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Abstract

In this paper, we introduce the notion of generalized contractive
condition of a rational type and prove the existence of best proximity
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point in the setting of metric space which generalizes the result of

Eldred and Veeramani [1] and Jaggi [2].

1. Introduction

Let A and B be nonempty subsets of a metric space (X, d) and a map
T:AUB — AU B be called a cyclic mapping if T(A) < B and T(B) < A

If the fixed point equation Tx = x does not possess a solution, then it
is natural to find an x e A satisfying d(x, Tx) = d(A, B) = inf{d(x, y):
x e A yeB}. Apoint x e A is called a best proximity point for T if
d(x, Tx) = d(A, B).

Eldred and Veeramani [1] introduced cyclic contraction maps.

Definition 1.1 [1]. Let A and B be nonempty subsets of a metric space
(X,d). Amap T: AUB — AUB is called a cyclic contraction if it

satisfies
) T(A)cBand T(B) c A

(ii) for some k € (0, 1), we have d(Tx, Ty) < kd(x, y)+ (1-k)d(A, B),
forall x e A, y € B.

Using the concept of cyclic contraction Eldred and VVeeramani [1] proved
the existence of best proximity point.

Theorem 1.2 [1]. Let A and B be nonempty closed subsets of a metric
space (X,d)and T : AUB — AU B be cyclic contraction. If either A or
B is boundedly compact, then there exists x € AU B such that d(x, Tx) =
d(A B).

Jaggi [2] proved the following fixed point theorem.

Theorem 1.3 [2]. Let T be a continuous self map defined on a complete
metric space (X, d). Suppose that T satisfies the following contractive

condition:
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ad(x, Tx)d(y, Ty)
d(x, y)

forall x, y e X, x # y and for some a, B € [0, 1) with oo + B <1. Then T

d(Tx, Ty) < +Bd(x, y)

has a unique fixed point in X.

In this paper, we introduce the notion of generalized contractive
condition of a rational type and prove the existence of best proximity point in
the setting of metric space which generalizes Theorem 1.2 by Eldred and
Veeramani, and Jaggi.

2. Preliminaries

In this section, we give some basic definitions and concepts which are
useful and related to the context of our results.

Let A and B be nonempty subsets of a metric space (X, d). Define
d(A B)=inf{d(x, y): xe A y € B}.

Definition 2.1. A subset K of a metric space (X, d) is said to be

boundedly compact if each bounded sequence in K has a subsequence
converging to a point in K.

Definition 2.2. Let A and B be nonempty subsets of a metric space
(X,d). A mapping T: AUB — AUB is said to satisfy generalized
contractive condition of a rational type if

(i) T(A)cBand T(B) c A

(i)

ad(x, Tx)d(y, Ty)
d(x, y)

+@0-(a+PB+y+38)d(A B)

d(Tx, Ty) < +Bd(x, Tx) + yd(y, Ty) + 8d(X, y)

forall xe AAyeBwitha+B+y+d<1 where0<a, B, v,5 <1

Note that if o = p = y = 0, then T is a cyclic contraction.
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3. Main Results

First, we give simple but very useful approximation result.

Proposition 3.1. Let A and B be nonempty subsets of a metric space X.
Suppose that T : AU B — AU B is cyclic and satisfies

ad(x, Tx)d(y, Ty)

d(Tx, Ty) < atx. y)

+Bd(x, Tx) + yd(y, Ty) + 8d(x, y)

+@0-(a+PB+y+38)d(A B)

for all xe A, yeB with a+pf+y+3d<1 where 0<a,f, v, 6 <1
Then for any xg € AU B, we have d(x,, Tx,) — d(A, B), where x,,.1 =
TX,, N=0,1 2, ....

Proof.
d(Xn, Xp11) = d(TXp_1, TXp)

< od (X1, TXp—1)d(Xn, TXp)
d(Xy—1, Xpn)

+Bd(Xy_1, TXy_1)
+yd (X, TXp )+ 8d(Xn_1, Xp)+ (L= (. +B+7y+8))d(A B)

_ ad(Xy 1, Xn)d(Xn, Xn41)
d(Xn-1, Xn)

+Bd(Xy_1, Xn) + ¥d(Xn, Xn11)
+6d(Xn_1, Xp) + L= (o + B+ 7y +3))d(A B)

= (o0 +7)d(Xn, Xni1) + (B +8)d(Xq_1, Xp)
+(1-(au+B+7y+3))d(A B).

Therefore,

00t ¥0e1) < 7o d (X, %) + (1—%)(1(/4, B).

— (o +7)



Best Proximity Point for Mappings ... 55

B+0

Put k = ,
1-(a+7)

then k < 1. Therefore,

d(Xn, Xpp1) < kd(Xq_1, Xy) + @ - k)d(A, B)
= k[kd(xp_2, Xq_1) + (1 —k)d(A B)]+ (1 -k)d(A B)
= k2d(Xy_p, Xn_1) + L= k?)d(A, B).
Inductively, we have
d(Xn, Xp41) < K"d(Xg, X)) + @ —k™)d(A, B).
As n — oo, we obtain d(x,, X,,1) = d(A, B). O

The following result of Eldred and Veeramani [1] is a special case of the
above Proposition 3.1.

Corollary 3.1. Let A and B be nonempty subsets of a metric space X.
Suppose T : AUB — AUB is a cyclic contraction map. Then starting

with any x5 € AU B, we have d(x,, Tx,) — d(A, B), where x,,1 = Ty,
n=012...

Proposition 3.2. Let A and B be nonempty closed subsets of a complete
metric space X. Let T : AU B — AU B be cyclic and satisfy

ad(x, Tx)d(y, Ty)
d(x, y)

+@A-(a+B+y+38)d(A B)

d(Tx, Ty) < +Bd(x, Tx) + yd(y, Ty) + 8d(x, y)

forall xe A, yeBwitha+pf+y+030<1 where0< a,, v, 8 <1 Let
Xo € A and define x,,1 = TX,. Suppose {X,,} has a convergent subsequence
in A. Then there exists x € A such that d(x, Tx) = d(A, B).

Proof. Let {x, } be a subsequence of {x,} converge to some x € A

Then d(A, B) < d(X, Xz, 1) < d(X, Xz, ) + d(Xan, , Xon, —1)-
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Thus d(x, Xon, _1) = d(A, B).
Now,

d(A B) < d(xzn, , TX)

. 9d(an 1, TXon 1) d(x, TX)
B d(x2nk =11 X)

+Bd(Xan, 1, TXon, —1)

+yd(X, TX) + 8d(Xgn, —1, X) + (1 = (o + B + v + 8))d(A, B).
Taking limitas n — oo, we get

ad (A, B)d(x, Tx)

d(A B) < d(x, T¥) < =475 53

+ Bd(A, B)

+yd(x, Tx) + 8d(A, B)+ (L— (. + B+ y + 8))d(A, B),

that is,
d(A B) < d(x Tx) < (a+y)d(x, TX)+ 1 — (a0 + 7))d(A, B). )
From (2),
d(x, Tx) < (o0 + y)d(x, TX) + (1 = (o0 + 7))d(A, B),

we have

(1= (o0 +))d(x, Tx) < (= (o + y))d(A, B),

d(x, Tx) < d(A, B). (3)
From (2) and (3), we get d(A, B) <d(x, Tx) < d(A, B). Thus d(x, Tx)
= d(A B). O

The following result of Jaggi [2] is a special case of the above
Proposition 3.2.

Corollary 3.2. Let T be a continuous self map defined on a complete
metric space (X, d). Suppose that T satisfies the following contractive

condition:
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ad(x, Tx)d(y, Ty)

d(Tx, Ty) < a0x, v

+Bd(x, y)

forall x, y e X, x =y and for some a, B €[0,1) with o + B <1. Then T

has a unique fixed point in X.

Proof. Let A=B =X = AUB = X. Then T is cyclic map. Define
Xn41 = TXy. Then {x,} is a convergent sequence in A and hence {x,,} isa
convergent sequence in A. Then by Proposition 3.2 there exists x € A such
that d(x, Tx) = d(A, B) = 0. Therefore, Tx = x. O

The following result of Eldred and VVeeramani [1] is a special case of the
above Proposition 3.2.

Corollary 3.3. Let A and B be nonempty closed subsets of a complete
metric space X. Let T: AUB — AU B be cyclic contraction map. Let

Xo € A and define x,,1 = TX,,. Suppose {X,,} has a convergent subsequence

in A. Then there exists x € A such that d(x, Tx) = d(A, B).

Proposition 3.3. Let A and B be nonempty subsets of a metric space X.
Let T : AUB — AU B be cyclic and satisfy

ad(x, Tx)d(y,
d(x, y)

d(Tx, Ty) < Ty) + Bd(x, TX) + yd(y, Ty) + 8d(x, y)

+L-(a+p+y+35)d(A B)

for all xe A, yeB with a+B+y+3<1 where 0<o,p,v,06<1.
Then for any xg € AUB and x,.1 =Tx,, N=0,1, 2, ..., the sequences

{Xon} and {xo,,1} are bounded.

Proof. Suppose xg € A (the proof when Xy € B is similar). Since by
Proposition 3.1, d(Xop, Xon41) CoOnverges to d(A, B). So it is enough to

prove that {X,,,1} is bounded.
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Suppose {Xn.1} is not bounded. Then there exists Ng such that

d(T2xg, T2No*1y ) > M and d(T2xy, T2No k) < M,

where
M > max Zd(i(o’ ) d(A, B), d(T%xy, TXg)
k—2—1
. B+o
and k T (azy)
M < d(T2x,, T2No*1y))
< kd(Txg, T2Noxg) + (1 - k)d(A, B)
< k[kd(xg, T2No"xg) + (1 - k)d(A B)]+ (1 - k)d(A, B)
= k2d(xp, T2No"Ix)) + (1- k?)d(A, B).
Therefore,

< d(Xo, TZXO) + d(TZXO, T2N0_1X0)
< d(Xo, TZXO) + M
< d(Xo, TXO)+ d(TXO, T2X0)+ M

< Zd(Xo, TXO)+ M.

+ d(A, B) which is a contradiction.
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The following result of Eldred and Veeramani [1] is a special case of the
above Proposition 3.3.

Corollary 3.4. Let A and B be nonempty subsets of a metric space X. Let
T:AUB — AUB be cyclic contraction map. Then for xg € AU B and

define X,41 =TX,, n=0,1 2, .., the sequences {xo,} and {X,,,.q1} are
bounded.

Theorem 3.4. Let A and B be nonempty closed subsets of a metric space
X.Let T : AUB — AU B be acyclic map and satisfy

ad(x, Tx)d(y, Ty)

d(Tx, Ty) < ax. y)

+Bd(x, Tx) + yd(y, Ty) + 8d(x, y)

+@0-(a+PB+y+38)d(A B)

forall xe A, yeB with a+p+y+d<1 where 0< o, B,v,6 <1 If
either A or B is boundedly compact, then there exists x € AU B such that
d(x, Tx) = d(A, B).

Proof. Suppose A is boundedly compact. Let X5 € A and X1 = TX,.
By Proposition 3.3, {X,,} is bounded. Since A is boundedly compact, we
have {x,,} has a subsequence converges to a point in A. By Proposition 3.2,
there exists x € A such that d(x, Tx) = d(A, B). Similarly, we can prove

when B is boundedly compact. This completes the proof. O

The following result of Eldred and Veeramani [1] is a special case of the
above Theorem 3.4.

Corollary 3.5. Let A and B be nonempty closed subsets of a metric space
X.Let T: AUB — AU B be a cyclic contraction map. If either A or B is

boundedly compact, then there exists x e AUB such that d(x, Tx) =
d(A, B).
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