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Abstract

We establish polynomial upper bounds on large and moderate
deviations for diffeomorphisms with weak hyperbolic product
structure studied in [12], which is the intersection of two transversal
families of weak stable and weak unstable disks, with countably many
branches and variable return times. Applications of our results are
some almost Anosov diffeomorphisms with uniformly contracting
direction of which restriction on one dimensional center unstable
direction behaves as a Manneville-Pomeau map.

1. Introduction

The purpose of this paper is to study upper bounds on large deviations
for diffeomorphisms of a manifold. Let M be a finite dimensional
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Riemannian manifold, f : M ¢© a map of M, and p an f-invariant ergodic

probability measure. For any Ll(p) observation ¢: M — R, let S 9=
zin:_g(p o fl. By Birkhoffs ergodic theorem, %Sn(p converges to the mean

I(pd},t for p-almost everywhere. The theory of large deviations concerns
bounds on the probability

Devy (o, & p) = u(ﬂ%(sn(p - nJ.(p du) > 8})

In the context of uniform hyperbolic systems, Kifer [16] and Young [30]
proved large deviation results for Anosov diffeomorphisms and Axiom A
attractors (see also the results of Kifer [16], Orey and Pelikan [23], Lopes
[18]).

Beyond the context of uniformly hyperbolic systems, Aradjo and
Pacifico proved large deviations for non-uniformly expanding maps
with non-flat singularities or criticalities and some partially hyperbolic
diffeomorphisms with mostly expanding central direction [1]. Powerful
methods for studying large and moderate deviations are presented by Rey-
Bellet and Young [3], Melbourne and Nicol [22], and Melbourne [21]. The
key object in [3, 21, 22] is a generalized horseshoe in the sense of Young
[31]. This object allows us to collapse stable disks to deduce an expanding
map for which large and moderate deviations results recover the same
results for the original system. Applications in [3, 21, 22] include several
important classes of chaotic systems which are Hénon maps [2], piecewise
hyperbolic maps [31], dispersing billiards [31], some partially hyperbolic
diffeormophisms [7, 8], Manneville-Pomeau maps, planar periodic Lorentz
gases and dispersing Lorentz flows with vanishing curvature [21, 22].

We should also mention the results on large deviations for a general class
of unimodal interval maps by Keller and Nowicki [15], for systems with
indifferent fixed points by Pollicott and Sharp [25], Pollicott et al. [26], and
for expansive homeomorphisms with specification by Maes and Verbitskiy
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[19]. We note several important references on large deviations by Dembo and
Zeitouni [9], Eliss [10], and Hennion and Hervé [14].

In this paper, we propose some scheme to obtain polynomial upper
bounds on large and moderate deviations for diffeomorphisms equipped with
some weaker conditions on the generalized horseshoe in [31]. Our results are
applied to some partially hyperbolic diffeomorphisms of which the restriction
on one dimensional center unstable direction behaves as the Manneville-
Pomeau type maps [11-13].

This paper is organized as follows: In the next two subsections, we
state main results and introduce examples of some partially hyperbolic
diffeomorphisms to which our results are applied. The proof of the main
results will be done in Section 2.

1.1. Statements and results

Let f : M O be a diffeomorphism of a finite dimensional Riemannian

manifold M. Let d denote the distance on M induced by the Riemannian
metric. An embedded disk y « M s called a weak unstable disk if for any

X, yey, d(f"(x), f"(y)) > 0 as n — . An embedded disk y = M
is called a weak stable disk if for any x, y ey, d(f"(x), f"(y)) > 0 as
N — o. We say that IV := {y"} is a continuous family of C!-weak unstable
disks if there exist a compact set K%, k € N, a unit disk D" of R¥ and a

map @Y : K x DY — M such that
(i) ®" maps K* x D" homeomorphically onto its image,

(i) x — ®Y(x x-) is a continuous map from K® into Emb'(DY, M),

the space of Cl-embeddings of DY into M, and
(iii) each y" is a weak unstable disk and satisfies that y" = ®"(x x D").

A continuous family of CL -weak stable disks is defined similarly.
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We say that a subset = has a weak hyperbolic product structure if

there exist a continuous family of C!-weak unstable disks IV := {y"} and a

continuous family of C*-weak stable disks 'S := {y®} such that
(i) dimy" + dimvy® = dim M,
(ii) the y" -disks are transversal to the y® -disks with the angles between
them bounded away from 0,
(iii) each y" -disk meets each y* -disk exactly one point, and
(iv) E=U+")NUY).

Throughout this subsection, we will always assume that f admits a subset
A < M with conditions (C1) and (C2) below. For any submanifold
y < M, m, denotes the Lebesgue measure on y.

(C1) A has a weak hyperbolic product structure with the defining
families I and I"°. Furthermore, forany y e I, m,(y N A) > 0.

Asubset Ay — A is called an s-subset if there exists I; < I'® such that
Ao has a weak hyperbolic product structure with defining families T
and Tj5. A u-subset is defined similarly. For x € A, let yY(x)(resp. y°(x))

denote the element of T" (resp. I'®) which contains .

(C2) There exist disjoint s-subsets Aq, Aq, ..., © A such that
(@) forany vy e TV, m,(y N (A\Ujx1 Aj)) = 0,

(b) for any i € N, there exists R; € N such that fR (Aj) is a u-subset
of A and

) for any xeA;, fRESX)cyS(FR(x) and fRi(y4(x) o

(R (x)).
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By (C2), we can define a return time function R:A — N by

Rl A; = Ri. Areturn map fR:A O is defined by
fR(x) = RO (x)
for any x e A with R(x) < o0. We give a notion of separation time (cf. [32]).
Let Z* := {0} UN. For x, y € A, the separation time s(x, y) is defined by
i + RyNn R\N A )
s(x, y)=inf{n e Z" |(f")"(x) and (f")"(y) belong to distinct A;’s}

with the convention: s(x, y) = « if the corresponding set is empty. For

any neN, let (f")" denote the restriction of f" to yeTIY, and

det(D,(f")") denote the Jacobian of the derivative D,(f")" of (f")" at
X e A.

There exist C >0 and 0 < <1 such that the following conditions
(C3) and (C4) are satisfied on the set A:

(C3)Forany y eTY, ie N and x, y e yN A,

o |det(DX(fRi_)”)| < cps TR0 1Ry
| det(D,(fRi)")]

Let (X4, my) and (X5, my) be finite measure spaces. We say that a
measurable bijection T : (Xq, m) — (X5, my) is nonsingular or absolutely
continuous if it maps sets of my-measure 0 to sets of m,-measure 0. If T is

absolutely continuous, then there exists the Jacobian J(T) = Iy m,(T) =
d(T, my,)/dmy of T with respect to my and m,.

(C4) For any y and v eTY, if ®:yNA >y NA is defined by

®(z) = y*(z) Ny forany z e yN A, then © is absolutely continuous and
satisfies
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d(@ my) |det(Dfi(X)fU)|
(@) ()—H uy '
=0l det(D i o 1))
(b)
© ®© !
o | det(D i, )| i | det(D iy, )]
u
k=R; |O|et(ka(®(x))f )| k=R |OIGt(ka(®(y))]c )|

< cpl Ri(x), tRi(y)) (Vx, y € yNA)).

Remark 1.1. Property (P4) in [31] implies (C3). For diffeomorphisms
introduced in the next subsection (see [12, 13]), it is difficult to find a subset
with (P4) in [31], however, it is easy to find a subset with (C3).

Remark 1.2. Property (P4) together with (P5) in [31] implies (C4).
Indeed, it is shown in the proof of Lemma 1 in [31].

We give a definition of an SRB measure. An embedded disk y ¢ M

is called a unstable disk if for any x, y ey, d(f™"(x), f"(y)—0

exponentially fast as n — o. An invariant probability measure pu is said to
be a Sinai-Ruelle-Bowen (SRB) measure if (i) p has positive Lyapunov
exponents, and (ii) the conditional measures of u on unstable disks are
absolutely continuous with respect to the Lebesgue measures on these disks
(see [17] for the precise meaning of (ii)).

Remark 1.3 [12]. Let f : M O be a diffeomorphism which admits a
subset A with conditions (C1)-(C4). Suppose that there exists y € TV such

that -[vﬂ/\ Rdm, < co. Then f has an invariant probability measure v whose

conditional measures on weak unstable disks U}io fi(F“) are absolutely

continuous with respect to the Lebesgue measures on these disks. The
measure v for diffeomorphisms introduced in the next subsection is an SRB
measure.
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We further require the following conditions (C5) and (C6) to establish
upper bounds on large and moderate deviations of a measure v as in Remark
1.3 for f:

(C5) Forany i,i'eN, ¢e€{0,1,..,R -1}, and /" € {0, 1, ..., Ry —1},

there exists N = N(i, i’, ¢, ¢') e N such that f"(f‘(A;))N ff’(/\i') )
forany n > N.

Let Hn denote the set of Holder continuous functions on M with Hélder

exponent n. To state condition (C6) below, for any ¢ € H,,, we define
functions x, y : Ax AxZ* - RU {wo} as follows: for any y° eI,
x, X ey NA and ¢ € {0, ..., R(x) -1},

(% X, 0) = ) (o F400) = o(F4(x)),
k=r+1

WX, X, 0) = (%, X, £)+o(f'(x)).
(C6) Forany ¢ € H,, there exists C,, > 0 such that
(@) forany y° eT'®, x, X e y¥° N A and ¢ € {0, ..., R(x) -1},

26 X, )]+ o(F1(x)] < Cy,
(b) for any Y, y”l e, ¢%, yS' el®, ieN, x, X,y ¥ eA; with
x, yeyl, x,y e yu’, X, XeySand y, y e yS, and ¢ € {0, ..., R -1},
[w(x, X, 0) = y(y, ¥, )] < Cp*Y),

Remark 1.4. It follows from the same arguments as in the proof of
Lemma 1(3) in [31] that Properties (P3) and (P4) in [31] imply (C6).
Diffeomorphisms in the next subsection satisfy (C6).

Let u be an f-invariant probability measure. For any Borel function
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o:M >R, neN, 1€(0,1] and £ > 0, let

dl
—|S,e—n (pduj
N J.

Devy (o, & 1) = u({

where S,¢ = Z.n;é oo f.

For any ne Z*, let {R>n}:={xe A|R(X)>n}. Let R =0, ).
For any two sequences {an},,.y and {by}, ., an = O(by) means that there
exists K > 0 such that forany n e N, a, < Kbj,.

The main result of this paper is the following:

Theorem A. Let f : M O be a diffeomorphism which admits a subset
A with conditions (C1)-(C6). Suppose that there exists y € I'" such that

ij Rdm, < oco. Further, suppose that there exists a positive increasing

function v:R* — R such that (i) Z;O:lv(é)my({R > (}) <o and (ii) a

v(e) 17 . : : : B
sequence {v(f +1)}Z:1 is also increasing, and that there exists p = p(v)
1
e [1, o) such that 220216—5 v(gj 2P o, Then there exists an invariant

probability measure v whose conditional measures on weak unstable

disks U:io fi(F“) are absolutely continuous with respect to the Lebesgue

measures on these disks such that for any ¢ € H,;, € >0, and t e (% 1},

Devi (g, & v) = O(nP1-29)),

We notice that if f admits a subset A with (C1)-(C6) such that there exist
yeTYand & € (2, ©) such that m,({R > n}) = O(n™"), then Theorem A is

applicable to such an f. In particular, for any L' € (2, 1), if we define an
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increasing function v: R - R by v(t)=1(t €[0,1)) and v(t) = A1
(t € [0, 0)), then we can take pto be any p e [1, ' -1).

In Theorem A, if we take t =1, then we have polynomial upper bounds

on level 1 large deviations. Next results on level 2 polynomial upper large
deviation bounds are reduced from level 1 polynomial upper large deviation
bounds of Theorem A. This is done by the same arguments as in [25]. For
any x € M, let 5, denote the dirac measure at x, and for any n e N, set

. n-1
Sndx = Dy 8 iy

Theorem B. Assume M to be compact in the hypothesis of Theorem A.
Let M(M) denote the set of probability measures on M with the weak =*

topology. Then for any compact set C = M(M) with v ¢ C,
1 -p
v ix e M ﬁSnSXeC =0(n"").

For the case when m,({R > n}) = o(n™") for some y e TY and A e

(L, 2], we have the following results:

Theorem C. Let f : M O be a diffeomorphism which admits a subset
A with conditions (C1)-(C6). Suppose that there exist y e TY and
A e (1 2] such that m,({R > n}) = O(n™"). Then there exists an invariant
probability measure v whose conditional measures on weak unstable disks

Uioio fi(F“) are absolutely continuous with respect to the Lebesgue

measures on these disks such that for any ¢ € H,,, €¢>0, te (% 1} and

Aoe(d ),

Devi (¢, & v) = O(n~*+3727),
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In this case, by the same arguments as in [25], polynomial upper bounds
on level 1 large deviations of Theorem C reduce same upper bounds on level
2 large deviations:

Theorem D. Assume M to be compact in the hypothesis of Theorem C.
Then for any compact set C ¢ M(M) with v ¢ C,

v({x e M ‘%snsx e c}j — o(n~"*h,

1.2. Examples

Letg be a Clm-diffeomorphism of the two dimensional torus T?. We
impose on g the following assumptions A1-A3:

Al. g is an almost Anosov diffeomorphism with uniform contracting
direction, i.e., there exist a non-hyperbolic fixed point P of g, a norm |- | on

T?, k € (0,1) anda Dyg invariant decomposition TX’]I‘2 = E3(x)® EY(x)
into subspaces E*(x) and EY(x) which satisfy
=1 (x=P),

| Dyl ES(x) I < 1Dyl E(x) " {> 1 (x=P).

For any ¢ e (0,1, let I, =[—¢, €], and Emb" (I, T?)(r e N) denote
the set of C" embeddings of I; into T? with the C'-topology. By
Assumption Al, it follows from [28, Theorem 1V.1] that there exist two
continuous maps ¢° : T?> — EmbY(l, T?) and ¢ : T? — Emb'(ly, T?)
with ¢°({x}x0)=x (x e T?, o = s, u) such that for any ¢ < (0,1], the
local stable and local center unstable manifolds Vo (x) = ¢>({x}x ;)
and V. (x) = ¢"({x} x I,,) satisfy T,VS(x) = E°(x) for o = s, u (for more
details, see [28]).

A2. ¢! is a continuous map from T? to Embz(ll, 11‘2) with respect to

the C2 topology.
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By [12, Lemma 4.1], we have that g *(VY(P)) = VY(P). Then g

restricted to V.'(P), g is a map from V. (P) to g(Vy (P)). Using

V' (PY
the ¢"({P} x-), we can identify V. (P) with 1 . Then P corresponds to the

origin 0in I, and thus O is a fixed point for g |v”(P)'

A3. If we identify V.'(P) with I, then the graph of g |v“(P)
€

represented as

91 )9 = X+ A X[* + 0(),

The map g has a Markov partition R, and admits subsets {A(j)}%:1

— T2 such that each A(j) is some element of R and does not contain

the fixed point P. Each A satisfies conditions (C1)-(C5) with some
modifications as in [12] and [13], and, using the same arguments as in [12]

and [13], condition (C6) with the same modification holds on the set A9 1n
this case, it is possible to make the proof progresses of Theorems A-D to
have the following result. We note that the map g has a unique ergodic SRB
measure [13].

Theorem E. For any o € (0, 1), the map g above has a unique ergodic

SRB measure v such that for any o’ € (a., 1), the following hold:

1) for an eH,, €>0and T e l,l,

o (unfo (e )
O(n(_wﬁ_zt)) (oc € [l 1), a' e (a, 1))

2 l

Dev;i (o, & v) =

(2) for any compact set C = M(M) with v ¢ C,
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1

=41
V({XG M ‘%snax ec}) —o(n « ).

2. Proof of Theorems A and C

We give below the arguments in [31] to define a tower map F : A O
induced from f R : A ¢ which reduces a guotient map F : A © by identifying

points on each y° € I'>. Then, for the proof of Theorem A, we use results

from [20] and [24] to get polynomial upper bounds on large and moderate
deviations for F.

Throughout this section, we assume that f : M O is a diffeomorphism
which admits a subset A with conditions (C1)-(C6), and that there exists
u
y e TY such that ij Rdm, < o,

2.1. A tower induced from fR: A @)

A tower A is a union of the ¢th floors A, for ¢ e Z*. We define

Ag = A x{0}. Let A, be a copy of a part of A by
Ay ={(x, £)|x € A, £ < R(x)}.
Let A, ; be acopy of A; by
Agi =1{(x, 0)|x € Aj, £ < R(x)}.
Then a system F on the tower A = Uzez+ A, is defined by

(x, £+1) if £+1<R(x),

Fx &) = {(f R(x), 0) if £+1= R(x).

Here fR: A is the return map as in Subsection 1.1. Let n:A —

Uokozofk(A) be a natural projection defined by n(x, ¢) = f‘(x) for
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(x, £) € A. Then we have that
fon=mnoF. (2.1)

We define the separation time s,(-, -) on A as follows: First, for any
X, Y € Ag, SA(X, y) is defined by sp(X, y) = s(Xg, Yo), where x = (Xg, 0)
and y =(yg, 0). Second, for any X, yeA,, sp(x,y) is defined by
sa(X, ¥) = s(Xg, Yo), where x = (Xg, £), ¥ = (Yo, £) € A, and (g, 0) and
(Yo, 0) are the unique preimages of x, y by F, e, Ff(xo, 0)=x and
F(yo, 0) = y. Otherwise, sy (X, y) = 0. We will denote the separation time
SA('! ) onA by S('! )

Lemma 2.1. For any ¢ € M, there exist v, x : A — R such that the
following hold:

(1) pom=F+7-7°F,

(2) x is bounded,

(3) for any x =(Xg, £), Y = (Yp, ¢) € A, such that xy and yy are in
the same weak stable disk, y(x) = y(y),

(@) for any x,yeA, |y(x)-w(y)|< 2C(p[35(x’ Y), where C, is a
constant for ¢ in (C6).

Proof. We fix an arbitrary 7 e TY. Forany y € A, let ¥ :=y*(y)N7.
Forany x = (Xg, /) € A, we define X = (X, ¢). We define a function y on
A by

1) = D" (@(m o FI(x)) - g(mo F1(R))

j=0
forany x € A. Let x = (Xg, /) € A. By (2.1), we have that

noFl(x)= flom(x)= 1+ (xg).
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Similarly, moF1(%)= ij()A(O). Since Xy and Xp are in the same
weak stable disk of A, by (C6)(a), we have that | %(x)| < C,. This proves
(2) of the lemma. We define

y=@pom—y+yoF.
Then we estimate that
¥(x)= D (o(noFI (F(R)-o(reF (F(x) +o(x(R)).  (22)

=0

Thus v satisfies (3) of the lemma. We show (4) of the lemma holds for the

function y above. Let x, y € A be s.t. x and y belong to the same Ay

—

Then the first coordinates of pairs of points F(X), F(¥), and F(x), F/(V)

are in the same weak unstable disk, and the first coordinates of the pairs of

points F (%), F(x), and F(§), F(y) are in the same weak sable disk. Thus,
by (C6)(b), (2.1) and (2.2), we have that | y(x) - y(y)| < C(pBS(X’ Y
X, y € A belong to distinct A, ;, then the same conclusion of the previous

case holds since the function y and ¢ are bounded by (C6)(a). O
2.2. Reduction of F : A (9 to the expandingmap F : A O

Let A, = A/~ where (x, ¢) ~(y, £) if yey®(x). A, is defined
similarly. Then we define A = U€€Z+K5. Since fR sends weak stable

disks to weak stable disks by (C2)(c), the quotient map F : A ¢ is well
defined topologically.

We define a measure M on A in a way that F is nonsingular, and the
Jacobian of F with respect to M is well defined and satisfies the distortion

inequality as in (C3). To do this, it suffices to define a measure m on
A = A/~ Dby the following way [4, 31]. We then let a measure m| ap ON
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Ay to be the measure induced from the natural identification of Ay with A

and let a measure m@ on A, to be the measure induced from the

identification of A, with a subset of A.

We take an arbitrary 7 € TY. For any x € A, let X:=y*(x)N7. We
define a function @ by

o0
D(x) = D" (@ (F(x) - " (F* (%),
k=0
where ¢"(x) = log| det(Dy f") |. Oneach y e TV, define m, =1, ePm,,
where 1, denotes the characteristic function of a set A. If for some v’ Y,

f R (AjNy) <y, thenfor x € Aj Ny, we write

IR0 = I m, (£ sy ().

In our setting, the following lemma is proved in [12] under conditions
(C1)-(C4) using the same arguments as in [31].

Lemma 2.2 [12, Lemma 3.4]. (1) Forany v,y eT", let ®:y N A —>

Y"N A beasin (C4). Then e.m, =m,,

(2) I(FR)(x) = I(FR)(y) forany y € y*(x),

(3)foranyie N, yeTY and x, y € y N A;,

I(F)(x)
I

We define FR 1Ay © by FR(x, 0) = (fR(x), 0) for x e A. Then the

< 5eps(FR00 FR(y),

‘ log

quotient map FR: Ag O is also well defined similarly. Let T: A — A be

the projection. By Lemma 2.2(2), we can define the Jacobian J(FR) of
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ER. Ag O with respect to m by J(F )(%) = I(fR)(x) forany X e Ag
and (x, 0) e @ 1(X). The Jacobian JE of F w.r.t. m is defined by JF =1
on A\E 1Ay, and JF(X, £) = I(FR)(X) if (X, ¢) e FL1A,.

We define the separation time (-, -) on A as follows: First, for any
%, ¥ €Ay, §(X, V) is defined by 5(X, ¥) = s(x, y), where (x, 0) e T (%)
and (y, 0) e # X(y). Second, for any X,V e A, 5(X,Y) is defined by
5(X, ¥) = 5(Xp, Vo), Where Xy, Yo € Ag are the unique preimages of X, ¥
by F', i, F'(X) =X and F’(Yy) = y. Otherwise, 5(X, ¥) = 0

The next lemma is proved in [12] using Lemma 2.2(3).

Lemma 2.3 [12, Lemma 3.5]. There exists C; > 1 such that for any
keNand X € D € Dy,

1 1
ac FE) TGt

We summarize the properties of F : A () as follows: (a) ER. Ao,
—>§(Z0,i) is bijective (modmm) and F(Zo,i) is a union of some
Agi’s (modm), and furthermore, there exists mg >0 such that
infieN{m(ﬁ(Ko i)} =ng (by (C2)), (b) D={A,;} is a partition such
that v§_g F~ ID s the partition into points, (¢) M(Ag) < o0, (d) M(A)=
m(F(A)) forany Ac A, with F(A)c Ayygj, M(A)=m(F(A)), (e) for
any i e N, F| Ao | and its inverse are nonsingular with respect to m, (f)
there exists C; > 1 such that forany i e N and X, y Zo,i,

IERE _,
IER)()

< cpSFRE. 1R(9)
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(by Lemma 2.2(3)), (9) IK R o7 ldm < o, and (h) for any ¢, ¢'eZ* and
0
i,i"e N, there exists NeN such that F"(A, ;)N A, ;=@ for any
n> N (by (C5)).
The next lemma follows from the same argument in [20, 31, 32].

Lemma 2.4. F has an invariant probability measure v which is mixing
such that dv = pdm, where p satisfies Cz‘l <o < C, for some C, >0
with

by

Le)(®)= Y _olx) 2.3)

for $ € L2(M) and X e A. Let L™(f) be the set of functions which are

essentially bounded with respect to m. We denote the essential sup norm
with respectto m by |- | . Let

Cp(A)={9:A > R|3CG > 05t |[9(X) - (V)|
< Co(BF Y, vx, § e A,
Forany / e C(A), we define

|0 ] :=max{] ¢, Cg} (2.4)
where Cy is as in the definition of Cg(A). We note that g € Cg(A) and

| 2|l < Cy, where g isasin Lemma 2.4. We denote the essential sup norm

with respect to M restricted on A, by |-|, ,. The following result is

proved in [20].
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Theorem 2.5 [20, Proposition 3.13, Corollary 3.15]. Let w:={w(/)}, .5+
be a positive increasing sequence such that (i) z;ozlw(f)m(&) <oo and (ii)

w(/)
w(/+1)

e N and Cg = Cg(w, ki) > 0 such that for any ¢ € Cg(A) with [ ¢dmm =1,

o0
the sequence { } is also increasing. Then there exist k; = ky(w)
=1

any ne N with n=kjj+r forsome jeN and r € {0, ..., k; —1}, and
any ( e 7™,

12®) -2, = Co@ie by

where o is asin Lemma 2.4.

Throughout this section, we fix a positive increasing function v:R*

— R such that (i) for some y e TV, Z?Zlv(f)my({R > (}) < o, and (ii) the

v(0)
v(/ +1)

Z;OZOV(E)m(K()<OO. Then we let k; = ky(v) e N and C3 = Cz(v, ky) >0

o0
sequence { } is also increasing. By Lemma 2.2(1), we have that
(=1

as in Theorem 2.5. The following result follows from Theorem 2.5 (see [12,
Lemma 3.8]).

Theorem 2.6. For any ¢ € Cg(A) with j$dm =1 any ne N and

(et

12°@®) -2, < C@ 1L,
2)

where

k
M3
O) = maxirgr(_ max N T@ L+ 121 Col B
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Theorem 2.7 [20]. Let (F, V) be as above. If there exists A > 1 such
that M({R > n})=0(n™"), then for any A’ e (L %), @ e L°(M), and
P, € CB(Z), there exists C4 = C4(¢y, 9, A') > 0 such that forany n € N,

‘ I(_(Pl o FM)p,dv — I—(pldvj@dv‘ <Cun

Let B be the Borel c-algebra on A. Let E(y|B) denote the V-

conditional expectation of y with respect to By. For any p>1 and

V:ASR, |V ”p = U| v |P dV)]/p. The following result follows from
the same arguments as in [24].

Theorem 2.8 [24]. Let (F, V) be as above. For any p >1 and
E:A >R with | €], <oo, there exist Ky, >0 and Cs > 0 such that
forany n e N,

1 1 n 1
p— - p— — p— _k p—
| S I, S(sz)2pn2(llioF lop +C5 D k 2| EE=F*[B)l,, |
k=1

It follows from [5] and [6] that the constant K, of Theorem 2.8 satisfies
that Ko < (2 p)2P.

2.3. Large and moderate deviations for F

We use the following convention: For any function ¢ : M — R, let ¢
be the lift of ¢ to A defined by ¢ = @on, where n: A — M is the
projection which satisfies (2.1), and if @ is a constant on y° disks, then
we will confuse it with the function on A called ¢. Let v be the measure
as in Remark 1.3. We define an F-invariant probability measure v by
n.v = v. Then we have that for any ¢ e Ll(v), and an interval | c R,
v({x e M|o(x) e 1})=v({x € Alo(x) € I}). So to prove Theorem A, it
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suffices to establish the upper bounds on large and moderate deviations of

(F,Vv). Forany ¢:A > R and ne N, let S,¢ = Z.n:_& $oF.

Let ¢ € H,. Without loss of generality, we may assume that j(pdv =0.
Let v be a function of Lemma 2.1 associated with ¢. Then by Lemma
2.1(1), v satisfies that J\T;dG =0 since v is F-invariant. Let t e (% 1}
and € > 0. By Lemma 2.1, there exists N € N such that for any n > N,

{x € A||Spo(x)| > n"e} = {x € Al| Spy(X) | > n"&/2},
and so
V({x € All SyB(X)| = n"e}) < F({x € Al SyT(x) | 2 n*e/2)).

On the other hand, it follows from the same arguments as in [31] that
VvV =T,v. Here v is a measure as in Lemma 2.4 and = is the natural

projection from A to A. Since y depends only on future coordinates by
Lemma 2.1, we have that

v({x € Al| Spu(x)| = n"g/2}) < V({X € A|| Syw(X) | > n"e/2}).

So, forany p > 1,

2p
Tt e a1 S0 2 0oz < [-2 (80 P (29

where |-, , denotes the norm on L2P(¥).

Proof of Theorem A. Let p > 1. Since y is bounded by (C6)(a) and
(2.2) in the proof of Lemma 2.1, we have that | |,, <. Then by
Theorem 2.8, forany n € N,

1 1 _ n _1 L
| Sav I2p S(sz)z_pnz[IIWO Fllpp+Cs ) k 2] E(y o F¥|B) IIZpJ- (2.6)
k=1
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— =k =k . _ . =
We note that | E(y o F"|B) |, = | E(WIF"B) [, since v is F
invariant. Using the same argument in [31, p. 611], we have that
= 2 _ ___ __
[IE@IF*B)Pav <] ¥ |..[| 2(wa)|dm.

Thus we estimate that

L
|E@ < F¥(B) oy = (17 )2 2| E7IF~¥B) Pav P

L
(AL IF@oen . @

Let v:R" — R be such that (i) Zlev(ﬁ)myu ({R>(})< oo for some

u . v(e) 1” . . :
vy € I'" and (ii) the sequence {v(f +1)}£:1 is also increasing, and p € [1, «)

1 1
be such that Zlef 2 v[g) 2P~ 0, We show that there exists Ce >0

such that for any k € N,

(2.8)

[124wa) am < V(gj

By Lemma 2.1(1), we have [ydV =0. Let ag = 2| ¥ [,. Then we

estimate that
iz @a)lom - [| 2w + ap)) - ([ @ + ag)av g am

— Y +ag)o
SaWJ. 7 Wrawle | olgm

J(W+aw)dv
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(V+agle | _

caS m(A,)|| £
“’; ! [@ +ag)dv

0, /

Since ¥ e Cg(A) by Lemma 2.1(4), we have that (y + ay)2 € Cp(A).

a v ray)e
(v + \V)Q dm =1, we apply Theorem 2.6 to M in
(V +ag)dv [ +ag)dv

Since JJ

the place of ¢ in Theorem 2.6, and have that for any ¢ € Z*,

(W + a\y )E V(f)

7 (V +ay)e _

J.(W+aw)dv . I(W+aw)dv "(2)
Vv +ag)o Vv +ag)o
where C M is the constant of M in the place of
J(w+aw)dv I(\V+aW)dV

¢ in Theorem 2.6. Thus, combining the inequalities above, we obtain (2.8)

for the constant

0

a _
Co = aC Wrage Zv(f)m(Ag).
I(w +ay)dv
Substituting (2.8) into (2.7), we have that
|EW o F¥IB) [y < — 1 29
\lj 2p = k i, .
X2
(3)

2p-1 1
where C; == (| ¥ |,) 2p (Cg)2p. Substituting (2.9) into (2.6), we have that

1 n 1 1

B - = (kY2
I S0¥ lop < (Kap)2pn2| | ¥ [l +CsCr D k 2 'V(7) i
k=1
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So the right hand side of the inequality of (2.5) is bounded above by

2p
2p 2p n 1 1
(2] kapn 2 || 1y + Csr Yok 2v(5 )
k=1
n 1 2p
4 kY 2p -
( P) | v ”2p +C5C7Zk 2 V(Zj P| ppl-21)

k=1

Here we used the fact that Ky, < (2p)?P in the last inequality. This

concludes the proof of Theorem A. O

Proof of Theorem C. Assume that there exist A e (1, 2] and y e T"
such that mu ({R>n}) =0(n™"). In (2.5), if we take p =1, then the right
hand side of the inequality of (2.5) is bounded above by

{jwzdwz > Jvwe Fl'dv} ().

0<i<j<n-1

Since y e CB(Z) by Lemma 2.1(4), we can apply Theorem 2.7 to y in the

second term on the right hand side of the above inequality, and have that for
Ne@nr),

()<
n

4 i -1
72,2 nj\y dv +2C4 Z—rk’—l
r=1

n-1
< 4n1—218—2jw2dv n 8C4n1—2181—21:8—2 Z r—k +1
r=1

_ O(nl—Z‘t) n O(n3—2‘t—?\.') _ O(n3—2‘t—7\.'). N
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