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Abstract 

Applying the finite difference scheme for the Burgers’ equation is 
evaluated numerically. Analyzing the unconditionally stable of the 
finite difference form by Von Neumann stability analysis and 
examining the truncation error are shown. Two cases of this problem 
are numerated by invariants of motion and the results compare with 
the test problem that the results are implemented and effective. 

1. Introduction 

The Burgers’ equation is used in fluid dynamics teaching and in 
engineering as a simplified model for turbulence, boundary layer behavior, 
shock wave formation, and mass transport. This equation has been studied 
and applied for many decades. Many different closed-form, series 
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approximation, and numerical solutions are known for particular sets of 
boundary conditions. Many problems can be modeled by this equation as 
follows: the Burgers’ equation is nonlinear model of the incompressible 
momentum equations, a one-dimensional analogue of the Navier-Stokes 
equations. The Burgers’ equation is evaluated exactly for an arbitrary initial 
and boundary conditions in [1-5]. These analytic solutions are impractical for 
the small values of viscosity constant due to slow convergence of serious 
solutions, which was illustrated in the study of Miller [6]. Thus many 
numerical methods are constructed to get solutions of the Burgers’ equation 
for small values of viscosity constant which corresponds to steep front in the 
propagation of dynamic wave forms. Recently, the mathematicians used 
many methods to solve this equation in the following: 

In 2004, Aksan and Ozdes [7] solved a variational method constructed on 
the method of discretization in time. The numerical results obtained by these 
ways for various values of viscosity have been compared with the exact 
solution. Dogan [8] applied Galerkin finite element method for the numerical 
solution of Burgers’ equation. A linear recurrence relationship for the 
numerical solution of the resulting system of ordinary differential equations 
is found via a Crank-Nicolson approach involving a product approximation. 
In 2005, Dag et al. [9] used cubic B-spline collocation method and applied to 
the time-splitted Burgers’ equation. In 2006, Javidi [10] had a new method 
for solving of the Burger’s equation by combination of method of lines 
(MOL) and matrix free modified extended backward differential formula 
(MF-MEBDF). The method of lines semi-discretization approach is used to 
transform the model partial differential equations (PDEs) in a system of first 
order ordinary differential equations (ODEs). Chen and Wu [11] developed a 
kind of univariate multiquadric (MQ) quasi-interpolation and used it to solve 
Burgers’ equation (with viscosity). They constructed the MQ quasi-
interpolation, which possesses the properties of linear reproducing and 
preserving monotonicity. In 2009, Dhawan [12] solved numerically using a 
finite element method, where a combination of cubic B-splines is used as an 
approximating function. Different comparisons for the test problem in hand 
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are made to validate the proposed numerical technique. Ohwada [13], solving 
the Burgers’ equation via the diffusion equation is proposed. The time 
variation of numerical solution is given by a rational function. The 
coefficients of the polynomials in the denominator and numerator are 
determined by simple algebra. In the case of vanishingly small viscosity, the 
numerical method becomes shock-capturing only by increasing the viscosity 
to the order of mesh spacing locally around shocks. Zhu and Wang [14] used 
the derivative of the quasi-interpolation to approximate the spatial derivative 
of the dependent variable and a low order forward difference to approximate 
the time derivative of the dependent variable. In 2010, Jiang and Wang [15] 
used the cubic B-spline quasi-interpolation and the compact finite difference 
method to find the solution of the Burgers’ equation. They used the 
derivative of the quasi-interpolation to approximate the spatial derivative and 
a two-order compact scheme to approximate the time derivative. 

In this paper, we consider the Burgers’ equation 

 ,0=ν−+ xxxt uuuu  (1) 

where ν is the kinematics viscosity of the fluid, x and t are differentiation. 
With the initial and boundary conditions as follows: 

( ) ( ) ,,0, bxaxfxu ≤≤=  (2) 

 ( ) ( ) [ ].,0,,,, 21 Tttbutau ∈β=β=  (3) 

We applied the finite difference scheme for this equation, check stability 
with linearized Fourier method and also show the truncation error. Finally, 
we choose two problems for the test and compare with the analytic solution. 

2. Finite Difference Method and its Stability 

Letting ( ) 2
2
1 uug =  and substituting in equation (1) yield 

 .0=ν−+ xxxt ugu  (4) 
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Applying the finite difference scheme into equation (4), we get 
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where h and k are the mesh sizes in space and time. Substituting equation (6) 
into equation (5), we get the new finite difference form as 
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Lemma. The local truncation error of the finite difference scheme 

equation (7) is ( ),22 khO +  if ( )txu ,  is smooth enough and this method in 

equation (4) is a marginally stable. 

Proof. Using the Von Neumann analysis to verified the difference 
scheme equation (7) and applied Fourier method in the form 

 ,ω= imnn
m epu  (8) 

where i is an imaginary unit, ω is an arbitrary real number, and ( )ω= pp  is 

a complex number whose value must be found. 
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Then substituting equation (8) into equation (7), we get a new form 

 ,121 −+ = nn pqp  (9) 

where q is the growth factor which in the relation as follows: 

 ,01sin22 =+ψ− iq  (10) 

where 
( ) A

CD
BmB

mD =
+−ω−

ω=ψ ,
2cos1

sinsin  and .1−=i  

From equation (10), we get 121 == qq  implied that the finite 

difference method is marginally stable. 

Let ( )nm
n
m txuv ,=  be the analytical solution of equation (1) and x, t be 

independent variables. Substitute n
mv  into finite difference form of equation 

(1), then we get 
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Applying Taylor’s expansion at ( )nm tx ,  becomes 
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Thus the local truncation error is ( ).22 khOT n
m +=  

3. The Error Norms and Numerical Approximation 

The test problems are studied in order to show the strongest and 
numerical accuracy of the proposed methods. Using the error norms 2L  and 

∞L  measure the accuracy that are shown in the following: 
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Problem 1. The exact solution (Shock-like solution) of the Burgers’ 
equation (1) is 

 ( )
( ) ( )

,1,10,
1

,
4

0
2 ≥≤≤

+
= tx

ett

txtxu
vtx

 (13) 

where ( ),81 ve  with the initial condition at time 1=t  and boundary 
conditions are ( ) ( ) .0,1,0 == tutu  We used ,01.0=h  005.0=ν  to solve 

this problem. The time runs from 1.7 to 3.25. These values still in the interval 
[ ]1,0  and the results of exact solution and approximate solution are shown in 

Table 3.1. Results of this problem compared with analytic solutions and 
compared with two norms of CBCM. The exact solutions for such t 
compared with numerical solutions are smallest error. In time ,7.1=t  =x  

,9.0,5.0,3.0  ,5.2=t  6.0,5.0,4.0,2.0,1.0=x  and ,25.3=t  ,2.0,1.0=x  

,6.0,5.0,3.0  the results of analytic solutions equal to numerical solutions. 

Error norms of the presented solutions are better than CBCM with [9]. 

Table 3.1. Comparison of solutions in different time when 005.0=ν  with 
005.0=h  and 01.0=Δt  

x Exact Numerical Exact Numerical Exact Numerical 
 7.1=t  7.1=t  5.2=t  5.2=t  25.3=t 25.3=t  

0.1 0.05882 0.05883 0.04000 0.04000 0.03077 0.03077 
0.2 0.11765 0.11765 0.08000 0.08000 0.06154 0.06154 
0.3 0.17646 0.17646 0.12000 0.12001 0.09231 0.09231 
0.4 0.23517 0.23516 0.15998 0.15998 0.12307 0.12306 
0.5 0.29192 0.29192 0.19983 0.19983 0.15380 0.15380 
0.6 0.29591 0.29593 0.23812 0.23812 0.18430 0.18430 
0.7 0.04193 0.04211 0.25310 0.25234 0.21270 0.21271 
0.8 0.00065 0.00064 0.10210 0.10225 0.21844 0.21838 
0.9 0.00000 0.00000 0.00554 0.00562 0.10126 0.10125 

3
2 10×L   2.46636  2.11154  1.86254 

310×∞L   26.5260  23.9634  20.5387 
3

2 10×L CBCM  2.46642  2.11870  1.92482 
310×∞L CBCM  27.5770  25.1517  21.0489 
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Problem 2. Consider the Burgers’ equation (1) with initial condition 

 ( ) ,10,sin0, <<π= xxxu  (14) 

and boundary conditions 

 ( ) ( ) .0,0,1,0 >== ttutu  (15) 

The exact solution with boundary conditions from equations (2) and (3) are 
obtained as 
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where 0a  and na  are the Fourier coefficients and defined as the following 

[3]: 

( ) [ ] ,
1

0
cos12

0
1

∫ π−π− −
= dxea xv  

( ) [ ]∫ π= π−π− −1

0
cos12 .cos2

1
xdxnea xv

n  

In this problem, we used 1,01.0 == tv  and .01.0=h  Table 3.2 shows the 

comparison of the numerical method with exact solution and other methods 
such as MQQI [11] and BSQI [14]. The MQQI methods used the slope 

parameter .109.2 3−×=c  We observed that the numerical solutions are 
better than MQQI and BSQI. The numerical solutions are closed to the 
analytic solutions. 

4. Conclusions 

In this paper, we get the efficient numerical method for the Burgers’ 
equation which compared with exact solutions and other methods are 
acceptable. The comparison of two problems with analytic solutions is 
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getting the small error. Therefore, we can conclude that the difference 
scheme is reliable and efficient to find the numerical results of the Burgers’ 
equation. 

Table 3.2. Comparison of solutions in different time when ,01.0=v  1=t  

and 01.0=h  

x Exact Numerical MQQI BSQI 
0.1 0.0754 0.07548 0.07868 0.07530 
0.2 0.1506 0.15035 0.15202 0.15049 
0.3 0.2257 0.22563 0.22554 0.22554 
0.4 0.3003 0.29973 0.29904 0.30002 
0.5 0.3744 0.37452 0.37226 0.37407 
0.6 0.4478 0.44746 0.44484 0.44742 
0.7 0.5203 0.51992 0.51643 0.51985 
0.8 0.5915 0.59108 0.58622 0.59106 
0.9 0.6600 0.65552 0.62956 0.65964 
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