

ANTI-TRIANGULAR MAPS WITH CLOSED PERIODIC SETS

Gengrong Zhang^{1,2,*}, Ruihong Li¹ and Chunlong Yang¹

¹Department of Mathematics Guangxi University Nanning, Guangxi, 530004

P. R. China

 $e\text{-mail: }zgrzaw@\,gxu.edu.cn$

²Department of Mathematics Shantou University Shantou, Guangdong, 515063 P. R. China

Abstract

In this paper, some dynamical properties of the anti-triangular maps are given. Moreover, some sufficient and necessary conditions for anti-triangular maps on unit square with closed periodic sets are given.

1. Introduction

In what follows we denote by N the positive integers. Let (X, d) be a metric space and $C^0(X)$ be the set of continuous self-maps on X.

© 2012 Pushpa Publishing House

2010 Mathematics Subject Classification: 34K11, 39A10, 39A99.

Keywords and phrases: anti-triangular maps, periodic points, closed sets.

Project supported by NSFC (11161029, 11126342) and NSF of Guangxi (2010GXNSFA013109, 2010GXNSFA013106).

*Corresponding author

Received February 21, 2012

Let (X, d) be a metric space and $f \in C^0(x)$. For any $x \in X$, the orbit of x under f is $orb(x, f) = \{f^n(x) : n = 0, 1, 2, ...\}$, and is called the *orbit* of x for short. We say that x is an n-periodic point of f if $f^n(x) = x$ and $f^n(x) \neq x$ for $1 \leq i < n$. A point $x \in X$ is said to be a *fixed point* of f if f(x) = x. Denote by f(x) = x. Denote by f(x) = x be sets of periodic, fixed and f(x) = x be set of f(x) = x. Some point if f(x) = x is an *eventually periodic point* if f(x) = x for some pair f(x) = x be note by f(x) = x by

For any $x \in X$, let $\omega(x) = \omega(x, f) = \bigcap_{n \geq 0} \{f^n(x) : n \geq m\}$. Then we say that $\omega(x)$ is the ω -limit set of x and every point of $\omega(x)$ is ω -limit point of x. A point $x \in X$ is said to be recurrent if $x \in \omega(x)$. x is non-wandering if $f^{n_k}(x_k) \to x$ for some sequence of points $x_k \to x$ and some sequence of integers $n_k \to \infty$. Let R(f), $\Omega(f)$ denote, respectively, the sets of all recurrent and non-wandering points. A point $x \in X$ is said to be almost periodic if x is recurrent and for every open set U containing x, there exists a positive integer m such that $x \in \bigcap_{k \geq 0} f^{-km}(U)$. We denote by AP = AP(f) or RR = RR(f) the set of all almost periodic points. A point $x \in X$ is said to be strong recurrent if x is recurrent and for every open set U containing x, there exists a positive integer N = N(U) such that if $f^m(x) \in U$, where $m \geq 0$, then $x \in \bigcup_{k \geq 1}^N f^{-(m+k)(U)}$ for some k with $0 \leq k \leq N$. Denote by UR = UR(f) the set of all strong recurrent points.

Let $\varepsilon > 0$ be given and x, y be any points of X. A finite sequence $x_0, x_1, ..., x_n$ $(n \ge 1)$ of points of X is said to be ε -chain or pseudo-orbit from x to y of f if $x_0 = x$, $x_n = y$ and $d(x_i, f(x_{i-1})) < \varepsilon$ for i = 1, 2, ..., n. Let

$$W_{\varepsilon}(x, f) = \{ w \in X : \text{there exists an } \varepsilon \text{-chain from } x \text{ to } w \}$$
 (1.1)

and

$$W(x, f) = \bigcap \{W_{\varepsilon}(x, f) : \varepsilon > 0\}. \tag{1.2}$$

W(x, f) is said to be a *chain-available set* of f, and every point of W(x, f) is said to be a *chain-available point* of x. A point $x \in X$ is said to be *chain-recurrent point* if $x \in W(x, f)$. Denote CR(f) the set of all chain recurrent points.

In [1], we know that

$$P(f) \subset AP(f) \subset UR(f) \subset R(f) \subset \omega(f) \subset \Omega(f) \subset CR(f)$$
 (1.3)

and there exists a map f such that $P(f) \subset AP(f) \subset UR(f) \subset R(f) \subset \omega(f) \subset \Omega(f) \subset CR(f)$ (see [2]).

Let X be a compact metric space, f, $g \in C^0(X)$. Then a map F is said to be *anti-triangular map* if it has the form $F(x, y) = (g(y), f(x)), (x, y) \in X^2$. It has been concerned for the study of the anti-triangular maps in recent years (see [3-5] et al). The aim of this paper is to study the properties of the anti-triangular maps, and drive some conditions for periodic set of anti-triangular maps on I^2 being closed.

2. Fundamental Results

Lemma 2.1. Let X be a compact metric space, f, $g \in C^0(X)$, F(x, y) = (g(y), f(x)) be an anti-triangular map. Then

(1)
$$P(F^2) = P(F)$$
; $F^{2n}(x, y) = ((g \circ f)^n(x), (f \circ g)^n(y))$;
 $P(F) = P(g \circ f) \times P(f \circ g)$;

(2)
$$AP(F^2) = AP(F)$$
; $AP(F) = AP(g \circ f) \times AP(f \circ g)$;

(3)
$$CR(F^2) = CR(F)$$
; $CR(F) = CR(g \circ f) \times CR(f \circ g)$;

Gengrong Zhang, Ruihong Li and Chunlong Yang

(4)
$$R(F^2) = R(F)$$
; $R(F) \subset R(g \circ f) \times R(f \circ g)$;

(5)
$$UR(F^2) = UR(F)$$
; $UR(F) \subset UR(g \circ f) \times UR(f \circ g)$;

(6)
$$\omega(F^2) = \omega(F)$$
; $\omega(F) \subset \omega(g \circ f) \times \omega(f \circ g)$;

(7)
$$\Omega(F^2) \subset \Omega(F)$$
; $\Omega(F^2) \subset \Omega(g \circ f) \times \Omega(f \circ g)$.

Lemma 2.2. Let X be a compact metric space, $f, g \in C^0(X)$, F(x, y) = (g(y), f(x)) be an anti-triangular map. Then $EP(F^2) = EP(F)$ and $EP(F) = EP(g \circ f) \times EP(f \circ g)$.

Proof. It is obvious that $EP(F^2) = EP(F)$. Now we prove $EP(F) = EP(g \circ f) \times EP(f \circ g)$.

Let $(x, y) \in EP(F)$. Then from the definition of EP(F), there exists a positive integer m such that $F^m(x, y) \in P(F)$, thus $F^{2m}(x, y) \in P(F)$. By Lemma 2.1, we obtain that $(g \circ f)^m(x) \in P(g \circ f)$, $(f \circ g)^m(x) \in P(f \circ g)$, that is $x \in EP(g \circ f)$, $y \in EP(f \circ g)$. Then $EP(F) \subset EP(g \circ f) \times EP(f \circ g)$.

On the other hand, let $(x, y) \in EP(g \circ f) \times EP(f \circ g)$. Then there exist some pair m, n such that $(g \circ f)^m(x) \in P(g \circ f)$, $(f \circ g)^n(y) \in (f \circ g)$. Then $(g \circ f)^{mn}(x) \in P(g \circ f)$, $(f \circ g)^{mn}(y) \in P(f \circ g)$. Hence $((g \circ f)^{mn}(x), (f \circ g)^{mn}(y)) \in P(g \circ f) \times P(f \circ g) = P(F)$. Therefore, $(x, y) \in EP(F)$. Then $EP(F) \supset EP(g \circ f) \times EP(f \circ g)$.

We conclude the proof.

Corollary 2.3. Let X = [0,1] be a compact metric space, $f, g \in C^0(X)$, F(x, y) = (g(y), f(x)) be an anti-triangular map. Then $\Omega(F^2) \subset \overline{EP(F)}$.

Proof. Let $F_1 = g \circ f$, $F_2 = f \circ g$. By Lemma 2.1, we have $\Omega(F^2) \subset \Omega(F_1) \times \Omega(F_2)$. According to [1, Proposition 4.18], $\Omega(F^2) \subset \Omega(F_1) \times \Omega(F_2)$

 $\subset \overline{EP(F_1)} \times \overline{EP(F_2)}$. By Lemma 2.2, $\overline{EP(F_1)} \times \overline{EP(F_2)} = \overline{EP(F_2)}$. Therefore, $\Omega(F^2) \subset \overline{EP(F)}$.

Proposition 2.4. Let X = [0, 1] be a compact metric space, $f, g \in C^0(X)$, F(x, y) = (g(y), f(x)) be an anti-triangular map. Then any isolated point of P(F) is also an isolated point of R(F).

Proof. Let (x, y) be an isolated point of P(F). Then (x, y) is also an isolated point of $P(g \circ f) \times P(f \circ g)$. Thus x is an isolated point of $P(g \circ f)$ and y is an isolated point of $P(f \circ g)$. According to [1, Proposition 4.35], x is an isolated point of $R(g \circ f)$, y is an isolated point of $R(f \circ g)$. Thus (x, y) is an isolated point of $R(g \circ f) \times R(f \circ g)$. Obviously, $(x, y) \in R(F)$. By Lemma 2.1, (x, y) is an isolated point of R(F).

3. Main Results

Proposition 3.1. Let X be a compact metric space, $f, g \in C^0(X)$, and $f \circ g = g \circ f$, F(x, y) = (g(y), f(x)) be an anti-triangular map. Then $(x, x) \in A(F)$ if and only if $x \in A(g \circ f)$, where $A(\bullet) \in \{P(\bullet), AP(\bullet), R(\bullet), \omega(\bullet), \Omega(\bullet), CR(\bullet)\}$.

Proof. If $A(\bullet) \in \{P(\bullet), AP(\bullet), CR(\bullet)\}$, then the conclusion is obvious by Lemma 2.1. Now we consider the other cases:

(1) Since
$$\omega(F) \subset \omega(g \circ f) \times \omega(f \circ g)$$
,

$$(x, x) \in \omega(F) \Rightarrow (x, x) \in \omega(g \circ f) \times \omega(f \circ g) \Rightarrow x \in \omega(g \circ f).$$

On the other hand, since $x \in \omega(g \circ f)$, there exist a point $y \in X$ and integers $n_k \to \infty$ such that $(g \circ f)^{n_k}(y) \to x$. Then $(g \circ f)^{n_k} \times (g \circ f)^{n_k} \cdot (y, y) \to (x, x)$, and jointly with $F^2 = (g \circ f) \times (g \circ f)$, we obtain $(x, x) \in \omega(F^2)$. Additionally, $\omega(F^2) = \omega(F)$, thus $(x, x) \in \omega(F)$.

(2) Since
$$R(F) \subset R(g \circ f) \times R(f \circ g)$$
,

$$(x, x) \in R(F) \Rightarrow (x, x) \in R(g \circ f) \times R(f \circ g) \Rightarrow x \in R(g \circ f).$$

On the other hand, since $x \in R(g \circ f)$, there exist integers $n_k \to \infty$ such that $(g \circ f)^{n_k}(x) \to x$. Then $(g \circ f)^{n_k} \times (g \circ f)^{n_k}(x, x) \to (x, x)$, and jointly with $F^2 = (g \circ f) \times (g \circ f)$, we obtain $(x, x) \in R(F^2)$. Additionally, $R(F^2) = R(F)$, thus $(x, x) \in R(F)$.

(3) Let $(x, x) \in \Omega(F)$ and $U \subset X$ be an open neighborhood of x. Since $(x, x) \in \Omega(F)$, there exists a positive integer m such that $F^m(U \times U) \cap (U \times U) \neq \Phi$. We have two possibilities: (1) m = 2n, for $n \in N$; (2) m = 2n + 1, for $n \in N$. If (1) happens, then

$$F^{2n}(U \times U) \cap (U \times U) = ((g \circ f)^n(U) \times (g \circ f)^n(U)) \cap (U \times U) \neq \Phi,$$

thus $(g \circ f)^n(U) \cap U \neq \Phi$. If (2) happens, then

$$F^{2n+1}(U\times U)\cap (U\times U)=(f\circ (g\circ f)^n(U)\times (g\circ f)^n(U))\cap (U\times U)\neq \Phi,$$

thus we have $(g \circ f)^n(U) \cap U \neq \Phi$. In both cases, $x \in \Omega(g \circ f)$. On the other hand, let $x \in \Omega(g \circ f)$. For any open set $U_1 \times U_2$ containing (x, x), let $U = U_1 \cap U_2$. Then U is an open set and $x \in U$. Since $x \in \Omega(g \circ f)$, there exists a positive integer n such that $(g \circ f)^n(U) \cap U \neq \Phi$. Then $((g \circ f)^n(U) \times (g \circ f)^n(U)) \cap (U \times U) \neq \Phi$. Since $U \times U \subset U_1 \times U_2$ and

$$(g \circ f)^n(U) \times (g \circ f)^n(U) \subset (g \circ f)^n(U_1) \times (g \circ f)^n(U_2),$$

$$((g \circ f)^n(U_1) \times (g \circ f)^n(U_2)) \cap (U_1 \times U_2) \neq \Phi.$$

Thus $(x, x) \in \Omega((g \circ f) \times (g \circ f))$. And jointly with $F^2 = (g \circ f) \times (g \circ f)$, we obtain $(x, x) \in \Omega(F^2)$. Additionally, $\Omega(F^2) \subset \Omega(F)$, thus $(x, x) \in \Omega(F)$.

Corollary 3.2 [4, Lemma 3.5]. Let F(x, y) = (y, f(x)) be an anti-

triangular map defined on I^2 . Let $x \in I$. Then $x \in A(g \circ f)$ if and only if $(x, x) \in A(F)$, where $A(\bullet) \in \{P(\bullet), AP(\bullet), R(\bullet), \omega(\bullet), \Omega(\bullet), CR(\bullet)\}$.

In [5], the author studied the relation between Per(F) and $Per(g \circ f)$, and have proved $Per(g \circ f) = Per(f \circ g)$ and $Per(F) = \mathcal{D} \cup \{2\}$, where $\mathcal{D} = 2(Per(g \circ f) - \{1\}) \cup \{k \in Per(g \circ f) : k \text{ is odd, } k \geq 1\}$.

In [4], Balibrea et al. have proved that if Per(F) is of type 2^{∞} , then the following result is right:

Lemma 3.3 [4, Lemma 3.4]. Let F(x, y) = (g(y), f(x)) be an anti-triangular map such that $Per(F) \subset \{2^n : n \in N \cup \{0\}\}$. Assume P(F) is closed. If $A(\bullet)$, $B(\bullet) \in \{P(\bullet), AP(\bullet), UR(\bullet), \omega(\bullet), \Omega(\bullet), CR(\bullet)\}$, then the following two statements hold:

(1)
$$A(F) = B(F)$$
;

(2)
$$A(F) = A(g \circ f) \times A(f \circ g)$$
, and $\Omega(F^2) = \Omega(F)$.

Lemma 3.4. Let I = [0, 1] be a compact metric space, $f, g \in C^0(I)$, and F(x, y) = (g(y), f(x)) be an anti-triangular map. Assume $\overline{P(F)} = P(F)$. Then P(F) = CR(F).

Proof. First, we prove $P(F) = \Omega(F)$. Obviously, $P(F) \subset \Omega(F)$.

Now we prove $\Omega(F) \subset P(F)$.

Since $P(F) = P(g \circ f) \times (f \circ g)$, $\overline{P(F)} = \overline{P(g \circ f)} \times \overline{P(f \circ g)}$. So $P(F) = \overline{P(F)}$ implies $P(g \circ f) = \overline{P(g \circ f)}$ and $P(f \circ g) = \overline{P(f \circ g)}$. According to [6], $P(g \circ f) = \Omega(g \circ f)$, $P(f \circ g) = \Omega(f \circ g)$. Therefore, $\Omega(F) \subset \Omega(g \circ f) \times \Omega(f \circ g) \subset P(g \circ f) \times P(f \circ g) = P(F)$. By [1, Proposition 6.36], $P(g \circ f) = CR(g \circ f)$, and $P(f \circ g) = CR(f \circ g)$. According to Lemma 2.1, $CR(F) = CR(g \circ f) \times CR(f \circ g) = P(g \circ f) \times P(f \circ g) = P(F)$.

Theorem 3.5. Let I = [0, 1] be a compact metric space, $f, g \in C^0(I)$, and F(x, y) = (g(y), f(x)) be an anti-triangular map. If $\overline{P(F)} = P(F)$, then the following three statements hold:

(1)
$$P(F) = AP(F) = UR(F) = R(F) = \omega(F) = \Omega(F) = CR(F)$$
;

(2)
$$UR(F) = UR(g \circ f) \times UR(f \circ g); \quad R(F) = R(g \circ f) \times R(f \circ g);$$

$$\omega(F) = \omega(g \circ f) \times \omega(f \circ g); \quad \Omega(F) = \Omega(g \circ f) \times \Omega(f \circ g);$$

(3)
$$\Omega(F^2) = \Omega(F)$$
.

Proof. (1) It is obvious according to Lemma 3.4 and (1.3).

(2) From the proof of Lemma 3.4, $P(g \circ f) = \Omega(g \circ f)$, and $P(f \circ g) = \Omega(f \circ g)$. By Lemma 2.1,

$$P(F) \subset UP(F) \subset UR(g \circ f) \times UR(f \circ g) \subset \Omega(g \circ f) \times \Omega(f \circ g)$$
$$= P(g \circ f) \times P(f \circ g) = P(F).$$

Therefore, $UP(F) = UR(g \circ f) \times UR(f \circ g)$.

Another three equalities can be proved similarly.

(3) Obviously, from $P(F) \subset \Omega(F^2) \subset \Omega(F) = P(F)$, we end the proof.

Corollary 3.6. Let I = [0, 1] be a compact metric space, $f, g \in C^0(I)$, and F(x, y) = (g(y), f(x)) be an anti-triangular map. If $P(F) = \overline{P(F)}$, then the following statements hold:

(1)
$$P(F) = \{(x, y) : \exists n = n(x, y), s.t. F^{2^n}(x, y) = (x, y)\};$$

(2)
$$AP(F) = \{(x, y) : \exists n = n(x, y), s.t. F^{2^n}(x, y) = (x, y)\};$$

(3)
$$UR(F) = \{(x, y) : \exists n = n(x, y), \text{ s.t. } F^{2^n}(x, y) = (x, y)\};$$

(4)
$$R(F) = \{(x, y) : \exists n = n(x, y), s.t. F^{2^n}(x, y) = (x, y)\};$$

(5)
$$\omega(F) = \{(x, y) : \exists n = n(x, y), s.t. F^{2^n}(x, y) = (x, y)\};$$

(6)
$$\Omega(F) = \{(x, y) : \exists n = n(x, y), s.t. F^{2^n}(x, y) = (x, y)\};$$

(7)
$$CR(F) = \{(x, y) : \exists n = n(x, y), \text{ s.t. } F^{2^n}(x, y) = (x, y)\}.$$

Proof. It is necessary to prove (1). The others can be obtained by Theorem 3.5 and (1).

Now we prove (1).

Since $P(F) = \overline{P(F)}$, we have $P(g \circ f) = P(\overline{g \circ f})$. By [1, Proposition 6.36], $g \circ f$ is strong non-chaotic. So we have

$$P(g \circ f) = \{x : \exists n = n(x), \text{ s.t. } (g \circ f)^{2^n}(x) = (x)\}.$$

Thus
$$P(F) = \{(x, y) : \exists n = n(x, y), \text{ s.t. } F^{2^n}(x, y) = (x, y)\}.$$

Lemma 3.7. Let I = [0, 1] be a compact metric space, $f, g \in C^0(I)$, and F(x, y) = (g(y), f(x)) be an anti-triangular map. If P(F) = AP(F), then $P(F) = \overline{P(F)}$.

Proof. Since $P(F) = P(g \circ f) \times P(f \circ g)$, $AP(F) = AP(g \circ f) \times AP(f \circ g)$ and P(F) = AP(F), we obtain that $P(g \circ f) \times P(f \circ g) = AP(g \circ f) \times AP(f \circ g)$. So we have $P(g \circ f) = AP(g \circ f)$ and $P(f \circ g) = AP(f \circ g)$. By Lemma 2.1,

$$P(F) \subset \overline{P(F)} \subset \Omega(F) \subset CR(F) = CR(g \circ f) \times CR(f \circ g)$$

= $P(g \circ f) \times P(f \circ g) = P(F)$.

Therefore, $P(F) = \overline{P(F)}$.

Lemma 3.8. Let I = [0, 1] be a compact metric space, $f, g \in C^0(I)$, and F(x, y) = (g(y), f(x)) be an anti-triangular map. If one of the following conditions holds, then $P(F) = \overline{P(F)}$:

(1)
$$AP(F) = \{(x, y) : \exists n = n(x, y), s.t. F^{2^n}(x, y) = (x, y)\};$$

(2)
$$UR(F) = \{(x, y) : \exists n = n(x, y), \text{ s.t. } F^{2^n}(x, y) = (x, y)\};$$

(3)
$$R(F) = \{(x, y) : \exists n = n(x, y), s.t. F^{2^n}(x, y) = (x, y)\};$$

(4)
$$\omega(F) = \{(x, y) : \exists n = n(x, y), s.t. F^{2^n}(x, y) = (x, y)\};$$

(5)
$$\Omega(F) = \{(x, y) : \exists n = n(x, y), s.t. F^{2^n}(x, y) = (x, y)\};$$

(6)
$$CR(F) = \{(x, y) : \exists n = n(x, y), \text{ s.t. } F^{2^n}(x, y) = (x, y)\}.$$

Proof. Since $(6) \Rightarrow (5) \Rightarrow (4) \Rightarrow (3) \Rightarrow (2) \Rightarrow (1)$, it is necessary to prove that when (1) holds, $P(F) = \overline{P(F)}$.

If (1) holds, then by Lemma 2.1,

$$AP(g \circ f) = \{x : \exists n = n(x), \text{ s.t. } (g \circ f)^{2^n}(x) = x\};$$

$$AP(f \circ g) = \{y : \exists n = n(y), \text{ s.t. } (f \circ g)^{2^n}(y) = y\}.$$

So $g \circ f$ and $f \circ g$ both are strong non-chaotic. According to [1, Proposition 6.10],

$$P(g \circ f) = \overline{P(g \circ f)}, \quad P(f \circ g) = \overline{P(f \circ g)}.$$

Therefore.

$$P(F) = P(g \circ f) \times P(f \circ g) = \overline{P(g \circ f)} \times \overline{P(f \circ g)} = \overline{P(F)}.$$

From Theorem 3.5, Corollary 3.6, Lemmas 3.7-3.8, the following result holds:

Theorem 3.9. Let I = [0, 1] be a compact metric space, $f, g \in C^0(I)$, and F(x, y) = (g(y), f(x)) be an anti-triangular map. Then the following three conditions are equivalent:

- (1) $P(F) = \overline{P(F)}$;
- (2) P(F) = CR(F);

(3)
$$CR(F) = \{(x, y) : \exists n = n(x, y), \text{ s.t. } F^{2^n}(x, y) = (x, y)\}.$$

References

- [1] L. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics 1513, Springer-Verlag, New York, Berlin, Heidelberg, 1992.
- [2] A. N. Sharkovsky, S. F. Kolyada, A. G. Sivak and V. V. Fedorenko, Dynamics of one dimensional maps, Mathematics and its Applications, Volume 407, Kluwer Academic Publishers, 1997.
- [3] F. Balibrea and A. Linero, Some results on topological dynamics of antitriangular maps, Acta Math. Hungar. 88(1-2) (2000), 169-178.
- [4] F. Balibrea, J. S. Cánovas and A. Linero, New results on topological dynamics of antitriangular maps, Appl. Gen. Topol. 2(1) (2001), 51-61.
- [5] F. Balibrea and A. Linero, On the periodic structure of the anti-triangular maps on the unit square, Ann. Math. Sil. 13 (1999), 39-49.
- [6] Z. Nitecki, Maps of the interval with closed periodic set, Proc. Amer. Math. Soc. 85(3) (1982), 451-456.