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Abstract

Let X be a finite set, ( )XT  be the monoid of all transformations on X

and ( )XSym  be the symmetric group on X. Recently Levi, McAlister and

McFadden proved that if ,4>X  G is a normal subgroup of ( )XSym

and ( ) ( ) ,Sym\ XXTa ∈  then

{ } .\:1 GGaGgagg U=∈−

The aim of this paper is to prove a linear analogue of this result.
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1. Introduction

Let ( )FMn  be the monoid of all nn ×  matrices with entries in a

field F and let ( )FGLn  be its group of units.

It is well known that many results about the monoid ( )XT  of all

(total) transformations on a set X have analogues on ( ).FMn  For

example, Howie [8] proved that ( ) ( )XXT Sym\  is generated by

idempotents (when X is finite) and Erdos [4] proved that every singular

matrix in ( )FMn  is the product of idempotent matrices. This similarity

originated the so called Independence Algebras [6] which provide a
common framework where it is possible to prove results that hold for both
sets and vector spaces. For example, the unified proof for Howie’s and
Erdos’s results referred to above appears in [5] (for a direct proof see [1]).

Let S be a monoid with group of units U, let USa \∈  and let G be a

subgroup of U. Denote by Ga :  the subsemigroup of S generated by

{ }.:1 Ggagg ∈−  Denote by Ga,  the subsemigroup of S generated by

{ } .Ga U  Throughout this paper, the brackets  always mean

“semigroup generated by”.

Symons [13] and Levi and McFadden [9] generalized Howie’s result

by proving that, for a finite set X and ( ) ( ),Sym\ XXTa ∈  the semigroup

( )Xa Sym:  is generated by its own idempotents and we have

( ) ( ) ( ).Sym\Sym,Sym: XXaXa =

In [3] it is proved that, for every ( ) ( ),\ FGLFMa nn∈

( ) ( ) ( ) ,\,: annn FGLFGLaFGLa I== (1)

where aI  denotes the set of all the matrices ( )FMb n∈  such that

( ) ( ).rankrank ab ≤

Recently Levi et al. [10] proposed the following problem. Let X be a

finite set and let ( ) ( ).Sym\ XXTa ∈  Describe the subgroups G of

( )XSym  such that .\,: GGaGa =  Their partial answer implies that,
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for ,4>X  this equality holds for the normal subgroups of ( ).Sym X

The aim of this paper is to generalize this result for the case of linear
groups.

Before moving to the linear case we complete the result of [10]
referred to above.

Theorem 1 [10]. Let ( ) ( )XXTa Sym\∈  and let ( )XG Sym≤  be a

normal subgroup.

(a) If ,4≠X  then .\,: GgaGa =

(b) If 4=X  and G is the alternating group on X, then =Ga :

GGa \,  if and only if ( ) { }.3,1∈Xa

(c) If 4=X  and ( ) ( ) ( ) ( ) ( ) ( ){ },2413,2314,3412,1=G  then =Ga :

GGa \,  if and only if ( ) 1=Xa  or ( ) ,2=Xa  aa ≠2  and each Ker-

class of a has exactly 2 elements.

Proof. For X such that ,4>X  the proof appears in [10]. It is a

matter of easy calculations to check the remaining cases.

2. The Main Result

Let ( ) ( ).\ FGLFMa nn∈  For every subgroup G of ( ),FGLn

( ) ( ).\,\,: FGLFGLaGGaGa nn⊆⊆

The following theorem is our main result and will be proved later.

Theorem 2. Let G be a normal subgroup of ( ).FGLn

(a) If G has at least one nonscalar matrix, then

( ) ( ).\,\,: FGLFGLaGGaGa nn==

(b) If G is a group of scalar matrices and ,0≠a  then

( ) ( ).\,\, FGLFGLaGGa nn≠ (2)

If G is a group of scalar matrices and ,0≠a  then GGaGa \,: =

in the conditions of Section 3.
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Let ( )FSLn  be the special linear group, the group of all matrices

( )FGLg n∈  such that .1det =g  According to [12], a subgroup G of

( )FGLn  is normal if and only if one of the following conditions is

satisfied:

• G contains ( ).FSLn

• 2,2 == Fn  and G is generated by

.
01
11




 (3)

• 3,2 == Fn  and G is generated by

.
01
10,

11
11





 −







−
(4)

• G is a group of scalar matrices.

Lemma 3. Let G be a subgroup of ( )FGLn  containing ( ).FSLn  Then

( ) .:: GaFGLa n ⊆

Proof. First, note that, if agge 1−=  and ,1GggH −=  for some

( ),FGLg n∈  then ( ) HeFGLe n :: ⊆  implies ( ) .:: GaFGLa n ⊆

As a matter of fact, if ( ) ,:: HeFGLe n ⊆  then it is not hard to see

that ( ) ( ) .:::: 11 GagHeggFGLegFGLa nn =⊆= −−

Case 1. Suppose that [ ] ,0 0aa ⊕=  where ( ).10 FMa n−∈  For every

,F∈λ  let ( ) ( ).1...,,1,diag FMd n∈λ=λ  Let ( )FGLab n:∈  and

suppose that ,1
1

1
1 kk aggaggb −−= L  where ( )....,,1 FGLgg nk ∈  Then

,1
1

1
1 kk ahhahhb −−= L  where ( ) ( ) .1

det GFSLgdh nigi i
⊆∈= −  Therefore

.: Gab ∈

Case 2. Suppose that a is similar to a matrix of the form

[ ] ,0 0aa ⊕=′  where ( ).10 FMa n−∈  Suppose that ,1agga −=′  where

( ).FGLg n∈  As G contains ( ) GggGFSLn
1, −=′  also contains ( ).FSLn
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According to the previous case, ( ) .:: GaFGLa n ′′⊆′  According to the

remark above, ( ) .:: GaFGLa n ⊆

Case 3. Now we shall consider the general case. Recall that a is

similar to a direct sum of a nilpotent matrix and a nonsingular matrix,
and a nilpotent matrix is similar to a direct sum of singular Jordan

blocks. For every positive integer p, let pJ  be the singular Jordan block

( ).
00

0 1 FM
I

p
p ∈



 −

Suppose that a is similar to ,
1

cJJe
upp ⊕⊕⊕= L  where c does not

exist, if a is nilpotent, and c is nonsingular, otherwise. Suppose that

,1agge −=  where ( ).FGLg n∈

For every positive integer p, choose a pp ×  matrix py  such that all

the entries ( ) ( ) ( )1,...,,1,2,,1 ppp −  belong to { },1,1 −  all the other

entries are equal to 0 and ( ).FSLy pp ∈  Then pppp JyJy 1−  has the form

[ ] pe⊕0  and has rank .1−p

Let ( ).
11

FSLIyyy nppnpp uu
∈⊕⊕⊕= −−− LL  Then eyeyf 1−=

has the form [ ] 00 f⊕  and .rankrankrank aef ==  Then

( ) ( ) ( ) .::: annn FGLaFGLeFGLf I===

As G contains ( ),FSLn  GggH 1−=  also contains ( ).FSLn  According to

Case 1,

( ) .:: HfFGLf n ⊆

As ( ) HFSLy n ⊆∈  and ,1eyeyf −=

.:: HeHf ⊆

Therefore ( ) .:: HeFGLe n ⊆  According to the remark at the

beginning of this proof, ( ) .:: GaFGLa n ⊆
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Proof of Theorem 2. (a) When G contains ( ),FSLn  the proof has

already been done in Lemma 3.

Suppose that ,2=n  2=F  and G is generated by (3). It is a matter

of easy calculations to check that, for all ( ) ( ),\ 22 FGLFMa ∈

.\, aGGa I=  By [2] (or [4] together with Lemma 1 of [7]), it follows

that

( ) ,\, aa EGGa II ==

where ( )aE I  denotes the set of the idempotents of .aI  Since in [11] it is

proved that ( ) ( ) ,\,: GGaEGaE =  it follows that

( ) ( ) .::\,\,: GaGaEGGaEGGaGa ⊆==⊆

As ( ) ( ) ,\,\, 22 aa FGLFGLaGGa II ⊆⊆=  it follows that

( ) ( ) ( ) .::\,\, 22 aGaGaEGGaFGLFGLa I==== (5)

Finally, suppose that ,2=n  3=F  and G is generated by (4).

Again, it is a matter of easy calculations to check that, for all

( ) ( ),\ 22 FGLFMa ∈  ,\, aGGa I=  where aI  denotes the principal

ideal generated by a. Therefore, by repeating the arguments used above,

we deduce that (5) is satisfied.

(b) Suppose that 0≠a  and G is a subgroup ( )FGLn  of scalar

matrices. Then { },: Λ∈λλ= nIG  for some subgroup Λ of { }0\F  and

.:\, Λ∈λλ= aGGa

As a is singular, there exists ( )FGLg n∈  such that the last column

of ag is equal to zero. Then a is similar to .1aggb −=

Suppose that (2) is false. Then

( ) ( ) .\,\,: ann FGLFGLaGGaa I===Λ∈λλ

As ,1aggb −=  it is easy to deduce that ,: abb II ==Λ∈λλ  what is

impossible, because all the matrices bλ  have the last column equal to

zero.
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3. The Scalar Case

It remains to study the equality

,\,: GGaGa = (6)

when G is a group of scalar matrices. This is the aim of this section.

Let ( ) ( ).\ FGLFMa nn∈  Let G be a subgroup of ( )FGLn  of scalar

matrices, that is,

{ },: Λ∈λλ= nIG

for some subgroup Λ of { }.0\F  Then

aGa =:    and   .:\, Λ∈λλ= aGGa

The equality (6) is trivial if either 0=a  or { }.1=Λ

Let F  be the algebraic closure of F and let ( )FGLg n∈  such that

agg 1−  is the Jordan canonical form of a. Suppose that

( ) ( ),1
1

1 trr t
JJagg σ⊕⊕σ=− L

where

( ) ( ) { }....,,1,
00

0 1 tiFM
I

IJ
i

i
ii r

r
riir ∈∈



+σ=σ −

Recall that the elementary divisors of a, over ,F  are the polynomials

( ) ( ) ....,,1
1

tr
t

r xx σ−σ−

The equality (6) is satisfied if and only if, for every ,Λ∈λ  there

exists a positive integer k such that .kaa =λ  Note that kaa =λ  is

equivalent to

( ) ( ( )) { }....,,1, tiJJ k
irir ii

∈σ=σλ (7)

Let Λ∈λ  and .F∈σ  Let r and k be positive integers. It is not hard

to calculate that ( )( )krJ σ  is an upper triangular matrix with its ( )vu,
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entry, where ,1 rvu ≤≤≤  equal to

0,  if ,vuk −<

( ) ( ) ,
!!

! vuk
vukvu

k +−σ
+−−

 if .vuk −≥

In the following results we use the remarks above to study the
equality (6), although it does not seem easy to write a simple and elegant
solution.

Let aΛ  be the semigroup of all F∈λ  such that there exists a

nonnegative integer l such that, for every nonzero eigenvalue σ of a in

,F  .lσ=λ

Theorem 4. Suppose that a is diagonalizable over .F  Then (6) holds

if and only if .aΛ⊆Λ

Proof. Suppose that (6) holds. Let .Λ∈λ  As ,: aGaa =∈λ

there exists a positive integer k such that .kaa =λ  Then (7) is satisfied.

From (7) it follows that, for every { },...,,1 ti ∈  .k
ii σ=λσ  Therefore, for

every { }ti ...,,1∈  such that .,0 1−σ=λ≠σ k
ii

Conversely, suppose that .aΛ⊆Λ  Let aΛ⊆Λ∈λ  and let l be a

nonnegative integer such that, for every nonzero eigenvalue σ of a in ,F

.lσ=λ  Let .1+= lk  It is not hard to see that (7) is satisfied. Note that,

as a is diagonalizable, nt =  and .11 === nrr L  Then ,kaa =λ  that is,

.: Gaaa =∈λ  It follows that (6) holds.

Theorem 5. Suppose that F has characteristic 0. Also suppose that

{ }.1≠Λ  Then (6) holds if and only if a is diagonalizable over F  and

.aΛ⊆Λ

Proof. Bearing in mind Theorem 4, it remains to prove that, if (6)
holds, then a is diagonalizable.

Suppose that (6) holds. Let { }.1\Λ∈λ  As ,: aGaa =∈λ  there

exists a positive integer k such that .kaa =λ  Then (7) is satisfied.
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Suppose that there exists { }ti ...,,1∈  such that .2≥ir  Bearing in mind

the form of the powers of the Jordan blocks, we deduce that k
ii σ=λσ

and .1−σ=λ k
ik  If ,0=σi  we would have ,0=λ  a contradiction.

Therefore .0≠σi  Then 11 −− σ=λ=σ k
i

k
i k  and k=1  so that

,11 =σ=λ −k
ik  a contradiction. Therefore ,1=ir  for every { },...,,1 ti ∈

and a is diagonalizable over .F

Lemma 6. Suppose that { }.1≠Λ  If (6) holds, then every elementary

divisor of a, that is, a power of x has degree 1.

Proof. Suppose that (6) holds and there exists { }ti ...,,1∈  such that

2≥ir  and .0=σi  Let { }.1\Λ∈λ  As ,: aGaa =∈λ  there exists a

positive integer k such that kaa =λ  and ( ) ( ( )) .00 k
rr ii

JJ =λ  A simple

calculation shows that this equality is impossible.

Corollary 7. Suppose that { }1≠Λ  and that a is nilpotent. Then (6)

holds if and only if .0=a

Proof. It follows trivially from Lemma 6. Recall that a is nilpotent if

and only if all the eigenvalues of a are equal to 0.

Proposition 8. Suppose that { }.1≠Λ  Let { }....,,1 ti ∈  If (6) holds,

2≥ir  and ,0≠σi  then iσ  is a root of the unity.

Proof. Let { }.1\Λ∈λ  As ,: aGaa =∈λ  there exists a positive

integer k such that kaa =λ  and ( ) ( ( )) .k
irir ii

JJ σ=σλ  Then k
ii σ=λσ

and .1−σ=λ k
ik  As ,1≠λ  it follows that 2≥k  and ,1−σ=λ k

i  where

1−k  is a positive integer. Analogously, as { },1\1 Λ∈λ−  there exists a

positive integer l such that .1 l
iσ=λ−  Hence .1 1−+σ= kl

i

Define ar  as follows:

,0=ar if a is nilpotent,

{ }{ },0,...,,1:max ≠σ∈= iia tirr  otherwise.



w
w

w
.p

ph
m

j.c
om

JOÃO ARAÚJO and FERNANDO C. SILVA544

Theorem 9. Suppose that F has characteristic .0≠p  Also suppose

that { }.1≠Λ  Then (6) holds if and only if

(a) every elementary divisor of a, that is, a power of x has degree 1,

and

(b) for every ,Λ∈λ  there exists a nonnegative integer l such that

–  for every nonzero eigenvalue σ of a in ,, lF σ=λ

–  p divides l, if ,2≥ar

–  p divides ( )
( ) ,

!1!
!1
+−

+
sls

l  if { }1...,,2 −∈ ars  and .3≥ar

Proof. The proof follows easily from the remarks above and using
arguments already applied previously.

Necessity. Condition (a) has been proved in Lemma 6. Let .Λ∈λ  As

,: aGaa =∈λ  there exists a positive integer k such that kaa =λ

and (7) is satisfied. It is not hard to see that (b) is satisfied, with

.1−= kl

Sufficiency. Let Λ∈λ  and choose a nonnegative integer l satisfying

the conditions of (b). Let .1+= lk  It is not hard to see that (7) is

satisfied. Then ,kaa =λ  that is, .: Gaaa =∈λ  Therefore (6) holds.

Examples 10. If ,2=F  then there is a unique group of scalar

matrices, { }.nIG =  Therefore, (6) holds.

Suppose that 3=F  and 2=n  and let

{ } { }{ },1,1:, 222 −=Λ∈λλ=−= IIIG

the unique nontrivial group of scalar matrices. Let ( ) ( ).\ FGLFMa nn∈

The canonical Jordan form of a has one of the following forms:

( ) ( ) ( ).0,0,1diag,0,1diag,0 2J−

• If ,0=a  then (6) holds.

• If a is similar to ( ),0,1diag  then { };1=Λ⊆/Λ a  therefore (6) does

not hold.
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•  If a is similar to ( ),0,1diag −  then aΛ=Λ  and (6) holds.

• If a is similar to ( ),02J  then (6) does not hold, according to

Lemma 6.
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