ak <3\ Zj keB, 2K <3V

Zj,keB3a?|](n <3LM’ Zj,keB4a??‘n <%’
where
B, ={(j,k):0< j< jyand 0 <k <k},
By ={(J, k): jo < j<owand 0 <k <Ky},
By ={(j,k):0< j< jyand ky <k < oo},
Bs ={(J, k): jo < j <ooand ky < k < oo},

Therefore for m, n > N,
DI
- R{%Zj,ke& aﬁnxik} " R{%Zj,keBz ar’I']‘ank}
+ R{%Zj,kefﬁ aﬂnxik} i R{%Zj,ke&; aﬁnknxjk}

Therefore, R{Ac} > d, which implies that there exists a p for which » = 0
is also outside Cj(st;)-corep(Ac). Now suppose that {x} is unbounded.

Then ® may be the point at infinity or not. If ® is not the point at infinity,
then choose N such that for m, n > N, the following hold:
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m| _d am > 2
{Zj,keBla‘k}<3M’ ZJ keB,UByUB, K 7 3

In a manner similar to the first part, we obtain R{Ac} > d. In the case when

o is the point at infinity, C; 1(st;)-corey(c) is bounded for all g, which
implies that Xjy is bounded for j, k > . We may assume that [[ x|] < B

for some positive number B without loss of generality. Thus for m and n

large, we obtain the following:

‘ZJKOO ‘SZJk ()0 |Xjk| BZ]kOO jkn<OO.

Hence there exists a p such that the point at infinity is outside of
Cy.1(sty)-corep(Ac).

This completes the proof of the theorem.

The following lemma is an analogue of Lemma 2.1 above.

Lemma 3.1. If {a }J k=00 is @ four dimensional matrix, such that
(RH;), (RH3), (RHy) and

0, 0O

P-lim supmn ZJ o, 0| | =

hold, then for any bounded C, ; -summable double sequence x = (xj), we

obtain the following:
P-lim sup{Ac} < M (P-limsup{c}),
where ¢ = oy, and Ac = Aoy, are given by (3.4) and (3.5).
In addition, there exists a real valued C; ; -summable sequence {x} such

that, if afjy" is real with 0 < P-limsup{c} < oo, then

P-limsup{|Ac|} = M (P-limsup[| Ac|]).
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We shall use the above lemma to prove the following.

Theorem 3.2. If A is a four dimensional matrix, then the following are
equivalent:

(i) for all real valued C;;-summable sequence [x], P-limsup{Ac} <

P-lim sup[o]

(i1) A is an RH-regular summability matrix with

P-limp, |, Ziﬁo,o' alll| = 1.
Proof. (i) = (ii).
Let [X] be a bounded P-convergent double sequence. Then
P-liminf[c] = P-limsup[c] = P-lim[c],
and also,
P-lim sup[| A(-o)|] £ =(P-liminf[c]).
These imply that
P-liminf[c] < P-liminf[Ac] < P-lim sup[Ac] < P-lim sup[c].

Hence [Ac] is P-convergent and P-lim[Ac| = P-lim[c]. Therefore, A is an
RH-regular summability matrix. By Lemma 3.1, there exists a bounded

Cy i -summable double sequence [o] such that limsup[|o|]=1 and

P-limsup[Ac] = A, where A is defined by (RHg). This implies that

00, 00 o0, 00
< _ . . s mn < _ . B mn <
1 < P-liminfy, E j,k:o,oalk < P-limsupp E j,k:(),OaJk <1,
whence
0, 00
P-lim ’ am'|=1. 3.6
m’nzj,k:0,0| jk | (3.6)

(i) = (i).
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Here we show that if {c} is a P-convergent sequence and A is an

RH-regular matrix satisfying (3.6). Then
P-lim[Ac] < P-limsup[c].

For p, q > 1, we obtain the following:
1 90, 0 mn
Ac < | — as, Xi
°>1'mn Zj,k:o,o Jk 7k ‘

mn mn mn mn
1 Zoo,oo |ajk Xjk|—ajk Xjk Zoo,oo |ajk xjk|+ajk Xjk
+

~'mn| £&j,k=0,0 2 i,k=0,0 2
LY AT SR B Y
||><||ijo0 ?ﬂn|+%zp<,—<w|a?k”| [x IIZO<J<IO amn|
0<k<q g<k<oo
+j,|ff%,q%zi,k>p,q|aﬁn| |X|zjkoo(|a |-al"). 3.7)

Using (RH;)-(RHy) and (3.6), we take the Pringsheim limit to get the

required result.
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