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Abstract

We consider a nonlinear dynamic problem comprising a system of
nonlinear parabolic equations. The second of these equations is a
nonlinear dynamic boundary condition to the problem. The derivation
of the system is through the heat energy conservation laws [4].
Problems of this type occur in heat energy absorption and release
through the surfaces of solids. The second equation to the system
describes surface radiation itself. We rewrite the system as an implicit
evolution equation, thus exposing trace-like canonical operators.
These operators have been studied and characterized in [3] and [4].
Subsequent to that, we study the stability of the null solution to the
implicit evolution problem using the modified Lefschetz [6] system for
the direct stability criterion. We show that, even though the modified
Lefschetz system leads to a new Lyapunov function for the problem,
the Lefschetz direct stability criterion itself is invariant. We test the
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modified Lefschetz system on the cooling problem in [3], by
constructing the corresponding Lyapunov function and confirming its
known properties.

Symbols used:

1. a, B, ag and Bq are positive real constants;

2. Q is an open bounded domain in %3, where 6Q ¢ Q;
3. A=V.V;
4. Ag = Vg - Vg; the Beltrammi-Laplace operator; with

0

3 At irz for an arbitrary point (tq, T5) on oQ.
1

Vg = o5

1. Introduction

We wish to investigate the application of the Lefschetz direct stability
criterion to an implicit evolution equation. For that purpose, we consider the
following nonlinear dynamic problem:

We look for u(x, t) such that

(@) adgu(x, t) = BAU(X, t)+ f(u(x, 1)) x € Q, u(x, t) e L2((0, t), H2(Q))
Subject to:

(b) u(x, 0) = u®(x),

(c) yqu =0, and,

(d) agdt[you(y, t)] = BoAs[vou(y, )]+ vof ([Ysgu(y: v,

you(y, t) e LZ[(O, t), H2(6Q)| y € aQ.

@)
2. Some Basic Assumptions on the Problem

In this paper, we assume that
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(a) the surface 6Q is smooth enough for the trace operator, y: H 2(Q)

3 1
— H2(0Q)x H2(0Q), to exist so that we can define its restriction,

3
H 2(Q) — H2(6Q) by u > you; mapping the solution to 1(a) to the
solution to 1(d) (see [5, Theorem 8.3, p. 39]);

(b) the weak solution (u(x, t), yqu(y, t)) to (1) exists and is unique in

3
O = {(u(x, t), you(x, t)) e LZ((O, t), H2(Q) x Hi(aQ)J

U = 0; u(0) = uo(x)}

3. The Problem as an Implicit Evolution Equation

We rewrite the problem (1) in the form,

otBu(t) = Lu(t) + Fu(t), )
Subject to: Bu(0) = Bu®(x),

ylu = 0,
where

Bu(t) = (au(t), aplvou(t)) € Y;

{
Lu(t) = (BAu(t), BoAs[vou(t)]) €
{

Fu(t) = (f(u(t)), vo flyou®)]) € Y;

3
Y = L2 (0, t), H2(Q)x H2(0Q) |.

Remark 3.1. (a) While the operators B and L are linear, the operator F is
nonlinear.
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(b) All the canonical operators are “related” to the trace operator through
3
the trace extension operator, yq : H 2(Q) > H2(6Q).

3
(c) It can be shown that the space HZ(Q)x H2(aQ) is a finite

dimensional Hilbert space.

(d) The trace theorem ([5, Theorem 8.3, p. 39]) ensures the existence
3
of a surjection, 7 : L?([0, T), H?(Q)) > L2 [0, T), H?(Q)x H2(6Q) |, so
that the solution to (2) is also the solution to (1).

(e) The eigenvalue of the linear operator L is A = —1 (see [4, p. 32)).
4. The Lefschetz System for the Direct Stability Criterion

We present the following Lefschetz system (see [6]) on which the direct
stability criterion would be based:

X' (t) = AX(t) + bi(a(t)), @)
where

o(t) := ¢ x(t); with the corresponding Lyapunov function:

V(x(0) = ()T B + [ oto0) o)

The basic assumptions associated with this system are:
(@) x, b, c are real n vectors; with n = 2 in our case;

(b) A is a real nxn matrix with eigenvalues whose real parts are
negative;

(c) B is a positive definite symmetric matrix satisfying condition to be
specified later;

(d) ¢ is a continuous function on o;

(e) o(0) = 0; for 6 # 0, od(c) > 0.
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To conclude the direct stability criterion, Aizerman and Gantmacher [1],

for a. > 0, subtracted and added acd(c) > 0 from ! thus, obtaining,

T 1,7 1 T -1 1,7 1
—C b>(Bb+§A c+§acj C (Bb+§A C+§occj; 4

where —C = ATB + BA is an arbitrary nxn positive definite symmetric

matrix calculated from the relation: B = —I;OeAtCeAtdt.

In the next section, we define a mathematical transformation to modify
(3) for the problem (2). In the process, we also generate the corresponding
Lyapunov function.

5. Transformation of the Lefschetz System for the Implicit
Evolution Equation

For u(t) € ©, we put:
d¢Bu(t) = A(Bu(t)) + bF(o(t)), (5)

where

(@) oft) = cu(t), yoo(t) = cavou(t); where yq : o(t) — yool(t);

(b) Bu(t) = {au(t), agyou(t));

(©) B*s(t) = Bu(t)-c'; ¢ = (1, Cp); b =(by, by); Bu(0) = Bu®(x, 0);
B*s(0) = Bu® - c';

f(o(t)) 0
@ Few) :{ 0 vof(vOG(t))J'

A
(e) A= [ 01 j M = Ay = -1, the eigenvalues of the operator L.

2
The corresponding Lyapunov function is given by

V(u(t)) = (Bu(t))" D(Bu(t)) + J ° G(O) F(o(t))dB"G. (6)

B*s
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Remark 5.1. (a) We observe that 6;B*c = cTatBu.
(b) Choosing ¢, ¢, > 0 for f(o), yof(ygo) > 0, we have
B*oF(c) = ¢' F(c)(Bu)" = acy f(o)u + agCyyo f (Y00)ouU > O;
similar to condition 3(c) in the Lefschetz system (3).

(c) The flexibility in the choice of b = (b, by) will be illustrated when
the criterion derived through (4) is applied to a cooling problem.

A 0
d) A= ( 01 N J; M = Ay = -1 is the corresponding matrix for the
2

linear operator L under a different basis.
(e) As in the Lefschetz system (3), matrix D is symmetric and positive

definite and can be calculated from the relation: D = —IgoeAtCeAtdt.

6. Confirmation of the Direct Stability Criterion for the Implicit
Evolution Problem

Main Theorem 6.1. For u(t) € ®, and under the system (5) for an

implicit evolution problem, the Lefschetz direct stability criterion (4) is
invariant to the transformation (5).

Proof. We differentiate (6) to obtain
v/(u) = 2BuDé,Bu + F(Bo)d;B*G. )
However, by Remark 5.1(a),
0¢B"o(t) = coBul(t).
Therefore,
v/(u) = [2BuD + cF(c)]8;Bu

=[2BuD + cF(o)][A(BU) + bF ()], by (4);
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= 2BUDA(BU) + F(5) Ac(Bu) + 2BUDbF (o) + ¢[F(c)]?
= (Bu)" ATD(Bu) + (Bu)" DA(BU) + F(5) AcF(c)(Bu)
+ 2BUDbF(c) + cb[F(5)]?
= (Bu)' [ATD + DA](Bu) + F(c)Ac(Bu) + 2BUDbF () + cb[F (c)%.
Hence,
~v/(u) = (Bu)' (-C)(Bu) - F(c) AcF(c) (Bu) - 2BUDF (o) - cb[F (o),
®)
where —C = AT D + DA is a positive definite matrix.

Rewriting (7), we have

~v/(u) = (Bu) (-C)(Bu) - 2(Db + %ch BUF (o) — cb[F(c)]?, (9)

where —-C = ATD + DA isa positive definite matrix.

We add and subtract ABo(t)F(o(t)) on (9) (in the sense of Aizerman
and Gantmacher; see [6, p. 436]), to obtain

v/ (u) = (Bu)' (~C)(Bu) - Z(Db + % Ac + %xc) BUF (o)

— cb[F (o)) + ABo(t)F(a(t)). (10)
For the direct stability criterion, we demand that
-V (u(t)) > 0, for u(t) = 0.
Since AB*s(t)F(o(t)) > 0 (by Remark 5.1(b)), this implies that

(Bu)' (-C)(Bu) - Z(Db + % Ac + %xcj BUF(s) — ch[F(c)]? > 0,

a quadratic inequality in F(o). For this inequality, the discriminant takes the
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form:

[—Z(Db + 2 AcH %kc) BUT _ 4(~ch)(Bu)' (—C)(Bu) < 0,

which implies that

1 1.2
(Db +EAC +§7\.) - Cb(—C) < 0,

that is,

T
—cb > (Db + % Ac + %xc) C_l(Db + % Ac + %kc), similar to (4).

Thus, the Lefschetz direct stability criterion (4) remains invariant under the
transformation (5). O

7. On the Lyapunov Function for a Surface Radiative Cooling Problem

We consider a cooling problem, proposed in [3]. The mathematical
model for the problem is:

Find: u(x, t) e L2([0, T), H?(Q)), such that

chpdiu(x, t) = kAU(X, t) —n(u(x, t) —ug)";1<m< 3, x e Q,

Subject to: u(x, 0) = u®(x), (11)

you = 0, and

cnpOt[you(y, )] = kAs[vou(y, t)] - k(you(y, t) —ue)™; y € o0,
with k > 0 as the Stefan-Boltzmann constant and n > 0. The two constants
are comparable in magnitude (n = k ~ 10_8).

As an implicit evolution equation, the problem is:

8,Bu(t) = Lu(t) + N(u(t)), (12)
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where
Bu(t) = (chpul(t), chplyou(t)]);
Lu(t) = (kAu(t), kAs[you(t)]);
N(u(t)) = (-n(u(t) - ue)™, —k(you(t) —ue)™); 1< m < 3.
We construct (5) for (12) as follows:
(@) oft) = cqu(t), vool(t) = cayoul(t); where yg : o(t) — yoolt).
(b) B*s(t) = Bu(t)-c'.

(c) Put

bT = (:B f(o(t) = nlo(t) - ue |™; vof (voo(t)) = Kl yoo(t) - ue |

(d) Then, F(o(t)) = (Tﬂ o(t) ~ ug | 0

K vo0(t) - Ue |

(e) For this problem, we choose: c;, ¢, 21, with the following

consequences:

(i) By Remark 5.1(b), B*cF(c) > 0; a requirement by Aizerman and
Gantmacher [1].

(i)

[nwm—uer‘“ 0 Jz[mclu(t)—uelm 0 J
0 K| yoo(t) — ue |™ 0 K| coyou(t) —ug |™

(f) For the current problem, we still choose:

O
A= ; }\,1 = }\,2 =-1.
0 %y
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(9) By Remark 5.1(e), D = —Igo eAlceAldt. We arbitrarily put —C =

0 s

. 1(r 0
obtain D = = }
2l0 s

Thus, the Lyapunov function for the current problem is given by

r O
( J; r,s >0 so that it is symmetric and positive definite. We then

B 1 r 0 ChpU(t)
V(u(t)) = (chpu(t), ChPYOU(t»E[O j ' [cthOU(t)j

s
. I B"o(t) (1] o(t) — Ug | 0 dB*s.  (13)
B.o(0) 0 K| yool(t) — ug |
We have
I B*s(t) (| o(t) — ug | 0 dB*c
B*(0) 0 k| voo(t) —ug |
(B [n|qu(t) - ug " 0 *
B J.B*G(O) - m e
0 k| covou(t) — Ug |
_ J B"s(t) [ ] cyu(t) —ug | 0 dB-c'
B*5(0) 0 k| covou(t) — Ug ™

Gu Covou
= J o ChpnCy cau(t) — ug [Mdu + I o kenpCa| cavu(t) — ug [ dyou
Gu C2vou

[nenp| (cqu(t) — ug)™ — (cu® — ug)™ ]

m+1

)m+1 m+1 |]’

1 0
L 1[kChP| (Covou(t) — Ug —(Caypu” —Ug)
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since cqu(t) — Ug, ¢1ygu(t) —u > 0, for the cooling problem
(| cqu(t) = ug | = cau(t) — ug; | cyyou(t) — u[ = cryou(t) — u),

V(u(t) = 5 [eBp2r(ut)? + cfp?s(rou(t)’]

1,0 1
e +1[n0hp|(01U(t)— ue)™ (cu” — ug)™ ]
1 1 1
+— +1[kChP|(CzYoU(t) —Ue)™ — (coyou® —ue)™l. (14)

Remark 7.1. (a) From (14), we have
E(t) = S [oAp?r(u(t)? + cBp?s(rou(t))?],

the energy for the cooling model.
(b) For u(t) =0, V(0) =0, and for u(t) = 0, V(u(t)) > 0.
By [2, Definition 5-2-1, p. 71], V is positive definite in ©.
()
dE(t
95 = —wenpl U0y, el 2V s(roulO) P 5
H2(T)
—nepp(cyu(t) - Ue)™u = nenp(eayou(t) — Ug) ™ vou
(see [3, p. 698]).

We are now in a position to determine V/(u(t)):

v/ (u) = S 2 [eZp?r(u)? + cp?s(rou(t)?]

d
—=— g ncnpl (Qu(t) - ue)™* — (cpu® — ug)™ ]
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d
——— < [kenpl(czrou(t) - ue)™ — (cavou® — ug)™ ]

= —xenpl VU [y ) = KenpleaVs(rou()” o
H2(I)

— nepp(cyu(t) — ug)™Mu — kepp(Cayou(t) — Ug )M you

+nesepp| (u(t) = ug)™ |+ keaenpl (cavou(t) — ue)™ |-
For the cooling model, we have that cju(t) > u, and coyu(t) > Ue.

Hence,

V/ (u(t) = —xenpl cVu(t) [, — kenpl c2Vs(vou() [ 5
s H2(r)

— nepp(cyu(t) — g )™Mu — kcpp(Cryou(t) — ue )" you
+ney(cqu(t) — ug)™ + kep(Cayou(t) — ug)™ <0,

since cpp(cuu(t) — ug)™u > ¢p(cuu(t) — ug)™.

Thus, the preceding analysis confirms what is already known about a
Lyapunov function.

8. Conclusion

Although our analysis has involved ‘weak’ solutions (in the sense of
distributions) (see assumption 2(b)), the validity of the transformation (5) is
based on the uniqueness of those solutions as guarantee in [3]. The
restrictions of b to b = (-1, -1) and ¢ = (¢;, ¢,), with ¢;, ¢, > 1, although
looking artificial, will work specifically for the cooling problem only [3].
Further, applications of the transformation (5) in problems of permeable
boundary Navier-Stokes flows would enhance a “similarity” between “heat
transfer through surface radiation” and “fluid flow through a permeable
boundary”. The question is: can we apply the same stability criterion for the
two time-dependent phenomena?
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