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Abstract 

In this paper, Cesáro statistical core of double sequences have been 
obtained. The concept of RH regularity of four dimensional matrices 
in Pringsheim’s sense has been used to find the analogues of the 
results for statistical core of sequences. 

1. Introduction and Preliminaries 

The concept of statistical convergence was first introduced by Fast [2] 
and further studied by Sălat [13], Fridy [3] and many others. Mursaleen and 
Edely [9] and Moricz [8] introduced and studied the same concept for double 
sequences, separately in the same year. Many related concepts have been 
introduced and studied so far, for example, statistical limit points, statistical 
cluster point, statistical limitsuperior, statistical limit inferior and statistical 
core. Moricz [7] defined the concept of statistical ( )1,C -summability and 

studied some Tauberian theorems. Recently, Alotaibi [1] introduced ( )1,C - 
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analogues of the above mentioned concepts and studied 1C -statistical core of 

complex sequences and established some results on 1C -statistical core. Here, 

we introduce ( )1.1,C  analogues of the above mentioned concepts and 

mainly study 1.1C  statistical core of double sequences and establish some 

results on 1.1C  statistical core. 

Let NN ×⊆K  be a two dimensional set of positive integers and let 
( )mnK ,  be the numbers of ( )ji,  in K such that ,ni ≤  .mj ≤  Then the 

two dimensional natural density of K can be defined as follows. 

The lower asymptotic density of a set NN ×⊆K  is defined as 

( ) ( ) .,inflim ,2 nm
mnKK mn=δ  

Similarly the upper asymptotic density of K is defined as 

( ) ( ) .,suplim ,2 nm
mnKK mn=δ  

In case, the sequence ( )
⎟
⎠
⎞

⎜
⎝
⎛

nm
mnK ,  has a limit in the Pringsheim’s sense, 

then we say K has double natural density and it is defined as 

( ) ( ).,lim 2, knm
mnK

mn δ=  

For example, let {( ) }.,:, 22 NjijiK ∈=  Then 

( ) ( ) ,0lim,lim ,,2 =≤=δ nm
mn

nm
mnKk mnmn  

i.e., the set K has double density zero, while the set ( ){ }N∈jiji ,:2,  has 

double density .21  

Definition 1.1. A real double sequence is said to be statistically 
convergent to the number l if for each ,0>ε  the set 

{( ) }ε≥−≤≤ lxmknjkj jk:and,,  
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has double natural density zero. In this case, we write lxst jkjk =− lim2  

and denote the set of all statistically convergent double sequences by .2st  

Define the first means mn,σ  of a double sequence ( )jkx  by setting 

∑ ∑= =
=σ

n
j

m
k jknm xnm 1 1

,1  

we say that ( )jkxx =  is statistically summable ( )1.1,C  to l, if the sequence 

( )nmσ=σ  is statistically convergent to l in Pringsheim’s sense, that is, 

.lim- ,2 lst nmmn =σ  We denote by ( ),21.1 stC  the set of all double sequences 

which are statistically summable ( ).1.1,C  

2. Known Results 

We recall some concepts and results on the double sequences which are 
already known. These results will be used in this paper. 

A double sequence x is bounded if there exists a positive number M such 
that Mx jk <  for all j and k, i.e., if 

.sup , ∞<= jkkj xx  

Note that on contrast to the case for single sequences, a convergent 
double sequence need not be bounded. 

Let [ ]∞ == 0, kj
mn
jkaA  be a doubly infinite matrix of real numbers for all 

.,2,1,0, …=nm  Forming the sum 

 ∑ ∑∞

=

∞

=
=

0 0
,

j k jk
mn
jkmn xay  (2.1) 

called the A-means of the double sequence x yields a method of summability. 
We say that a sequence x is A-summable to the limit s if the A-means exist for 
all ...,,2,1,0, =nm  and converges in the sense of Pringsheim, 
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∑ ∑= =∞→ =
p
j

q
k mnjk

mn
jkqp yxa

0 0,lim  

and 

.lim symnmn =∞→  

A two dimensional matrix transformation is said to be regular if it maps 
every convergent sequence into a convergent sequence with the same limit. 
In 1926, Robison [12] presented a four dimensional analogue of regularity 
for double sequences in which he added an additional assumption of 
boundedness. A four dimensional matrix A is said to be bounded-regular or 
RH-regular if it maps every bounded P-convergent sequence (or convergent 
in the Pringsheim sense) into a P-convergent sequence with same P-limit. 
The following is a four dimensional analogue of the well-known Silverman-
Toeplitz theorem. 

Theorem 2.1. The four dimensional matrix A is bounded-regular or RH-
regular if and only if 

( )1RH  ( )...,1,0,0lim- , == kjaP mn
jknm  

( )2RH  ∑ ∞∞
= =,

0,0,, 1lim- kj
mn
jknm aP  

( )3RH  ( )∑∞
= ==0, ...,1,00lim- j

mn
jknm kaP  

( )4RH  ( )∑∞
= ==0, ...,1,00lim- k

mn
jknm jaP  

( )5RH  ∑ ∞∞
=

,
0,0, kj

mn
jka  is P-convergent, and 

( )6RH  there exist positive integers A and B such that ∑ > <|Bkj
mn
jk Aa,  

(see Hamilton [4] and Robison [12]). 

The core (or K-core) of a real number sequence is defined to be the 
closed interval [ ].suplim,inflim xx  The well-known Knopp core theorem 

states as follows (see Knopp [5] and Maddox [6]). 
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Theorem 2.2. In order that ( ) ( )xLAxL ≤  for every bounded sequence 

( ),kxx =  it is necessary and sufficient that ( )nkaA =  should be regular 

and ∑ = .1nka  

Patterson [10] extended this idea for double sequences by defining the 
Pringsheim core as follows: 

Let { }xCP n-  be the least closed convex set that includes all points jkx  

for ., nkj >  Then the Pringsheim core of the double sequence [ ]jkxx =  is 

the set 

{ } { }[ ].-- 1 xCPxCP nn
∞
== ∩  

Note that the Pringsheim core of a real valued bounded double sequence 
is the closed interval [ ].suplim,inflim xx  

In this regard, Patterson [11] proved the following: 

Theorem 2.3. If A is a four dimensional matrix, then for all real valued 
double sequences x, 

 [ ] xPAxP suplim-suplim- ≤  (2.2) 

if and only if 

(1) A is an RH-regular summability matrix, and 

(2) ∑ ∞∞ =,
, ,,,, .1lim- kj kjnmnm aP  

Alotaibi [1] proved the following: 

Theorem 2.4. If the matrix A satisfies ,∞<A  then K-core ( ) ⊆Ax  

( )stC1  for every ∞∈ lx  if and only if 

 (i) A is regular and ∑ ∈ =EK nkm a 0lim  whenever ( ) 0=δ E  for 

;NE ⊆  

(ii) .1lim =nkk a  
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Patterson [10] proved the following: 

Theorem 2.5. If A is a non-negative RH-regular summability matrix, 
then { } ( )xCPAxCP −⊆−  for any bounded sequence { }x  for which { }Ax  

exists. 

Lemma 2.1. If { } ∞∞
=

,
0,0,,,, lklknma  is real or complex-valued four 

dimensional matrix such that ( ),RH1  ( ),RH3  ( )4RH  and 

MaP
lk

nm
lkmn =∑ ∞∞

=

,
0,0,

,
,suplim-  

hold, then for any bounded double sequence { },x  

{ } { }( ),suplimsuplim- xPMAxP −≤  

where 

∑ ∞∞

=
=

,
0,0, ,,,, .

lk lklknmmn xay  

In addition, there exists a real-valued double sequence { }x  such that if 

lknma ,,,  is real with { } ,suplim-0 ∞<< xP  then 

{ } { }( ).suplim-suplim xPMy =  

3. Main Results 

We first define the following: 

Definitions 3.1. (i) A double sequence ( )jkxx =  is said to be          

lower 1.1C -statistically bounded if there exists a constant M such that 

{( ) } ,0:, =<σδ Mkj jk  or equivalently, we write {( ) } .0:,11 =<δ Mxkj jkC  

(ii) A double sequence jkxx =  is said to be upper 1.1C -statistically 

bounded if there exists a constant N such that {( ) } ,0:, =>σδ Nkj jk  or 

equivalently, we write {( ) } .0:,11 =>δ Nxkj jkC  
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(iii) If jkxx =  is both lower and upper 1.1C -statistically bounded, we  

say that ( )jkxx =  is 11C -statistically bounded, equivalently written x is 

1.1c (st)-bdd. 

We denote the set of all 11c (st)-bdd sequences by ( ).21.1 ∞stc  

Definition 3.2. For ,, R∈NM  let 

{ ({( ) }) },0:,: =<σδ= MkjMK jkx  

{ ({( ) }) }.0:,: =>σδ= NkjNL jkx  

Then 

 ( ) ,infofsuperior-21.1 xLxstc =  (3.1) 

 ( ) .supofinferior-21.1 xKxstc =  (3.2) 

Remark 

Note that every bounded double sequence is Pringsheim bounded and 
every Pringsheim bounded double sequence is 1.1C  statistically bounded but 

not conversely, in general. 

The following is an example of ( )jkxx =  which is neither bounded 

above nor bounded below, but the Pringsheim limit superior and inferior are 
both finite numbers: 

( )
⎪
⎪

⎩

⎪
⎪

⎨

⎧

=−

=−

=

=

otherwise.,0

,if,1

,0if,

,0if,

:
kj

jk

kj

x jjk  

Thus [ ] 1inflim- −=xP  and [ ] .1suplim- =xP  

Now let us define the following notions: 
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Definition 3.3. The number λ is said to be a ( )1.1,C -statistical limit 

point of the double sequence ( )jkxx =  provided that there is a nonthin 

subsequence { ( )} ,1
∞
=ττ= jkxx  that is, ( )1.1,C  summable to λ. 

Definition 3.4. The number Γ is said to be a ( )1.1,C -statistical cluster 

point of the double sequence ( )jkxx =  provided that for every ,0>ε  the 

set {( ) }ε<Γ−σ×∈ jkkj :, NN  does not have density zero. 

Now we adopt the notion: if x is a double sequence such that jkx  

satisfies property P for all j, k except a set of natural density zero, then we 
say that jkx  satisfies P for “almost all jk” and we write “ jkx  satisfies P for 

a.a.j,k”. 

Definition 3.5. For any double sequence ( ),jkxx =  let ( )xxC  denote the 

collection of all closed convex sets that contain jkσ  for almost all j, k. Then 

the 1.1C -statistical core of x is defined by 

( ) ( ) ( ) .- ,211 GxcorestC xxCG∈= ∩  

Note that in defining ( ) ( ),-21.1 xcorestC  we simply replaced jkx  by its 

1.1C -mean in the definition of Pringsheim’s Core in the same manner as 

Alotaibi [1] has defined ( ) ( ).-1 xcorestC  Hence it follows 

 ( ) ( ) ( ).--21.1 xCorePxcorestC ⊂  (3.3) 

It is easy to see that for a bounded double sequence ( ),jkxx =  

 ( ) ( ) [ ],suplim-,inflim--21.1 σσ= PPxcorestC   

where .mnσ=σ  

Now we prove the following theorems. 
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Theorem 3.1. If A is a non-negative RH-regular summability matrix, 
then 

( ) [ ] ( ) [ ]σ⊆σ corestCAcorestC -- 21.121.1  

for any bounded 1.1C -summable sequence ( )x  for which ( )σA  exists. 

Proof. We have 

,1
1 1∑ ∑= =

=σ=σ
n
j

m
k jkmn xmn  (3.4) 

 ∑ ∑= =
=σ=σ

n
j

m
k jk

mn
jkmn xamnAA

1 1
.1  (3.5) 

If ( ) ( )σcorestC -21.1  is the complex plane, then the result is trivial. Now 

we consider the cases when ( )x  is bounded or unbounded and establish the 

required result. In both cases, the result will be established by proving the 
following: 

If there exists a q such that for ( ) ( ),-21.1 σ∉ω qcorestC  then there    

exists a p such that ( ) ( ).-21.1 σ∉ω AcorestC p  When ( )x  is bounded, 

( ) [ ]σ∉ω corestC -21.1  is not in the complex plane, thus there exists an 

( ) [ ].-21.1 σ∉ω corestC  This implies that there exists a q for which 

( ) ( ).-21.1 σ∉ qcorestC  Since ω is finite, we may assume that 0=ω  by the 

linearity of A. Since we are also given that ( ) ( )σqcorestC -21.1  is a convex 

set, we can rotate ( ) ( )σqcorestC -21.1  so that the distance from zero to 

( ) ( )σqcorestC -21.1  is the minimum of { ( ) ( )},-: 21.1 σ∈σσ qcorestC  and          

is on the positive real axis; say that this minimum is 3d. Since 
( ) ( )σqcorestC -21.1  is convex, all points of ( ) ( )σqcorestC -21.1  have a real 

part which is at least 3d. Let .max
⎭
⎬
⎫

⎩
⎨
⎧

= mn
x

M jk  By regularity conditions 

( )1RH - ( )4RH  and the assumption ,0≥mn
jka  there exists an N such that for 

,, Nnm >  the following hold: 
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∑ ∑∈ ∈
<<

1 2, ,
,3,3Bkj Bkj

mn
jk

mn
jk M

daM
da  

∑ ∑∈ ∈
<<

3 4, ,
,3

2,3Bkj Bkj
mn
jk

mn
jk aM

da  

where 

( ){ },0and0:, 001 kkjjkjB ≤≤≤≤=  

( ){ },0and:, 002 kkjjkjB ≤≤∞<≤=  

( ){ },and0:, 003 ∞<<≤<= kkjjkjB  

( ){ }.and:, 004 ∞<<∞<<= kkjjkjB  

Therefore for ,, Nnm >  

⎭⎬
⎫

⎩⎨
⎧ ∑ ∞∞

=

,
0,0,

1
kj jk

mn
jk xamnR  

⎭⎬
⎫

⎩⎨
⎧+

⎭⎬
⎫

⎩⎨
⎧= ∑∑ ∈∈ 21 ,,

11
Bkj jk

mn
jkBkj jk

mn
jk xamnRxamnR  

⎭⎬
⎫

⎩⎨
⎧+

⎭⎬
⎫

⎩⎨
⎧+ ∑∑ ∈∈ 43 ,,

11
Bkj jk

mn
jkBkj jk

mn
jk xamnRxamnR  

⎭
⎬
⎫

⎩
⎨
⎧−

⎭
⎬
⎫

⎩
⎨
⎧−

⎭
⎬
⎫

⎩
⎨
⎧−> ∑∑∑ ∈∈∈ 321 ,,, Bkj

mn
jkBkj

mn
jkBkj

mn
jk aMaMaM  

⎭
⎬
⎫

⎩
⎨
⎧+ ∑ ∈ 4,

3
Bkj

mn
jkad  

.3
223

3 ddM
dM =+−>  

Therefore, { } ,dAR >σ  which implies that there exists a p for which 0=ω  

is also outside ( ) ( ).-211 σAcorestC p  Now suppose that { }x  is unbounded. 

Then ω may be the point at infinity or not. If ω is not the point at infinity, 
then choose N such that for ,, Nnm >  the following hold: 
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∑∑ ∈∈
><

⎭
⎬
⎫

⎩
⎨
⎧

4321 ,,
.3

2,3 BBBkj
mn
jkBkj

mn
jk aM

da
∪∪

 

In a manner similar to the first part, we obtain { } .dAR >σ  In the case when 

ω is the point at infinity, ( ) ( )σqcorestC -21.1  is bounded for all q, which 

implies that jkx  is bounded for ., qkj >  We may assume that [ ] Bx <  

for some positive number B without loss of generality. Thus for m and n 
large, we obtain the following: 

.
,

0,0,
,

0,0,
,

0,0, ∑ ∑∑ ∞∞

=

∞∞

=

∞∞

=
∞<≤≤

kj kj
mn
jkjk

mn
jkkj jk

mn
jk aBxaxa  

Hence there exists a p such that the point at infinity is outside of 
( ) ( ).-21.1 σAcorestC p  

This completes the proof of the theorem. 

The following lemma is an analogue of Lemma 2.1 above. 

Lemma 3.1. If { } ∞∞
=

,
0,0, kj

mn
jka  is a four dimensional matrix, such that 

( ) ( ) ( )431 RH,RH,RH  and 

∑ ∞∞

=
=

,
0,0,

,suplim-
kj

mn
jkmn MaP  

hold, then for any bounded 1.1C -summable double sequence ( ),jkxx =  we 

obtain the following: 

{ } { }( ),suplim-suplim- σ≤σ PMAP  

where mnσ=σ  and mnAA σ=σ  are given by (3.4) and (3.5). 

In addition, there exists a real valued 1.1C -summable sequence { }x  such 

that, if mn
jka  is real with { } ,suplim-0 ∞<σ< P  then 

{ } [ ]( ).suplim-suplim- σ=σ APMAP  



Z. U. Siddiqui, A. M. Brono and A. Kiltho 272 

We shall use the above lemma to prove the following. 

Theorem 3.2. If A is a four dimensional matrix, then the following are 
equivalent: 

 (i) for all real valued 1.1C -summable sequence [x], { } ≤σAP suplim-  

[ ]σsuplim-P  

(ii) A is an RH-regular summability matrix with 

P- ∑ ∞∞

=
=

,
0,0,, .1lim

kj
mn
jknm a  

Proof. (i) ⇒ (ii). 

Let [ ]x  be a bounded P-convergent double sequence. Then 

[ ] [ ] [ ],lim-suplim-inflim- σ=σ=σ PPP  

and also, 

( )[ ] [ ]( ).inflim-suplim- σ−≤σ− PAP  

These imply that 

[ ] [ ] [ ] [ ].suplim-suplim-inflim-inflim- σ≤σ≤σ≤σ PAPAPP  

Hence [ ]σA  is P-convergent and [ ] [ ].lim-lim- σ=σ PAP  Therefore, A is an 

RH-regular summability matrix. By Lemma 3.1, there exists a bounded 

1.1C -summable double sequence [σ] such that lim sup [ ] 1=σ  and 

[ ] ,suplim- AAP =σ  where A is defined by ( ).RH6  This implies that 

∑ ∑∞∞

=

∞∞

=
≤≤≤

,
0,0,

,
0,0,,, ,1suplim-inflim-1

kj kj
mn
jknm

mn
jknm aPaP  

whence 

 ∑ ∞∞

=
=

,
0,0,, .1lim-

kj
mn
jknm aP  (3.6) 

(ii) ⇒ (i). 
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Here we show that if { }σ  is a P-convergent sequence and A is an 

RH-regular matrix satisfying (3.6). Then 

[ ] [ ].suplim-lim- σ≤σ PAP  

For ,1, >qp  we obtain the following: 

∑ ∞∞

=
≤σ

,
0,0,

1
kj jk

mn
jk xamnA  

∑∑ ∞∞

=

∞∞

=

+
+

−
=

,
0,0,

,
0,0, 22

1
kj

jk
mn
jkjk

mn
jk

kj
jk

mn
jkjk

mn
jk xaxaxaxa

mn  

( )∑ ∑∞∞

=

∞∞

=
−+≤

,
0,0,

,
0,0,

11
kj kj jk

mn
jk

mn
jkjk

mn
jk xaamnxamn  

∑ ∑ ∑=
≤≤
∞<<

∞<<
<≤

++≤
qp
kj

qk
jp

kq
pjo

mn
jk

mn
jk

mn
jk amn

xamn
xamn

x ,
0,0,

0

 

( )∑ ∑>

∞∞

=>
−++

qpkj kj
mn
jk

mn
jk

mn
jk

qpkj
aamn

xamn
x

,,
,

0,0,,,
.sup  (3.7) 

Using ( )1RH - ( )4RH  and (3.6), we take the Pringsheim limit to get the 

required result. 
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