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Abstract 

Let A be an artin algebra. In this paper, we give a sufficient condition 

for the subcategory ( )AiGP  of A-mod to be contravariantly finite in 

A-mod, where ( )AiGP  is the subcategory of A-mod consisting of 
A-modules of Gorenstein projective dimension less than or equal to i. 

As an application of this condition it is shown that ( )AiGP  is 
contravariantly finite in A-mod for 1≥i  when A is stably equivalent 
to a hereditary algebra. 

1. Introduction and Preliminaries 

1.1. The main idea of Gorenstein homological algebra is to replace 
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projective modules by Gorenstein projective modules. These modules were 
introduced by Enochs and Jenda [14] as a generalization of finitely generated 
module of G-dimension zero over a two-sided noetherian ring, in the sense of 
Auslander-Bridger [1]. The subject has been developed to an advanced level, 
see for example [2], [3], [17], [15], [11], [6], [18], [7], [12], [9], [19], [16], 
[10], [8], [20]. 

Let A be an artin algebra. Denote by A-mod the category of all finitely 

generated A-modules. It is an interesting problem when ( )AiGP  is 

contravariantly finite in A-mod for each i, where ( )AiGP  is the full 

subcategory of A-mod consisting of A-modules of Gorenstein projective 
dimension less than or equal to i (see [2], [3], [15], [19] for more 
information). 

The aim of this paper is to present a condition which is sufficient for the 

subcategory ( )AiGP  to be contravariantly finite in A-mod. As an application 

of this condition we show that ( )AiGP  is contravariantly finite in A-mod for 

1≥i  when A is stably equivalent to a hereditary algebra. The main idea of 
the proofs is taken from [3], also [13]. 

1.2. Throughout this paper, A is an artin algebra, all A-modules are 
finitely generated left modules, and all subcategories are full subcategories. 
We denote by A-mod the category of all finitely generated A-modules, and 
( )AP  the subcategory of A-mod consisting of all projective A-modules. 

An A-module G is Gorenstein projective if there is an exact sequence 

→→→→→ 10
01 PPPP  of projective A-modules, which stays exact 

after applying ( )PA ,Hom −  for any ( ),AP P∈  such that ( )0
0Im PPG →≅  

(see [15]). Denote by ( )AGP  the full subcategory of Gorenstein projective 

A-modules. Note that ( )AGP  is resolving (see [18]) in the sense of [3]: it 

contains all projective A-modules, is closed under direct sums and direct 
summands, extensions, and the kernels of epimorphisms, and is a Frobenius 
category with projective A-modules as projective-injective objects.  
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The Gorenstein projective dimension GpdM of M is defined to be the 
smallest integer 0≥n  such that there is an exact sequence →→ nG0  

001 →→→→ MGG  with all ( ),AGi GP∈  if it exists; and ∞=MGpd  

if there is no such exact sequence of finite length (see [15]). Clearly, 
MM pdGpd ≤  for each A-module M, where pdM denotes the projective 

dimension of M. 

Auslander and Smalø first introduced and studied the notions of 
contravariantly finite subcategories of A-mod in connection with the study  
of the existence of almost split sequences in a subcategory of A-mod (see       
[4, 5]). Recall from [4] that a full subcategory A  of B  is said to be 
contravariantly finite in B  if for each object X in ,B  there exists a 

morphism ,: XYf →  where ,A∈Y  such that for any ,A∈′Y  the induced 

morphism ( ) ( )XYYY ,Hom,Hom ′→′  is surjective. 

2. A Sufficient Condition for ( )AiGP  to be Contravariantly Finite 

The proofs in this section are analogous to those in Section 4 in [3], but 
for the completeness of the article, we give here the proofs. 

Proposition 2.1. Assume that I is an ideal in A with iIAA ≤Gpd  such 

that if M is an A-module with ,Gpd iMA ≤  then IMM  is a projective 

-IA module. Let C be an -IA module. Then we have the following. 

(1) A map CB →  in IA -mod is a right ( )IAP -approximation of C 

if and only if it is a right ( )AiGP -approximation of C. 

(2) If CG →  is a right ( )AiGP -approximation of C, then CIGG →  

is a right ( )IAP -approximation of C. 

Proof. (1) Let CBf →:  be a right ( )IAP -approximation of C. Since 

B is a projective IA -module and ,Gpd iIAA ≤  as an A-module B is in 
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( ).AiGP  Let CXg →:  be a morphism in A-mod with ( ).AX iGP∈  Then 

g is the composition of the canonical projection IXXX →π :  and the 

induced map .:1 CIXXg →  Since IXX  is a projective IA -module, the 

morphism 1g  can be lifted to B, so g can be lifted to B, that is, CBf →:  

is a right ( )AiGP -approximation of C. 

Conversely, let CBf →:  in IA -mod be a right ( )AiGP -approximation 

of C. Since ,Gpd iBA ≤  as an IA -module IBBB =  is projective. Hence, 

CBf →:  is a right ( )IAP -approximation of C. 

(2) Trivial. 

Corollary 2.2. Let I be an ideal in A satisfying the hypothesis of 
Proposition 2.1. If 0=IS  for any simple A-module S with ,Gpd iSA >  then 

( )AiGP  is contravariantly finite in A-mod. 

Proof. First note that ( )AiGP  is a resolving subcategory. Then by 

Proposition 3.7 in [3], ( )AiGP  is contravariantly finite in A-mod if and only 

if each simple A-module has a right ( )AiGP -approximation. Let S be a 

simple A-module. If ,Gpd iSA ≤  we are done. Now suppose ,Gpd iSA >  

then S is an IA -module. Hence, there is a right ( )IAP -approximation 

SB →  of S. By Proposition 2.1(1), SB →  is also a right ( )AiGP -

approximation of S. Hence, ( )AiGP  is contravariantly finite in A-mod. 

We denote by ( )mod-AΩ  the subcategory consisting of the syzygy 

modules ( )CΩ  of all C in A-mod. For each ,0≥i  we denote by iI  the   

trace of ( ) ( )AA iGP∩mod-Ω  in r, i.e., ( ) ( )( ),
mod-

rI
AAi iGP∩Ω

τ=  where r 

denotes the radical of A. It is obvious that rIi ⊂  is an ideal in A. 
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Proposition 2.3. If ,Gpd iIiA ≤  then ( )Ai 1+GP  is contravariantly finite 

in A-mod. 

Proof. First note that ( ) ( )( )rPPI
AAi iGP∩mod-Ω

τ=  for any projective 

A-module P, where rP is the radical of P. 

Let ( ).1 AM i+∈ GP  Then we have the following exact sequence: 

( ) 00 →→→Ω→ MPM
f

 

with f is a projective cover of M. Since ( ) ,Gpd iMA ≤Ω  it follows            

that ( ) ( ) ( ).mod- AAM iGP∩Ω∈Ω  Therefore, we get that ( ) ⊂Ω M  

( ) ( )( ) PIrP iAA i =τ
Ω GP∩mod-

 and that ,MIMPIP ii ≅  that is, MIM i  is 

a projective iIA -module. By hypothesis we have that .1Gpd +≤ iIA iA  

So the ideal iI  satisfies the conditions of Proposition 2.1. Since each simple 

A-module is annihilated by ,iI  it follows that ( )Ai 1+GP  is contravariantly 

finite in A-mod by Corollary 2.2. 

Corollary 2.4. Assume that .Gpd iIiA ≤  Then the A-modules of 

Gorenstein projective dimension 1+≤ i  are the summand of modules M 

which have filtrations 010 =⊃⊃⊃= nMMMM  such that each 

subquotient 1+jj MM  is an indecomposable projective iIA -module. 

Proof. Note that the iIA -projective covers of the simple A-modules are 

just the minimal right ( )AiGP -approximations of the simple A-modules by 

Proposition 2.1(1). Then by Proposition 3.8 in [3] we deduce the corollary. 

Now we show that ( )AiGP  is contravariantly finite in A-mod for 1≥i  

when A is stably equivalent to a hereditary algebra as an application of this 
sufficient condition as above. 
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Lemma 2.5. Assume that A satisfies the conditions: 

 (i) If a simple A-module S is a composition factor of socPrP  for some 

indecomposable projective module P, then S is a torsion module. 

(ii) Every indecomposable torsionless module is simple or Gorenstein 
projective. 

Then it holds that iIiA ≤Gpd  for each ,0≥i  where 

( ) ( )( ).
mod-

rI
AAi iGP∩Ω

τ=  

Proof. By hypothesis we can get that 

,1 ti SSGI ⊕⊕⊕=  

where G is Gorenstein projective and jS  are simple modules. 

If ,Gpd iIiA >  then there is a simple module jSS =:  satisfying that 

.Gpd iSA >  By the construction of ,iI  there is an epimorphism SMf →:  

with M indecomposable in ( ) ( ).mod- AA iGP∩Ω  Note that ( ) .0=socMf  

Thus, S is a composition factor of .socMM  Since rPM ⊂  for some 

projective module P, .socPrPsocMM ⊂  It follows that S is a composition 

factor of .socPrP  By (i) S is a torsion module. This contradicts that .iIS ⊂  

Hence, iIiA ≤Gpd  for each .0≥i  

Proposition 2.6. Let A be stably equivalent to a hereditary algebra. Then 

( )AiGP  is contravariantly finite in A-mod for .1≥i  

Proof. By Lemma 4.12 in [3] we get that A satisfies the conditions in 

Lemma 3.1. Then by Proposition 2.3 we get that ( )AiGP  is contravariantly 

finite in A-mod for .1≥i  
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