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Abstract

In this paper, we present a detailed study of the asymptotic and
conditional asymptotic densities and give some applications. Some new
existence criteria are established. We give some new results that prove
and simplify those obtained by Diaconis [Weak and strong averages in
probability and the theory of numbers, Ph.D. Dissertation, Harvard
University, Cambridge, Mass., 1974].

1. Prelude

We consider in this approach a family R = {u,, a € T'} of c-finitely
additive probability measures on the set ((N*) of subsets of N* where

for a subset E of N*,

ha(E) = vy (B) =+ 3" I (k)
k=1

and Iy is the indicator function of the subset E.

This family v = {v,,, n > 1}, where v, is the uniform probability
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514 N. DAILI

measure on {1, ..., n}, is well known and studied. It is called a family of

frequencies.

By taking the limit when n tends to infinity, we diffuse the
considered measure, and we obtain that we call an asymptotic density. In
this paper, we present a detailed study of asymptotic and conditional
asymptotic densities. We give some new existence criteria and some

applications.

2. Main Results

2.1. Asymptotic density of a subset E of N*

Definition 2.1. Let E be a subset of N*. We consider, for an integer

n > 1, the expression defined by

valE) =+ 3" In(k)
k=1

where I(k) is the indicator function of the set E.
(a) We say that E has the number /¢ as a lower asymptotic density, if
¢ = liminf v, (E),
n

when n tends to + . We denote this limit by d(E); notice that this limit
belongs to [0, 1].
(b) We say that E has the number ¢ as an upper asymptotic density,
if
¢ = limsupv,,(E),

n

when 7 tends to + 0. We denote this limit by d(E); notice that this limit
belongs to [0, 1].

Proposition 2.1. Let E be a subset of N*. Then
0<dE)<d(E)<1.

We give a theorem which characterizes the set of upper and lower

densities; its proof requires several constructions.
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Theorem 2.2 ([1, pp. 38-39], [4, p. 179]). (1) Let E be an infinite
subset of N*, and let F be a subset of E. We put
d(E)=s and d(E)=1i.
Then, the set of couples
S(E) = {(d(F), d(F)) € [0,1]x[0,1] = R? : F < E}

possesses the following properties:

(a) S(E) is enclosing in the closed trapezium of vertices:
(0; 0), (s;0), (s52), (i)
(b) S(E) contains the closed triangle of vertices:
(0; 0), (s;0), (s51);
(c) S(E) is a convex set;
(d) S(E) is a closed set.

(2) Conversely, consider two real numbers s and i such that
0<i<s<l,
and a subset S of R2 satisfies (a)-(d) as above, then there exists a subset E
with
d(E)=s, dE)=i and S(E)=S.

We are interested in the asymptotic behaviour of the sequence
(Vi (E))y51-
Proposition 2.3. The set of limit points of the sequence (v, (E)),., is

the interval [d(E), d(E)).

Definition 2.2. We say that a subset E of N* admits an asymptotic

density /, if the numerical sequence (v, (E)),.; admits a limit equal to ,

(necessarily this limit belongs to [0, 1]), when n tends to + c. If this is
the case, we shall denote this limit by d(E), and we shall say that d(E)

1s an asymptotic density of the set E.
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We write © for a class of subsets of N* which has an asymptotic

density.
2.2. Some applications
Proposition 2.4. The set E of even natural integers admits an

asymptotic density d(E), and d(E) = %

Proposition 2.5. Generally, for all m e N*, the class mN" of

integral multiples of m (or divisible by m) belongs to D, and

% 1
Theorem 2.6. For an integer b > 2, the set

Ey, = U E,
k>0

where Ej, = {n: b%* <n <), k>0 does not admit an asymptotic
density.

Proof. It is enough to construct two subsequences of the sequence

(vp(E)),s; which converge to two distinct limits. We choose as
subsequences those whose indices coincide with the antecedents and the

consequents of connected components [er, b2 +1[ of N*, ie., with

b2’ 1 and b2,

— Subsequence indexed by n = b2 —1,r>1.

r-1
N,(E) = card(EN{L, ..., b1} = card( U [%*, b2k+1[J
k=0

r—1 . . r—1 L b2r 1
_ 2k+1 1 2kN _ _ 2 _ -
=D ) = b 1);)@) =5

k=0

Ny(E) v -1 1 1
n b+l p2r 1 b+1

Vn(E) =
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and

1
b+1°

d(E) -

— Subsequence indexed by n = b2+ r > 0.

r1)_1
N,(E)= (b - 1)Zb2k (b- 1)2(1;2)” b-n2_—-1 e
CNLE) 1 pD 1 1 P2 P
va(E) = no 2+l b+l b+1 p2r+l b+1(1 b )
and
= b
d(E):b+1'

So, the sequence (v,,(E)) ., does not converge, and hence E ¢ D.

n>1
Below are examples of subsets of N* which do not possess asymptotic

density.

Corollary 2.7. Let E be the set of natural integers whose decimal
development contains an odd number of digits. Then, E does not have an

asymptotic density.

Proof. We write E as disjoint union of its connected components. Let
m be an element of E with (2% + 1) digits. Then

E= U E,, E, =[10%,10**"'[ with E;NE; =@ forall i # j.
k>0

We prove that E does not admit an asymptotic density. It is enough to

construct two subsequences namely those whose indices coincide with the

antecedents and the consequents of connected components [102k , 102k+1[,

l.e., with 10%* —1 and 10%**1, The results follow from Theorem 2.6:

1

e Subsequence indexed by n = 102" —1, 7 > 1. Then d(E) = T
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e Subsequence indexed by n =10*!, r>0. Then d(E) = % It

follows that the sequence (v,(E)),.; does not converge, and hence E does

not admit an asymptotic density.

Corollary 2.8. Let E be the set of natural integers whose binary
development contains an odd number of digits. Then, E does not admit an

asymptotic density. In other words, the set

E=U E,
k>0

where Ej, = {n:2?* <n <221} k>0 does not admit an asymptotic
density.

Proof. It is enough to construct two subsequences of the sequence

(vn(E)), 5, which converge to two distinct limits.

We choose as subsequences those whose indices coincide with the

antecedents and the consequents of connected components [22", 227 1[ of

N*, i.e., with 22 —1 and 22*. The results follow from Theorem 2.6:

e Subsequence indexed by n = 22" -1, 7 > 1. Then d(E) = %

e Subsequence indexed by n = 2%"*! r > 0. Then d(E) = % So, the

sequence (v, (E)), ., does not converge, and hence E ¢ D.

nx1
3. Properties of Asymptotic Density of a Subset E of N*

Proposition 3.1. The set © contains the algebra A of finite and

cofinite subsets of N*.

Proposition 3.2. Let E € ® and k € N such that E +k € p(N*).
Then, E+k e® and d(E +k)=d(E). In other words, the asymptotic

density d is invariant under translation.
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Proposition 3.3. Let Ec® and ke N. Then, kEc€ ® and

d(kE) = %d(E).

Proposition 3.4. (a) Let E c N*. If E is finite, then d(E) = 0; if E is
cofinite, then d(E) = 1.

(b) N* € ®, and d(N*) = 1.

Proposition 3.5. (a) © is a weak Dynkin class,

(b) d is additive.

Proposition 3.6. Let E; and Eg9 be two elements of ©. Then, the

following four properties are equivalent:
(p1) Ey UE; € D;
(p2) Ei1NE; € D;
(p3) E1\Ey € D;
(p4) Eo\E; € D.
Moreover, if any one of these four properties is satisfied, then
d(Ey U Eg) = d(Ey) + d(E3) - d(E; N Ey).

Proof. e (p;) = (pg) For this purpose, let E; and E,; be two
elements of ©. We suppose that E; U E5 € ©, and prove that E; (| Eqg

is an element of ®. ® 1is stable under proper difference. Let
E,UEy €®. Then

E=(E1 UEZ)\E]_ E@, F=(E1UE2)\E2 E@, and EﬂFzg

So
(E1NEy)=(E, UE;)\N(EUF) e D.

¢ (py) = (p3) For this purpose, let E; and Eg be two elements of D.
We suppose that E; N Ey; € ©, and that E;\E; is an element of D.
Then
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E\\Ey = E\\(E; N Eg),

whence the result, since D is stable under proper difference.

¢ In an analogous way, we prove that

(p3) = (p4) and (py) = (p1),
and that
d(E; U Ey) = d(Ey) + d(Ey) - d(Ey N Ey).
Theorem 3.7. The class © is not a c-algebra.

Proof. Since ® contains the finite and cofinite subsets of N*, the

c-algebra o(®) generated by © coincide with the set of subsets of N,

le.,
o(D) = p(N*).
Thus © being a o-field, it coincides with p(N").

To prove that © is not a o-field, it is enough to construct a subset
E € p(N*) which does not belong to ®. It is precisely what we did in
Corollaries 2.7 and 2.8.

Theorem 3.8. The class ® is not stable under finite intersections, so

it is not an algebra.

Proof. We start from the set E of Corollary 2.8, which does not admit

an asymptotic density.

E=U E,
k>0

where
E, ={n:2%% <n <221y ko0,
We note that

E¢ = U F,,
k=0
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where
F, ={n:22%1 < p <2242 >0,
We introduce the sets

A = 2N the set of even numbers > 0;
B = 2N +1 the set of odd numbers > 0.

By Corollary 2.7 and Proposition 3.2, it follows that A, B € ® and that

d(A) = d(B) =

N

We consider at present the set
F=(ANE)U(BNE°).
It is the disjoint union of even numbers of E, and odd numbers of E°.

e We show that F € ©, and that d(F) = % For this purpose, the

union
(ANE)U(BNE)
is disjoint. For all n > 1,
v, (F)=v,(ANE)+v,(BNE°), (1)
and the same structure of the set
E°= U F,
k=0

shows that

Nn(B N EC) = Nn(A N EC)_ IAﬂEC(n)'

So, for all n > 1,

Va(BNES) = vy (ANE) =1, o (n). @)
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It follows from (1) and (2) that

1
n

Va(F) = va(A N E)+ vy (AN ES) =TT, o(n) = v, (A) =T, (o)

So, by taking limit when n tends to + o, v,(F) tends to % It

follows that F € ©, and d(F) =

N

e For sets A and F in ®; we show that the intersection A (| F does
not belong to ®, and thus ® is not an algebra. For this purpose, we have

ANF=ANE.

So, forall n > 1
1 1
Vn(A N E) = Evn(E)‘{'Zgn’

where |g, | < 1.

But then, since E does not belong to ®, the sequence (v, (E)) ., does

n>1

not converge, so the sequence (v, (A N E)) does not converge. Again,

n>1

then
ANF=ANEegD.
Theorem 3.9. Consider d :® — [0,1] which assigns an element

E € D to its asymptotic density d(E). Then d is not c-additive on ®. In

other words, if (E, )n21 is a sequence of disjoint elements of ® such that

E=UE,eD with E;NE; =3, forall i # j, 3)

n>1

then the following is not necessarily true:

d(E) = Z d(E,).

n>1
Proof. We take

E,={n}, n>1.
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Then, for all n > 1,
E,e® and d(E,)=0.
The set of natural integers can be represented in the form

N*=UE,e®,

n>1

with E; N Ej =, for all i # j. Since

N* e ® and d(N*) =1,

we have

1= d(v°) = d( U Enj 3 d(E,) - o.

>
nzl n>1

So, d 1s not c-additive on .
We have the following theorem which gives the structure of d.

Theorem 3.10. The assignment d : D — [0, 1] sending an element
E € D to its asymptotic density d(E) is a finitely additive probability

measure, i.e., it satisfies
(py) d(N*) =13
(p2) if (Ep ) <p<, is a finite sequence of disjoint elements of ®, then

d(k(ﬁ Ekj = Y d(E);

k=1

(p3) (p3); disinvariant under translation, i.e., for all E € © and for

all k e N,

d(E + k) = d(E);

(p3)y d satisfies, for all E € ® and for all k e N,

d(kE) = %d(E).
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Proof. The proof follows on the lines of the previous results.

Theorem 3.11. The class © of subsets of N* possessing asymptotic

densities is an a-class. In other words, it satisfies the following properties:
(p1) N" e®;
(pg) D is stable under complementation;
(p3) D is stable under finite disjoint unions;

(p4) (p4); D is stable under translation, i.e., for all E € © and for
all k e N,

E+Fke D
(p4)y D is stable under the change of scale, i.e., for all E € © and
forall k € N¥,
RE € ®.

Proof. e Properties (p;), (p2), (p3) and (py), can be verified easily.

e For (py), we observe that for all E € © for all k € N*,

lim v, (kE) = %d(E).

(n—+0)

Theorem 3.12. Let E be an element of ©. Then for all ¢, with
0 < ¢ < d(E), there exists a subset E* of E such that d(E*) = /.

Proof. We look at the following three cases:

e / = 0, in which case the result is obvious;

e / = d(E), in which case the result is obvious;

e We give the proof for E c N*; for all /e ]0,1[, there exists
E e © such that d(E) = ¢. We construct

E = Ulpr, qr [
k>1
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as follows: p; : arbitrary, ¢; : the first integer > p; such that

Vg, (E) > ¢

py : thefirstinteger > g; suchthatv,, (E) < /,
qp : thefirstinteger > py such that vy, (E) > ¢
and, by induction
{pk : the first integer > gj_; such that v, (E) </,

qp, © the first integer > p; such that v, (E) > 1.

Then, we have for all £ > 1

[Vp, (B) = 1| < | vy, (BE) = v,  (E)|< pl_k
| vg, (B) = 1] < | vg, (E) = vq,  (E)| < é,
SO

Vp, (E) > ¢ and vg, (E) > 1, as (k — +).

The proof, for E* < E, holds immediately from the above argument. For

this purpose, p; : arbitrary, g¢; : the first integer > p; such that
v (ENE")> ¢

py : thefirst integer > gy such thatv, (ENE) </,
qy : thefirstinteger > py suchthat vy, (ENE") > ¢

and, by induction

Py : thefirstinteger > g;_; suchthatv,, (EN E*) <1,
qp, : thefirst integer > p;, such that vy, (E E*) > 1.

Then, we have for all £ > 1

|vpk(EﬂE*)—€|§|vpk(EﬂE*)—v

% 1
pkfl(EnE )l < Ea

Vg, (ENE*) =] <|vg, (ENE")-

3 1
Y ENE < —,
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so

Vo, (E N E*) > ¢ and where Vg, (EN E*) > 1, as (R — +w).

4. Existence Criteria of an Asymptotic Density of a Subset £ of N*

Let E be a subset of N, which is neither finite nor cofinite. It can be

represented by the disjoint union of its connected components, i.e., by

E = Ul[pn’ an [’

nz

where (p,,),51> (9,),>; denote two sequences of strictly positive integers

satisfying
Vnz1, p, <q, < Pn+1»

where

[pn’Qn[:{kEN* : Pn Sk<qn}
denotes the nth connected component of E.
Criterion > ([1, p.47], [3]). Let

E = U [pn,’ Qn, [,
nx1

be a subset of N, neither finite nor cofinite and

Pn =4n = Pn> On =dn —dp-1 (n e 1) (QO = 1)‘
Let ¢ be a real number such that 0 </ <1 and the following
properties hold:

(P1) Pn ~ -1, as (n — +o);

(p2) Pn ¢, as (n — +o).
Gn

Then, E admits an asymptotic density d(E) and d(E) = ¢. If ¢ = 0, then
the only condition (py) implies that d(E) = 0.
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Proposition 4.1. Let

E = U[P(k), Qk)[,

U
k>1
where P(k) and Q(k) are polynomials with integral coefficients > 0 in k,
defined by

{P(k) = ak” + bE" £ O(R"7Y),
Q(k) = ak™ + ck" ! + O(k" 1),

where n € N is the common degree of P and of Q.

We suppose that
c-b
na

0< < 1.

c—-b

Then, E admits an asymptotic density d(E) and d(E) = —

Remark 4.1.

o If deg(P) > deg(®), then from some rank each of the intervals
[P(E), Q(k)[ is empty, E is finite and d(E) = 0.

o If deg(P) < deg(®), then each of intervals [P(k), @(k)[ overlaps the
next, E is cofinite and d(E) = 1.

The condition deg(P) = deg(®) is thus a necessary condition in order
that from some rank all intervals [P(k), @k)[ are nonempty and

disjoint. In other words, there exists a k, € N such that
Vk > ky, P(k)< Q(k) < P(k+1). @)

We say this case to be the regular case, E is then neither finite nor

cofinite.

Remark 4.2. We put

{P(k) = ak™ + O(k"™),
Q(k) = a"k" + O(k™),

where n € N* is the common degree of P and Q.
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The condition (4) implies that
ak™ + O(k™) < a"k™ + O(k™) < a(k +1)" + O(k™)

so it holds that

a<a, a <a, Ile., a=a.
By taking this condition into account, we put
P(k) = ak™ + bE" L + O(E" 7)),
{Q(k) = ak" + k"' + O(k" V),
where n € N* is the common degree of P and Q.

The condition (4) implies the following two conditions:

{bk”‘l + O(R" ™) < ek + Ok V),
(c - na)k" ™ + O(k" ) < b + O™ 1),

so it holds that
b <ec, c—na <b.

In other words,

na

®)

This condition is a necessary condition in order to have (4), but it is

not sufficient.

We obtain a sufficient condition to fill in (5) the sign of weak
inequalities by the sign of strict inequalities. In other words to fill (5) by

c-b

0< <1.

In this case, we put

S

{pk = P(k) = ak™ + bk™ ! + O(k™ 1), 0<C"

q, = Q) = ak™ + ck" ™t + O(k" 1), na

Pr =qr — P = (c—B)E"™ + O™ ™),
L =qp —Qp1 = nak™ ™ + O(k”_l).

(6
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We verify that
(P1) P ~ Qp-1s as (B — +o);

P c—b
__)_
(pz) o, na

, as (k — +o).

c—-b

It follows that E admits an asymptotic density d(E) and d(E) =

We have the following particular case of the previous proposition.

Proposition 4.2. Let
E=U[2n-1,2n][

n>1

be the set of odd integers > 0. Then, E admits an asymptotic density d(E)
and d(E) = %

Proof. For this purpose, we put
P, =2n -1, q, = 2n,
Pn =4n — Pp = 1,
Opn =qn —qp1 = 2.
We verify that

(P1) Pn ~ Qu-1, as (n - +o);

Pn _ 1
(p2) o _2'

n
Then E admits an asymptotic density d(E) and d(E) = %
Proposition 4.3. Let E be a subset of N*, which we write in the form

E = U [pka Qk [a
k>1

pp = 107" P(k) = ak + b,
qr = 109(%), Q(k) = ak + c.
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We suppose that a, b, ¢ are real numbers satisfying:

(1) a > 0;

(2) forall k 21, p; and q; are integers > 1;

(3)O<C;b<1.

Then, E does not admit an asymptotic density.

Proof. For this purpose, we put

pk qk _ pk — 10ak+C _ 1Oak+b

Gk — qk _ qk_l — 1Oak+c _ 10(1(k—1)+c‘
We verify that
c-b

(py) 4% = 0 0% 1

(p)p_k_ﬂ
 op 1-10¢

It follows from Theorem VII.9 in [1, Chapter VII] that E does not admit
an asymptotic density but

am) =10 (7 122010
B 1-107¢

and

5. Conditional Asymptotic Density

A good amount of work in analytic number theory is concerned with

the distribution of prime numbers. To answer some questions in this

area, it is natural to consider conditional asymptotic density on the prime
numbers.
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Definition 5.1. Let E be a subset of N*, [[(n) be the number of
prime numbers < n and [z (n) be the number of prime numbers < n in

E. Then, we put

We say that E admits the number ¢ as a conditional asymptotic density,

related to P, if the limit, lim v,(E|P) exists and equals to ¢/,
(n—>+o0)

(necessarily this limit belongs to [0, 1]). If this is the case, then we shall
denote the conditional density by d(E |P), or plainly by d.(E).

Definition 5.2 [5]. Let f:N* - R™ be a positive arithmetic

function such that

if(n) = +o0
n=1

and

n-1
F)+ | (k)= f(k + 1))
k=1

S (k)
k=1

lim =0.

(n—+o0)

Let E be a subset of N* and

D> )

Vn(E|f) = lSkSn,keE

S 1k
k=1

Then we say that E admits the number ¢/ as a conditional asymptotic
density, conditionally to f, if v, (E|f) tends to ¢, when n tends to +oo
(necessarily this limit value belongs to [0, 1]). If this is the case, we
denote this conditional density by d.(E).



532 N. DAILI
We have the following theorem:

Theorem 5.1 [1]. (1) Let E be an infinite subset of N* and let F be a
subset of E. We denote by c_ic(E) the lower conditional asymptotic density

and by JC(E) the upper conditional asymptotic density of the sequence
Vo, (E|f). Then the set of couples

Se(E) = {(d.(F); d(F)) € [0,1]x[0,1] =« R? : F < E}

has the following properties:

(@) S.(E) encloses the closed trapezium having vertices:
(0; 0), (s;0), (s52), (i)
(b) S.(E) contains the closed triangle of vertices:
(0; 0), (s;0), (s50);
(¢) S.(E) is a convex set;
(d) S.(E) is a closed set.

(2) Conversely, consider two real numbers s and i, such that

0<i<s<l.

If a subset S of R2 satisfies (a)-(d) as above, then there exists a subset E
with

d(E)=s, d.E)=i and S,E)=S.
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