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Abstract 

In this paper, we propose a method based on independent component 
analysis to represent the dependence structure of structural VAR 
model affected by latent variables in the case of non-Gaussian. The 
parameters of the model are estimated by a synthesis of least-squares 
method and independent component analysis. Based on the results of 
parameters estimation, the directed acyclic graph of structural VAR 
model with latent variables is constructed. Finally, simulation results 
demonstrate that the proposed method can correctly identify structural 
VAR model with latent variables. 

I. Introduction 

Since the 1980s, structural vector autoregressive (VAR) models have 
become a prevalent tool to empirically analyze dynamic general equilibrium 
models [1]. Recently, the graphical models have been introduced to model 
dependence structures among multivariate time series [2, 3]. The recursive 
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structure of structural VAR can be represented by a directed acyclic graph 
(DAG) with each variable at a specific time represented by a separate vertex 
in the graph. Standard graph-theoretic techniques permit the researcher to 
infer the causal relations sufficient to identify the structural VAR [4-6]. One 
major problem in the application of graphical models is the possible presence 
of latent variables that affect the observed variables and thus lead to false 
dependence structure when we establish model for observed variables. In 
many cases, the data generating process might involve unobserved 
confounders. It is well known that the omission of important variables can 
lead to spurious correlations which are falsely detected as causal 
relationships among the observed variables. In recent years, several authors 
have proposed methods to model the causal dependence of observed 
variables when there exist the affections of latent variables. For multivariate 
time series, the study mainly focuses on identifying the dependence structure 
of observed variables that are affected by latent variables such as the 
researches of Eichler [7], Chu [8], and Gao and Tian [9]. 

Such methods require the user to make various assumptions about the 
data generating process. In much empirical work, it is additionally assumed 
that disturbances have a normal distribution. As has been extensively 
discussed elsewhere, these assumptions are quite strong and can often be 
violated in real data. Independent component analysis (ICA) is a statistical 
method used to find a linear representation of non-Gaussian data so that the 
components are as independent as possible. Such a representation would then 
capture only the essential structure of the data in these independent 
components [10, 11]. Shimizu et al. [12] proposed linear non-Gaussian 
acyclic model (LiNGAM) for the estimation of causal effects between the 
observed variables in the linear, non-Gaussian domain based on ICA. 
Hyvärinen et al. [13] applied the LiNGAM analysis to estimate a structural 
vector autoregressive (VAR) model based on non-Gaussianity. Hoyer et al. 
[14] generalized LiNGAM to the case with latent variable and obtained latent 
variable linear non-Gaussian acyclic model (lvLiNGAM). 

In this paper, we defined a class of structural VAR models affected by 
latent variables and given the directed acyclic graph representation for the 
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model. A computational method based on independent component analysis is 
proposed to estimate the parameters in the model. The directed acyclic graph 
of structural VAR model with latent variables is constructed based on the 
results of parameters estimation and conditional independent test. 

This paper is organized as follows: In Section II, we define structural 
VAR model with latent variable and the foundation assumptions of the model 
to be identified. Section III presents the parameters estimation method for the 
model. The validity of the methods is demonstrated by simulations in Section 
IV. Section V concludes the paper. 

II. Model Definition and Assumptions 

Suppose that ( ) ( ) ( ) ( )( )′= tXtXtXtX k...,,, 21  is a k-dimensional 

stationary time series with zero-mean, for any ,Z∈t  the basic VAR model 
has the reduced form representation 

 ( ) ( ) ( ) ( ).11 tuptXAtXAtX p +−++−=  (1) 

Here jA  ( )pj ...,,1=  are kk ×  coefficient matrices, ( )tu  is the 1×k  

vector of random disturbances, which is assumed to be a zero-mean white 
noise process (i.e., no correlations across time) with contemporaneous 
covariance matrix ( ) .uttuuE Σ=′  From the diagonalization of covariance 

matrix, there exists matrix P which satisfies that .uPP Σ=′  We get the 
structural VAR representation 

 ( ) ( ) ( ) ( ) ( ),110 tptXtXtXtX p ε+−Φ++−Φ+Φ=  (2) 

where ,1
0

−−=Φ PI  ,1
jj AP−=Φ  ,...,,1 pj =  ( ) ( )tUPt 1−=ε  and the 

variance matrix 11 ′−− Σ= PPD u  of ( )tε  is diagonal. Let ( )ijqΦ  denote the 

element with i row and j column in matrix ,qΦ  for any indices sequence 

( ),...,,, 21 mjjj  there is a zero in the m coefficient ( ),120 jjΦ  

( ) ( ) ( ).,...,, 1010230 mmm jjjjjj ΦΦΦ −  Matrix 0Φ  represents a recursive 

(causal) dependence of each component of ( )tX  on other contemporaneous 
components. 
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The model is recursive and can be represented by directed acyclic 
graphs. 

Definition 2.1. Let ( )tX  be a k-dimensional stationary Gaussian process 

with structural VAR representation of (2). In a graph ( ),, EVG =  the vertex 

set ( ) ( ) ( ) ( ){ } ( ),...,,,:...,,...,,...,, 111 ptttkk aaaptXptXtXtXV −−=−−=  

{ }ka ...,,2,1∈  denotes the variables of the components in tX  at different 

times and edge set E satisfies that two vertices being without an edge if and 
only if they are conditional independent given all the remainder variables, the 
directions of the edges denoting the directions of causal dependence. Then G 
is called the directed acyclic graph (DAG) for ( ).tX  

Therefore, each possible ordering of the components in ( )tX  gives a 

potentially distinct form of (1), but all these forms are statistically equivalent 
and have the same DAG representation. Since ( )utXa −  and ( )tXb  are 

conditional independence if and only if the corresponding entries ( )bauΦ  

vanish, we have the next theorem. 

Theorem 2.2. Let ( )tX  be a k-dimensional stationary Gaussian process 

with structural VAR representation (1). Then the DAG with ( )tX  is the 

graph ( )EVG ,=  with vertex set ( ) { }kaaaaV pttt ...,,2,1,...,,, 1 ∈= −−  

and edge set E such that 

(1) for distinct { },...,,2,1, kba ∈  ( ) ,0=Φ⇔∉→− baEba utut  

{ };...,,2,1,0 pu ∈  

(2) ( ) ,0=Φ⇔∉→− aaEaa utut  { }....,,2,1 pu ∈  

Then we define the structural VAR models with latent variables. 

Definition 2.3. Suppose that ( ) ( ) ( ) ( )( ) ,...,,, 21
′= tXtXtXtX k  Z∈t           

is a k-dimensional observed time series, ( ) ( ( ) ( ))tUtUtU q...,,1=  is a                     

q-dimensional unobserved time series, and ( )tε  is a k-dimensional white 

noise. The structural VAR model with latent variables can be defined as 
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 ( ) ( ) ( ) ( )∑
=τ

=τ
τ ε++τ−Φ=

p
ttHUtXtX

0
,  (3) 

where the process ( )tX  satisfies the following conditions: 

(A1) ( ),tiε  ,...,,1 ki =  Z∈t  and ( ) Z∈= tqjtU j ,...,,1,  are jointly 

independent and non-Gaussian. 

(A2) The matrix 0Φ  modelling instantaneous effects corresponds to an 

acyclic graph, as is typical in causal analysis. 

(A3) Each latent variable ( ),tU j  qj ...,,1=  is a root node (i.e., has no 

parents) and has at least two children (direct descendants). Furthermore, 
although different ( )tU j  may have the same sets of children, no two latent 

variables exhibit exactly proportional sets of connection strengths to the 
observed variables. 

(A4) Each latent variable is restricted to have zero-mean and unit 
variance. 

The acyclicity condition (A2) is equivalent to the existence of a 
permutation matrix P, which corresponds to an ordering of the variables 

( ),tXi  ki ...,,1=  such that the matrix TPP 0Φ  is lower-triangular (i.e., 

entries above the diagonal are zero). 

Conditions (A3) and (A4) mean that the model for ( ) ( )tUtX ji ,  is a 

canonical model defined by Hoyer et al. [14]. 

Under assumptions (A1) to (A4), the DAG represented the causal 
dependence structure of structural VAR models with latent variables defined 
in Definition 2.4 is as follows. 

Definition 2.4. Let ( ) ( ) ( )( )tXtXtX k...,,1=  and 

( ) ( ( ) ( )),...,,1 tUtUtU q=    Z∈t  

be the time series with structural VAR representation (1). Then the DAG 
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with ( )tX  and ( )tU  is the graph ( )EVG ,=  with vertex set =V  

( ) { } { }qlkalaaa tpttt ...,,2,1,...,,2,1,,...,,, 1 ∈∈−−  and edge set E such 

that 

(1) for distinct { },...,,2,1, kba ∈  ( ) ,0=Φ⇔∉→− baEba utut  ∈u  

{ };...,,2,1,0 p  

(2) ( ) ,0=Φ⇔∉→− aaEaa utut  { };...,,2,1,0 pu ∈  

(3) ( ) .0=⇔∉→ alHEal tt  

III. Parameter Estimation Method Based on Overcomplete ICA 

In this section, a method combining classic least-squares estimation of an 
autoregressive model with latent variable overcomplete ICA estimation [15] 
is proposed to estimate the parameters of the structural VAR model defined 
in Definition 2.3. 

Independent component analysis solves the non-identifiability of factor 
analytic models using the assumption of non-Gaussianity of the factors     

[10, 11]. We begin by considering the full data vector { }myyY ...,,~
1=  

which includes the latent variables. If we first subtract out the means of the 
variables, then the full data satisfies 

 ,~~~ eYBY +=  (4) 

where B~  is a matrix that could be permuted (by simultaneous equal row and 
column permutations) to strict lower triangularity if one knew a causal 

ordering ( )ik  of the variables. Solving for ,~Y  we obtain 

 ,~~ eAY =  (5) 

where ( ) 1~~ −−= BIA  contains the influence of the disturbance variables 

onto the observed variables (the total effects). Again, A~  could be permuted 
to lower triangularity (although not strict lower triangularity) with an 
appropriate permutation ( ).ik  Taken together, the linear relationship between 
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e and Y~  and the independence and non-Gaussianity of the components of e 
define the standard linear independent component analysis model [10, 11]. 

Now consider the effect of hiding some of the variables. This yields 

;AeY =  where A contains just the rows of A~  corresponding to the observed 
variables. When the number of observed variables is less than the number of 
disturbance variables, A is non-square with more columns than rows. This is 
known as an overcomplete basis in the ICA literature [15]. 

Thus, Hoyer et al. [14] formulated the algorithm for calculating all 
observationally equivalent canonical models compatible with any given ICA 
basis matrix A (containing exact zeros). For more details on the algorithm, 
please see the reference. 

The VAR-lvLiNGAM algorithm for identification of the structural VAR 
model with latent variables is provided in Algorithm 1. 

Algorithm 1: Structural VAR-lvLiNGAM 

Step 1. Using least-squares method, estimate a classic autoregressive 

model for the data ( ) ( ) ( )∑ =τ
=τ τ +τ−= p tntXMtX 1 .  Denote the estimates of 

the autoregressive matrices by ....,,1,ˆ pM =ττ  

Step 2. Compute the residuals, i.e., estimates of innovations ( )tn  as 

( ) ( ) ( )∑ =τ
=τ τ τ−−= p tXMtXtn 1 .ˆˆ  

Step 3. Check whether the ( )tn̂  indeed are non-Gaussian, and proceed 

only if this is so. 

Step 4. ( ) ( ) ( ) ( )tHUttntn +ε+Φ= ~
0  can be rewritten as ( ) ( )tnI 0Φ−  

( )
( )
( )

.
~

⎟
⎠
⎞

⎜
⎝
⎛ ε=

tH
t

HI  This yields ( ) ( ),tAetn =  where ( ) ( )HIIA 1
0
−Φ−=  

contains just the rows of A corresponding to the observed variables. This is 
an overcomplete basis [16]. From the assumptions in Definition 2.3, the 
model ( ) ( )tAetn =  is a canonical model. 
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Step 5. Use overcomplete ICA algorithm [17] to obtain overcomplete 
basis A and estimate the means of the observed variables, calculate all 
observationally equivalent canonical latent variable LiNGAM models 
compatible with the basis. 

Step 6. The matrix 0Φ  and H can be estimated as the solution of the 

instantaneous causal model with latent variables ( ) ( ) ( ) +ε+Φ= ttntn ~ˆˆˆ 0  

( ).ˆ tUH  

Step 7. Finally, compute the estimates of the causal effect matrices ,τΦ  

p...,,1=τ  as ( ) .ˆˆˆ 0 ττ Φ−=Φ MI  

The next theorem proves the efficiency of the algorithm. 

Theorem 3.1. (a) The estimate of matrix 0Φ  and H can be computed as 

the solution of the instantaneous causal model with latent variables, 

 ( ) ( ) ( ) ( ).ˆ~ˆˆˆ 0 tUHttntn +ε+Φ=  (6) 

(b) The estimates of the causal effect matrices p...,,1, =τΦτ  can be 

computed as 

 ( ) .ˆˆˆ 0 ττ Φ−=Φ MI  (7) 

Proof. From (3), we have 

 ( ) ( ) ( ) ( ) ( )∑
=τ

=τ
τ ε++τ−Φ+Φ=

p
ttHUtXtXtX

1
0 ,  (8) 

then 

 ( ) ( ) ( ) ( ) ( )∑
=τ

=τ
τ ε++τ−Φ=Φ−

p
ttHUtXtXI

1
0 ,  (9) 

and thus 

( ) ( ) ( ) ( ) ( ) ( ) ( )∑
=τ

=τ

−−
τ

− εΦ−+Φ−+τ−ΦΦ−=
p

tItHUItXItX
1

1
0

1
0

1
0 .  

 (10) 
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Comparing this with (3), we can equate the autoregressive matrices, 
which give 

 ( ) ττ
− =ΦΦ− MI 1

0  (11) 

and 

 ( ) ( ) ( ) ( ) ( ).1
0

1
0 tItHUItn εΦ−+Φ−= −−  (12) 

Equation (12) multiplied by ( ),0Φ−I  

 ( ) ( ) ( ) ( ).0 ttHUtnI ε+=Φ−  (13) 

The equation above can be written as 

 ( ) ( ) ( ) ( )ttHUtntn ε++Φ= 0  (14) 

which is just an lvLiNGAM model [14] on the residuals ( ).ˆ tn  ~ 

This estimation method is consistent, since the least-squares estimation is 
consistent and the consistency of the estimator of 0Φ  and H follow from the 

consistency of lvLiNGAM estimation [14]. 

In the problem of identification, a more reassuring result is the following: 
if the data follows the same causal ordering for all time lags, then ordering is 
not contradicted by neglecting instantaneous effect. The existence of latent 
variable makes the problem more complex. A rigorous definition of this 
property is the following. 

Theorem 3.2. Assume that there is an ordering ( ) njji ...,,1, =  of the 

variables such that no effect goes backward, i.e., 

 ( ) ( )( ) 0, =δ−Φτ jiji  for .1,0,0 nj ≤≤≥τ>δ  (15) 

Then the same property applies to the 1, ≥ττM  as well. Conversely, if 

there is an ordering such that (18) applies to 1, ≥ττM  and ,0Φ  then it 

applies to 1, ≥τΦτ  as well. 

Proof. Model 

 ( ) ( ) ( ) ( )∑
=τ

=τ
τ ε++τ−Φ=

p
ttHUtXtX

0
 (16) 
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can be written as 

 ( ) ( ) ( )∑
=τ

=τ
τ ε+τ−Φ=

p
ttXtX

0
,  (17) 

where ( )
( )
( )

,⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

tX
tU

tX  ,
00

0
0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Φ

=Φ
H

 ,
0

00
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ

=Φ
τ

τ  ,1≥τ  ( ) =ε t  

( )
( )

.⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ε

ε

t
tU  

When the variables are ordered in this way (assuming such an order 
exists), all the matrices τΦ  are lower-triangular. The same applies to 

( ).0Φ−I  Then all the matrices τΦ  and ( )0Φ−I  are lower-triangular too. 

Now the product of two lower-triangular matrices is lower-triangular and the 
inverse of a lower-triangular matrix is lower-triangular; in particular, 

 ( ) ,
0

00
0

0001
0 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Φ

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=ΦΦ−=

ττ
τ

−
τ DDC

A
IM  (18) 

where A, D, τΦ  are lower-triangular, then τM  are also lower-triangular, 

which proves the first part of the theorem. The converse part follows from 
solving for τΦ  in (18) and the fact that the inverse of a lower-triangular 

matrix is lower-triangular. ~ 

IV. Simulation Example 

In this section, we conduct an experiment using synthetic data to testify 
the validity of the methods. The simulation data is generated from the next 
model 

( )
( )

( )
( )

( )
( )⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
1
1

9.00
09.0

00
5.00

2

1

2

1

2

1

tX
tX

tX
tX

tX
tX

 

( )
( )
( )

.
2.0
8.0

2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ε

ε
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

t
t

tU  
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Then the parameters are 

.
2.0
8.0

,
9.00

09.0
,

00
5.00

10 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= HBB  

The influences ( )tiε  and latent variable ( )tU  are independently drawing 

from a two-component mixture of Gaussian density ,1.09.0 21 ξ+ξ  where 

( ) ( ).1,0~,01.0,0~ 21 NN ξξ  

We applied our estimation method to the data with sample sizes 500=n  
and ,1000=n  respectively. Figure 1 gives the estimated structure of the 
instantaneous variables and the latent variable. 

The estimate of 1B  is computed from ( ) .ˆˆˆ 101 MBIB −=  The results are 

shown in Table I. 

Table I shows that the accuracy of the estimation is becoming better with 
the increasing of the sample size. Figure 2 gives the graph the dependence 
structure of the variables from Table I. 

 

 (a) (b) (c) 

Figure 1. (a) Original generating model; (b) Estimated model with ;500=n  
and (c) Estimated model with .1000=n  
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Figure 2. Graphical model from the results of Table I. 

Table I. Estimations of the parameter matrix 

 0B  1B  H 

500=n  ⎟
⎠
⎞

⎜
⎝
⎛

00
3958.00

 ⎟
⎠
⎞

⎜
⎝
⎛

9857.00427.0
1080.09319.0

⎟
⎠
⎞

⎜
⎝
⎛

2209.0
9438.0

 

1000=n  ⎟
⎠
⎞

⎜
⎝
⎛

00
4610.00

 ⎟
⎠
⎞

⎜
⎝
⎛

9845.00405.0
0495.09238.0

⎟
⎠
⎞

⎜
⎝
⎛

1911.0
8144.0

 

V. Conclusion 

This study extends the application of causal inference for time series to 
the case that the model is affected by latent variables. We present a new 
procedure that combines least-squares methods and overcomplete 
independent component analysis model to estimate the parameters of linear 
non-Gaussian structural VAR model with latent variables. The combination 
of the estimation and test procedures can give an accurate graphical model to 
represent the dependence structure for structural VAR model with latent 
variables. 
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