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Abstract 

A cut-free sequent calculus such that Δ→Γ  is provable there, iff 
both Δ→Γ  and Γ→Δ  are provable in Gentzen’s LK for the 
classical predicate logic, is given. This exemplifies how to make a 
sequent calculus for the intersection of two sequent calculi, and how to 
show the completeness of such a calculus. 

The purpose of this note is to give a cut-free sequent calculus, which we 
call LKKL, such that Δ→Γ  is provable in LKKL, iff both Δ→Γ  and 

Γ→Δ  are provable in Gentzen’s sequent calculus LK for the classical 
predicate logic. This exemplifies how to make a sequent calculus for the 
intersection of two sequent calculi, and how to show the completeness of 
such a calculus. 

We mention only ∧¬,  and ∀  as the logical symbols, for simplicity. A 

formula with the logical symbol  as its outermost one is called a -formula. 
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For sequent calculi, consult Takeuti [3], for example. 

Greek capital letters ...,,,,,, ΨΦΛΠ∆Γ  denote finite (possibly empty) 

sequences of formulas separated by commas, while Greek lower-case letters 
...,, βα  (finite or infinite) sets of formulas. 

1. The Sequent Calculus LKKL 

In this section, our sequent calculus LKKL is introduced and the main 
theorem is formulated. 

Definition 1.1. The sequent calculus LKKL consists of the following 
beginning sequents and inference rules: 

(1) Beginning sequents: 

AA →  

(2) Inference rules: 

Structural rules: 

Weakening 
AA ,, ∆→Γ

∆→Γ
∆→Γ

∆→Γ  

Exchange 
Λ∆→Γ
Λ∆→Γ

∆→ΠΓ
∆→ΠΓ

,,,
,,,

,,,
,,,

AB
BA

AB
BA  

Contraction 
A

AA
A

AA
,

,,
,

,,
∆→Γ

∆→Γ
∆→Γ
∆→Γ  

Cut 
Λ∆→ΠΓ

Λ→Π∆→Γ
,,

,, AA  

Logical rules: 

( ) ( ) A
A

A
A

¬∆→Γ
∆→Γ¬→

∆→Γ¬
∆→Γ→¬ ,

,
,

,  

( ) ( ) BA
BA

BA
BA

∧∆→Γ
∆→Γ∆→Γ∧→

∆→Γ∧
∆→Γ∆→Γ→∧ ,

,,
,

,,  
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( ) ( )
( ) ( ) ( )

( )xxF
aF

xxF
aF

∀∆→Γ
∆→Γ∀→

∆→Γ∀
∆→Γ→∀ ,

,
,

,  

( ) DCBA
DCBA

∧∆→Γ∧
∆→Γ∆→Γ∧→∧ ,,

,,,,  

( ) ( ) ( )
( ) ( )yyGxxF

cGbF
∀∆→Γ∀
∆→Γ∆→Γ

∀→∀
,,

,,  

( ) ( )
( )xxFBA

bFBA
∀∆→Γ∧

∆→Γ∆→Γ
∀→∧

,,
,,,  

( ) ( )
( ) .,,

,,,
BAxxF

BAbF
∧∆→Γ∀
∆→Γ∆→Γ∧→∀  

Restriction on variables: In the rules ( )→∀  and ( ),∀→  the free 

variable a must not occur in the lower sequent; while in the rules ( ),∀→∀  

( )∀→∧  and ( ),∧→∀  the free variables b and c are arbitrary. 

We must show the following theorem, and the proof is given in the next 
section. 

Theorem 1.2. The following properties are mutually equivalent for any 
sequent :∆→Γ  

(a) ∆→Γ  is provable in LKKL. 

(b) ∆→Γ  is cut-free provable in LKKL. 

(c) Both ∆→Γ  and Γ→∆  are provable in LK. 

2. Proof of Theorem 1.2 

Among the equivalency of (a), (b) and (c) of our theorem, “(b) implies 
(a)” is evident, and the inductive proof of “(a) implies (c)” is routine. So, we 
conclude the proof of Theorem 1.2 by showing “(c) implies (b)”. 

Incidentally, although “(a) implies (b)” (the cut-elimination property for 
LKKL) is obtained along the above line, one can prove it directly by the 
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usual way, namely by eliminating the Mix rule through the double induction 
on the grade and rank. 

For the ease of description of the proof of “(c) implies (b)”, some 
promises are made. 

Promise 2.1. 

(1) Provability means provability in LKKL, unless specified otherwise. 

(2) The notion of sequent is modified as follows: The antecedent and 
succedent of a sequent are (finite or infinite) sets of formulas, but not 
finite sequences of formulas. If both the antecedent and succedent 
are finite, the sequent is called a finite sequent. 

(3) Thus-modified sequent β→α  is (cut-free) provable, iff ∆→Γ  is 

(cut-free) provable for some Γ  and ∆  such that every constituent of 
Γ  and ∆  belongs to α  and ,β  respectively. 

(4) Each finite sequence of formulas is identified with the set of all its 
constituents. 

(5) In the antecedents and succedents of sequents, commas are used to 
denote the unions of sets. 

Note that Promise 2.1(4) together with (3) causes no trouble in the      
(cut-free) provability of finite sequents, owing to the three structural rules: 
Weakening, Exchange and Contraction. 

Definition 2.2. The pair βα,  of sets α  and β  of formulas is called a 

Hintikka pair, if the seven properties ( ),, βαP  ( ),, βα¬P  ( ),, αβ¬P  ( ),α+
∧P  

( ),β−
∧P  ( )α+

∀P  and ( )β−
∀P  hold, where the properties P and ¬P  on a pair of 

sets of formulas as well as ,+∧P  ,−∧P  +
∀P  and −

∀P  on a set of formulas are 

defined as follows: 

(1) ( ),, βαP  iff .∅=βα ∩  

(2) ( ),, βα¬P  iff for every ¬ -formula ,A¬  if ,α∈¬A  then .β∈A  
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(3) ( ),α+
∧P  iff for every ∧ -formula ,BA ∧  if ,α∈∧ BA  then α∈A  

and .α∈B  

(4) ( ),α−
∧P  iff for every ∧ -formula ,BA ∧  if ,α∈∧ BA  then α∈A  

or .α∈B  

(5) ( ),α+
∀P  iff for every ∀ -formula ( ),xxF∀  if ( ) ,α∈∀ xxF  then 

( ) α∈aF  for every free variable a. 

(6) ( ),α−
∀P  iff for every ∀ -formula ( ),xxF∀  if ( ) ,α∈∀ xxF  then 

( ) α∈aF  for some free variable a. 

Note that ‘Hintikka pair’ forms the sequent version of ‘Hintikka set’ in 
Smullyan [2], and the first order version of ‘semi-valuation’ in Schütte [1], as 
well. 

Recall the semantical characterization of LK that ∆→Γ  is (cut-free) 
provable there, iff for every interpretation I (for the classical predicate logic), 
either some constituents of Γ  are falsified by I or some of ∆  are satisfied. 

The semantical proof of the cut-elimination property for LK appearing in 
the literature always depends, explicitly or implicitly, on the following 
lemma, and so the proof is omitted (see Smullyan [2], Takeuti [3], for 
example). 

Lemma 2.3. Let βα,  be a Hintikka pair. Then, an interpretation by 

which every formula in α  is satisfied, but every formula in β  is falsified, can 

be constructed; so, if α⊂Γ  and ,β⊂∆  then ∆→Γ  is unprovable in LK. 

Definition 2.4. A sequent β→α  is saturated, if the following conditions 

hold: 

  (i) β→α  is cut-free unprovable. 

 (ii) For every Φ  and ,Ψ  if Ψβ→αΦ ,,  is cut-free unprovable, then 

α⊂Φ  and .β⊂Ψ  
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(iii) The property ( )α−
∀P  holds. 

(iv) The property ( )β−
∀P  holds. 

Lemma 2.5. If ∆→Γ  is cut-free unprovable, then there is a saturated 
sequent β→α  such that α⊂Γ  and .β⊂∆  

Proof. Suppose that ∆→Γ  is cut-free unprovable, and let 

 ...,...,,, 1100 nn Ψ→ΦΨ→ΦΨ→Φ  (*) 

be an enumeration of all the finite sequents. 

We will define nΓ  and n∆  by induction on n as follows: 

First, define 0Γ  and 0∆  to be Γ  and ,∆  respectively. Suppose next, that 

nΓ  and n∆  have been defined, and define 1+Γn  and 1+∆n  by cases. 

Case 1. nnnn Ψ∆→ΓΦ ,,  is cut-free provable. Define 1+Γn  and 1+∆n  

to be nΓ  and ,n∆  respectively. 

Case 2. nnnn Ψ∆→ΓΦ ,,  is cut-free unprovable. 

Subcase 2.1. nΦ  consists solely of a ∀ -formula, say ( ),xxF∀  while nΨ  

is empty. Let a be a free variable which does not occur in any formula of 
( ).,, xxFnn ∀∆Γ  Define 1+Γn  and 1+∆n  to be ( ) ( ) nxxFaF Γ∀ ,,  and ,n∆  

respectively. 

Subcase 2.2. nΦ  is empty, while nΨ  consists solely of a ∀ -formula, 

say ( ).xxF∀  Let a be a free variable which does not occur in any formula of 

( ).,, xxFnn ∀∆Γ  Define 1+Γn  and 1+∆n  to be nΓ  and ( ) ( ),,, aFxxFn ∀∆  

respectively. 

Subcase 2.3. Otherwise. Define 1+Γn  and 1+∆n  to be nn ΓΦ ,  and 

,, nn Ψ∆  respectively. 

After defining all s’nΓ  and s,’n∆  let α  and β  be the unions ∪n nΓ  
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and ∪n n ,∆  respectively. It is clear that α⊂Γ  and .β⊂∆  Let us show 

that β→α  is saturated by checking (i)-(iv) of Definition 2.4 one by one. 

Proof of (i). It is an easy induction to show that nn ∆→Γ  is cut-free 

unprovable for every n; in examining Subcases 2.1 and 2.2, the rules ( )→∀  

and ( )∀→  are essential, respectively. It follows that β→α  is cut-free 

unprovable; for, otherwise ∆→Γ  would be cut-free provable for some 
α⊂Γ  and ,β⊂∆  and then nΓ⊂Γ  and n∆⊂∆  for some n, and so 

nn ∆→Γ  would be cut-free provable, which is a contradiction. 

Proof of (ii). Suppose that Ψβ→αΦ ,,  is cut-free unprovable. Let 

Ψ→Φ  be the nth term in (*). Then, nnnn Ψ∆→ΓΦ ,,  is cut-free 

unprovable, since αΦ⊂ΓΦ ∪∪ nn  and .Ψβ⊂Ψ∆ ∪∪ nn  So, ⊂Φn  

1+Γn  and 1+∆⊂Ψ nn  in any subcases, and so α⊂Φ  and .β⊂Ψ  

Proof of (iii). Suppose ( ) .α∈∀ xxF  Let ( ) →∀ xxF  be the nth term in 

(*). Then, nnnn Ψ∆→ΓΦ ,,  is cut-free unprovable by (i), since nn ΓΦ ∪  

α⊂  and .β⊂Ψ∆ nn ∪  So, Subcase 2.1 works, and so ( ) 1+Γ∈ naF  and 

hence ( ) α∈aF  for some a. 

Proof of (iv). Similar to the proof of (iii). 

Thus, we have completed the proof that β→α  is saturated.  

Lemma 2.6. Suppose that β→α  is saturated. 

(1) The property ( )βα,P  holds. 

(2) The property ( )βα¬ ,P  holds. 

(3) The property ( )αβ¬ ,P  holds. 

(4) The property ( )α−
∧P  holds. 

(5) The property ( )β−
∧P  holds. 
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(6) Either the property ( )α+
∧P  or ( )β+

∧P  holds. 

(7) Either the property ( )α+
∧P  or ( )β+

∀P  holds. 

(8) Either the property ( )α+
∀P  or ( )β+

∧P  holds. 

(9) Either the property ( )α+
∀P  or ( )β+

∀P  holds. 

Proof. (1) If ,∅≠βα ∩  then β→α  would be cut-free provable, 

which contradicts Definition 2.4(i). So, ,∅=βα ∩  namely ( )., βαP  

(2) Suppose .α∈¬A  Then, ,β→α  A is cut-free unprovable; for, 

otherwise β→α¬ ,A  and so β→α  would be cut-free provable by the rule 

( ),→¬  which is a contradiction. So, β∈A  by Definition 2.4(ii). 

(3)-(5) Similar to (2) by the rules ( ),¬→  ( )→∧  and ( ),∧→  

respectively. 

(6) Suppose that neither ( )α+
∧P  nor ( )β+

∧P  holds. It follows that BA ∧  

α∈  but not { } α⊂BA,  for some ,BA ∧  and β∈∧ DC  but not { }DC,  

β⊂  for some .DC ∧  Then, either β→α,, BA  or DC,,β→α  is cut-

free unprovable; for, otherwise ,BA ∧  ,β→α  DC ∧  and so β→α  

would be cut-free provable by the rule ( ),∧→∧  which is a contradiction. 

So, either { } α⊂BA,  or { } β⊂DC,  by Definition 2.4(ii), which is a 

contradiction in both cases. Hence, either ( )α+
∧P  or ( )β+

∧P  holds. 

(7)-(9) Similar to (6) by the rules ( ) ( )∧→∀∀→∧ ,  and ( ),∀→∀  

respectively.  

Lemma 2.7. If β→α  is saturated, then either βα,  or αβ,  forms a 

Hintikka pair. 

Proof. Suppose that β→α  is saturated. We must show that, either 
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( ) ( ) ( ) ( ) ( ) ( )αβααββαβα +
∀

−
∧

+
∧¬¬ PPPPPP ,,,,,,,,  and ( )β−

∀P  

or 

( ) ( ) ( ) ( ) ( ) ( )βαββααββα +
∀

−
∧

+
∧¬¬ PPPPPP ,,,,,,,,  and ( ).α−

∀P  

Among these properties, ( ),, βαP  ( ),, βα¬P  ( ),, αβ¬P  ( )α−
∧P  and 

( )β−
∧P  hold by Lemma 2.6(1)-(5), while ( )α−

∀P  and ( )β−
∀P  hold by 

Definition 2.4(iii) and (iv). So, it is left to show that 

either ( )α+
∧P  and ( ),α+

∀P  or ( )β+
∧P  and ( ).β+

∀P  

By the ‘distributive law’, this is equivalent to the ‘conjunction’ of the 
following four ‘disjunctions’: 

( )α+
∧P  or ( ) ( )αβ +

∧
+
∧ PP ;  or ( ) ( )αβ +

∀
+
∀ PP ;  or ( ) ( )αβ +

∀
+
∧ PP ;  or ( ).β+

∀P  

These ‘disjunctions’ are nothing but Lemma 2.6(6)-(9), and so hold 
certainly.  

Now, we are in a position to give a postponed proof of “(c) implies (b)” 
of Theorem 1.2. 

To show the contraposition, suppose that ∆→Γ  is cut-free unprovable 
(in LKKL). By Lemma 2.5, there is a saturated sequent β→α  such that 

α⊂Γ  and .β⊂∆  Then, by Lemma 2.7, either βα,  or αβ,  forms a 

Hintikka pair. It follows by Lemma 2.3 that either ∆→Γ  or Γ→∆  is 
unprovable in LK. 

This ends the proof of “(c) implies (b)”, and hence concludes the proof of 
our theorem. 
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