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Abstract 

We consider a nonlinear dynamic problem comprising a system of 
nonlinear parabolic equations. The second of these equations is a 
nonlinear dynamic boundary condition to the problem. The derivation 
of the system is through the heat energy conservation laws [4]. 
Problems of this type occur in heat energy absorption and release 
through the surfaces of solids. The second equation to the system 
describes surface radiation itself. We rewrite the system as an implicit 
evolution equation, thus exposing trace-like canonical operators. 
These operators have been studied and characterized in [3] and [4]. 
Subsequent to that, we study the stability of the null solution to the 
implicit evolution problem using the modified Lefschetz [6] system for 
the direct stability criterion. We show that, even though the modified 
Lefschetz system leads to a new Lyapunov function for the problem, 
the Lefschetz direct stability criterion itself is invariant. We test the 
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modified Lefschetz system on the cooling problem in [3], by 
constructing the corresponding Lyapunov function and confirming its 
known properties. 

Symbols used: 

1. α, β, 0α  and 0β  are positive real constants; 

2. Ω is an open bounded domain in ,3ℜ  where ;Ω⊂/Ω∂  

3. ;: ∇⋅∇=Δ  

4. ;sss ∇⋅∇=Δ  the Beltrammi-Laplace operator; with 

2
2

1
1

: τ
∂
∂+τ

∂
∂=∇ sss  for an arbitrary point ( )21, ττ  on .Ω∂  

1. Introduction 

We wish to investigate the application of the Lefschetz direct stability 
criterion to an implicit evolution equation. For that purpose, we consider the 
following nonlinear dynamic problem: 
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2. Some Basic Assumptions on the Problem 

In this paper, we assume that 
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(a) the surface ∂Ω is smooth enough for the trace operator, ( )Ωγ 2: H  

( ) ( ),2
1

2
3

Ω∂×Ω∂→ HH  to exist so that we can define its restriction, 

( ) ( )Ω∂→Ωγ 2
3

2
0 : HH  by ;0uu γ  mapping the solution to 1(a) to the 

solution to 1(d) (see [5, Theorem 8.3, p. 39]); 

(b) the weak solution ( ) ( )tyutxu ,,, 0γ  to (1) exists and is unique in 

( ) ( ) ( ) ( ) ( )
⎪⎩

⎪
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3
22

0 ,,0,,, HHtLtxutxu  

( ) ( ) .0;0: 0
1

⎪⎭

⎪
⎬
⎫

==γ xuuu  

3. The Problem as an Implicit Evolution Equation 

We rewrite the problem (1) in the form, 

( ) ( ) ( ),tFutLutBut +=∂  (2) 

Subject to: ( ) ( ),0 0 xBuBu =  

,01 =γ u  

where 

( ) ( ) ( )[ ] ;, 00 YtututBu ∈γαα=  

( ) ( ) ( )[ ] ;, 00 YtututLu s ∈γΔβΔβ=  

( ) ( )( ) ( )[ ] ;, 00 YtuftuftFu ∈γγ=  

( ) ( ) ( ) .,,0: 2
3

22
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ω∂×Ω= HHtLY  

Remark 3.1. (a) While the operators B and L are linear, the operator F is 
nonlinear. 
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(b) All the canonical operators are “related” to the trace operator through 

the trace extension operator, ( ) ( ).: 2
3

2
0 Ω∂→Ωγ HH  

(c) It can be shown that the space ( ) ( )Ω∂×Ω 2
3

2 HH  is a finite 
dimensional Hilbert space. 

(d) The trace theorem ([5, Theorem 8.3, p. 39]) ensures the existence       

of a surjection, ([ ) ( )) [ ) ( ) ( ) ,,,0,,0: 2
3

2222
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
Ω∂×Ω→Ωχ HHTLHTL  so 

that the solution to (2) is also the solution to (1). 

(e) The eigenvalue of the linear operator L is 1−=λ  (see [4, p. 32]). 

4. The Lefschetz System for the Direct Stability Criterion 

We present the following Lefschetz system (see [6]) on which the direct 
stability criterion would be based: 

 ( ) ( ) ( )( ),tbtAxtx αφ+=/  (3) 

where 

( ) ( );: txct T=σ  with the corresponding Lyapunov function: 

( )( ) ( )( ) ( )( ) ( )( ) ( )
( )

.:
0∫
σ

σσφ+=
tT tdttxBtxtxV  

The basic assumptions associated with this system are: 

(a) x, b, c are real n vectors; with 2=n  in our case; 

(b) A is a real nn ×  matrix with eigenvalues whose real parts are 
negative; 

(c) B is a positive definite symmetric matrix satisfying condition to be 
specified later; 

(d) φ is a continuous function on σ; 

(e) ( ) ;00 =σ  for ,0≠σ  ( ) .0>σσφ  
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To conclude the direct stability criterion, Aizerman and Gantmacher [1], 

for ,0>α  subtracted and added ( ) 0>σασφ  from /V−  thus, obtaining, 

 ;2
1

2
1

2
1

2
1 1 ⎟

⎠
⎞⎜

⎝
⎛ α++⎟

⎠
⎞⎜

⎝
⎛ α++>− − ccABbCccABbbc T

T
TT  (4) 

where BABAC T +=−  is an arbitrary nn ×  positive definite symmetric 

matrix calculated from the relation: ∫
∞

−=
0

.dtCeeB AtAt  

In the next section, we define a mathematical transformation to modify 
(3) for the problem (2). In the process, we also generate the corresponding 
Lyapunov function. 

5. Transformation of the Lefschetz System for the Implicit 
Evolution Equation 

For ( ) ,Θ∈tu  we put: 

 ( ) ( )( ) ( )( ),tbFtBuAtBut σ+=∂  (5) 

where 

(a) ( ) ( ) ( ) ( );, 0201 tucttuct γ=σγ=σ  where ( ) ( );: 00 tt σγ→σγ  

(b) ( ) ( ) ( ) ;, 00 tututBu γαα=  

(c) ( ) ( ) ;TctButB ⋅=σ∗  ;, 21 ccc =  ;, 21 bbb =  ( ) ( );0,0 0 xBuBu =  

( ) ;0 0 TcBuB ⋅=σ∗  

(d) ( )( )
( )( )

( )( )
,

0

0
:

00
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

σγγ

σ
=σ

tf

tf
tF  

(e) ,
0

0
:

2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

λ

λ
=A  ,121 −=λ=λ  the eigenvalues of the operator L.  

The corresponding Lyapunov function is given by 

 ( )( ) ( )( ) ( )( ) ( )( )
( )∫
σ

σ
∗

∗

∗ σσ+=
B

B
T dBtFtBuDtButuV

0
.  (6) 
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Remark 5.1. (a) We observe that .BucB t
T

t ∂=σ∂ ∗  

(b) Choosing 0, 21 >cc  for ( ) ( ) ,0, 00 >σγγσ ff  we have 

( ) ( ) ( ) ( ) ( ) ;0000201 >γσγγα+σα=σ=σσ∗ ufcufcBuFcFB TT  

similar to condition 3(c) in the Lefschetz system (3). 

(c) The flexibility in the choice of 21, bbb =  will be illustrated when 

the criterion derived through (4) is applied to a cooling problem. 

(d) ;
0

0
:

2

1
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

λ

λ
=A  121 −=λ=λ  is the corresponding matrix for the 

linear operator L under a different basis. 

(e) As in the Lefschetz system (3), matrix D is symmetric and positive 

definite and can be calculated from the relation: ∫
∞

−=
0

.dtCeeD AtAt  

6. Confirmation of the Direct Stability Criterion for the Implicit 
Evolution Problem 

Main Theorem 6.1. For ( ) ,Θ∈tu  and under the system (5) for an 

implicit evolution problem, the Lefschetz direct stability criterion (4) is 
invariant to the transformation (5). 

Proof. We differentiate (6) to obtain 

 ( ) ( ) .2/ σ∂σ+∂= ∗BBFBuBuDuV tt  (7) 

However, by Remark 5.1(a), 

( ) ( ).tBuctB tt ∂=σ∂ ∗  

Therefore, 

( ) ( )[ ] BucFBuDuV t∂σ+= 2/  

( )[ ] ( ) ( )[ ],2 σ+σ+= bFBuAcFBuD  by (4); 



On the Lefschetz Direct Stability Criterion … 49 

( ) ( ) ( ) ( ) ( )[ ]222 σ+σ+σ+= FcBuDbFBuAcFBuBuDA  

( ) ( ) ( ) ( ) ( ) ( ) ( )BuAcFFBuDABuBuDABu TTT σσ++=  

( ) ( )[ ]22 σ+σ+ FcbBuDbF  

( ) [ ]( ) ( ) ( ) ( ) ( )[ ] .2 2σ+σ+σ++= FcbBuDbFBuAcFBuDADABu TT  

Hence, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] ,2 2/ σ−σ−σσ−−=− FcbBuDFBuAcFFBuCBuuV T  

 (8) 

where DADAC T +=−  is a positive definite matrix. 

Rewriting (7), we have 

 ( ) ( ) ( ) ( ) ( ) ( )[ ] ,22 2/ σ−σ⎟
⎠
⎞⎜

⎝
⎛ 1+−−=− FcbBuFAcDbBuCBuuV T  (9) 

where DADAC T +=−  is a positive definite matrix. 

We add and subtract ( ) ( )( )tFtB σσλ  on (9) (in the sense of Aizerman 

and Gantmacher; see [6, p. 436]), to obtain 

( ) ( ) ( ) ( ) ( )σ⎟
⎠
⎞⎜

⎝
⎛ λ+1+−−=− BuFcAcDbBuCBuuV T

2
1

22/  

( )[ ] ( ) ( )( ).2 tFtBFcb σσλ+σ−  (10) 

For the direct stability criterion, we demand that 

( )( ) ,0>− tuV   for  ( ) .0≠tu  

Since ( ) ( )( ) 0>σσλ ∗ tFtB  (by Remark 5.1(b)), this implies that 

( ) ( ) ( ) ( ) ( )[ ] ,02
1

22 2 >σ−σ⎟
⎠
⎞⎜

⎝
⎛ λ+1+−− FcbBuFcAcDbBuCBu T  

a quadratic inequality in ( ).σF  For this inequality, the discriminant takes the 
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form: 

( ) ( ) ( ) ( ) ,042
1

22
2

<−−−⎥⎦
⎤

⎢⎣
⎡ ⎟

⎠
⎞⎜

⎝
⎛ λ+1+− BuCBucbBucAcDb T  

which implies that 

( ) ,02
1

2

2
<−−⎟

⎠
⎞⎜

⎝
⎛ λ+1+ CcbAcDb  

that is, 

,2
1

22
1

2
1 ⎟

⎠
⎞⎜

⎝
⎛ λ+1+⎟

⎠
⎞⎜

⎝
⎛ λ+1+>− − cAcDbCcAcDbcb

T
 similar to (4). 

Thus, the Lefschetz direct stability criterion (4) remains invariant under the 
transformation (5). ~ 

7. On the Lyapunov Function for a Surface Radiative Cooling Problem 

We consider a cooling problem, proposed in [3]. The mathematical 
model for the problem is: 

Find: ( ) ([ ) ( )),,,0, 22 Ω∈ HTLtxu  such that 

( ) ( ) ( )( )

( ) ( )

( )[ ] ( )[ ] ( )( )⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

Ω∂∈−γ−γΔκ=γ∂ρ

=γ

=

Ω∈≤≤−η−Δκ=∂ρ

,;,,,

and,0

,0,:toSubject

,,31;,,,

000

0

0

yutyuktyutyuc

u

xuxu

xmutxutxutxuc

m
esth

m
eth

 (11) 

with 0>k  as the Stefan-Boltzmann constant and .0>η  The two constants 

are comparable in magnitude ( ).10 8−≈≈η k  

As an implicit evolution equation, the problem is: 

 ( ) ( ) ( )( ),tuNtLutBut +=∂  (12) 



On the Lefschetz Direct Stability Criterion … 51 

where 

( ) ( ) ( )[ ] ;, 0 tuctuctBu hh γρρ=  

( ) ( ) ( )[ ] ;, 0 tututLu s γΔκΔκ=  

( )( ) ( )( ) ( )( ) .31;, 0 ≤≤−γ−−η−= mutukututuN m
e

m
e  

We construct (5) for (12) as follows: 

(a) ( ) ( ) ( ) ( );, 0201 tucttuct γ=σγ=σ  where ( ) ( ).: 00 tt σγ→σγ  

(b) ( ) ( ) .TctButB ⋅=σ∗  

(c) Put 

;
1
1
⎟
⎠
⎞

⎜
⎝
⎛
−
−

=Tb  ( )( ) ( ) ;m
euttf −ση=σ  ( )( ) ( ) .000

m
eutktf −σγ=σγγ  

(d) Then, ( )( )
( )

( )
.

0

0

0
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−σγ

−ση
=σ

m
e

m
e

utk

ut
tF  

(e) For this problem, we choose: ,1, 21 ≥cc  with the following 

consequences: 

 (i) By Remark 5.1(b), ( ) ;0>σσ∗ FB  a requirement by Aizerman and 

Gantmacher [1]. 

(ii) 

( )

( )

( )

( )
.

0

0

0

0
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1

0
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−γ

−η
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−σγ
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m

e

m
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m
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m
e

utuck

utuc
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(f) For the current problem, we still choose: 

.1;
0

0
: 21

2

1
−=λ=λ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

λ

λ
=A  
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(g) By Remark 5.1(e), ∫
∞

−=
0

.dtCeeD AtAt  We arbitrarily put =−C  

;
0

0
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

s

r
 0, >sr  so that it is symmetric and positive definite. We then 

obtain .
0

0
2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

s

r
D  

Thus, the Lyapunov function for the current problem is given by 

( )( ) ( ) ( )
( )

( )⎟
⎟
⎠

⎞
⎜⎜
⎝

⎛

ργ

ρ
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
ργρ=

tuc

tuc

s

r
tuctuctuV

h

h
hh

0
0

0

0
2
1,  

( )

( )( )

( )
.

0

0
0

0
∫

σ

σ
∗

∗

∗
σ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−σγ

−ση
+

tB

B m
e

m
e dB

utk

ut
 (13) 

We have 

 
( )

( )( )

( )
∫

σ

σ
∗

∗

∗ σ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−σγ

−σηtB

B m
e

m
e dB

utk

ut
0

00

0
 

( )

( )( )

( )
∫

σ

σ
∗

∗

∗ σ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−γ

−η
=

tB

B m
e

m
e dB

utuck

utuc
0

02

1

0

0
 

( )

( )( )

( )
∫

σ

σ

∗

∗ ⋅⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−γ

−η
=

tB

B
T

m
e

m
e cdB

utuck

utuc
0

02

1

0

0
 

( ) ( )∫ ∫
γ

γ
γ−γρ+−ρη=

uc

uc

uc

uc
m

eh
m

eh udutucckcduutuccc1
0

1

02
0

02
002211  

[ ( )( ) ( ) ]10
1

1
11

1 ++ −−−ρη
+

= m
e

m
eh uucutuccm  

[ ( )( ) ( ) ],1
1 10

02
1

02
++ −γ−−γρ

+
+ m

e
m

eh uucutuckcm  
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since ( ) ( ) ,0, 011 ≥−γ− utucutuc e  for the cooling problem 

( ) ( ) ( ) ( )( ),; 010111 utucutucutucutuc ee −γ=−γ−=−  

( )( ) [ ( )( ) ( )( ) ]2
0

22222
2
1 tuscturctuV hh γρ+ρ=  

 [ ( )( ) ( ) ]10
1

1
11

1 ++ −−ρη
+

+ m
e

m
eh uucutuccm  

 [ ( )( ) ( ) ].1
1 10

02
1

02
++ −γ−−γρ

+
+ m

e
m

eh uucutuckcm  (14) 

Remark 7.1. (a) From (14), we have 

( ) [ ( )( ) ( )( ) ],2
1 2

0
22222 tuscturctE hh γρ+ρ=  

the energy for the cooling model. 

(b) For ( ) ,0=tu  ( ) ,00 =V  and for ( ) ,0≠tu  ( )( ) .0>tuV  

By [2, Definition 5-2-1, p. 71], V is positive definite in Θ. 

(c) 

( ) ( )
( )

( )( )
( )

2
02

2
1

2
32
Γ

Ω
γ∇ρκ−∇ρκ−=

H
shLh tucctuccdt

tdE  

( )( ) ( )( ) uutuccuutucc m
eh

m
eh 0021 γ−γρη−−ρη−  

(see [3, p. 698]). 

We are now in a position to determine ( )( ):/ tuV  

( )( ) [ ( )( ) ( )( ) ]2
0

22222/
2
1 tuscturcdt

dtuV hh γρ+ρ=  

[ ( )( ) ( ) ]10
1

1
11

1 ++ −−−ρη
+

+ m
e

m
eh uucutuccdt

d
m  
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[ ( )( ) ( ) ]10
02

1
021

1 ++ −γ−−γρ
+

+ m
e

m
eh uucutuckcdt

d
m  

( )
( )

( )( )
( )

2
02

2
1

2
32
Γ

Ω
γ∇ρκ−∇ρκ−=

H
shLh tucctucc  

( )( ) ( )( ) uutuckcuutucc m
eh

m
eh 0021 γ−γρ−−ρη−  

( )( ) ( )( ) .02211
m

eh
m

eh utucckcutuccc −γρ+−ρη+  

For the cooling model, we have that ( ) eutuc ≥1  and ( ) .02 eutuc ≥γ  

Hence, 

( )( ) ( )
( )

( )( )
( )

2
02

2
1

/

2
32
Γ

Ω
γ∇ρκ−∇ρκ−=

H
shLh tucctucctuV  

( )( ) ( )( ) uutuccuutucc m
eh

m
eh 0021 γ−γρκ−−ρη−  

( )( ) ( )( ) ,002211 <−γ+−η+ m
e

m
e utuckcutucc  

since ( )( ) ( )( ) .111
m

e
m

eh utuccuutucc −≥−ρ  

Thus, the preceding analysis confirms what is already known about a 
Lyapunov function. 

8. Conclusion 

Although our analysis has involved ‘weak’ solutions (in the sense of 
distributions) (see assumption 2(b)), the validity of the transformation (5) is 
based on the uniqueness of those solutions as guarantee in [3]. The 
restrictions of b to 1,1 −−=b  and ,, 21 ccc =  with ,1, 21 ≥cc  although 

looking artificial, will work specifically for the cooling problem only [3]. 
Further, applications of the transformation (5) in problems of permeable 
boundary Navier-Stokes flows would enhance a “similarity” between “heat 
transfer through surface radiation” and “fluid flow through a permeable 
boundary”. The question is: can we apply the same stability criterion for the 
two time-dependent phenomena? 
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