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Abstract

In this paper, we present a detailed study of the asymptotic and
conditional asymptotic densities and give some applications. Some new
existence criteria are established. We give some new results that prove
and simplify those obtained by Diaconis [Weak and strong averages in
probability and the theory of numbers, Ph.D. Dissertation, Harvard
University, Cambridge, Mass., 1974].

1. Prelude

We consider in this approach a family { }T∈αµ= α ,R  of σ-finitely

additive probability measures on the set ( )∗℘ N  of subsets of ∗N  where

for a subset E of ,∗N

( ) ( ) ( )∑
=

α =ν=µ
n

k
En kI

n
EE

1

1::

and EI  is the indicator function of the subset E.

This family { },1, ≥ν=ν nn  where nν  is the uniform probability
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measure on { },...,,1 n  is well known and studied. It is called a family of

frequencies.

By taking the limit when n tends to infinity, we diffuse the
considered measure, and we obtain that we call an asymptotic density. In
this paper, we present a detailed study of asymptotic and conditional
asymptotic densities. We give some new existence criteria and some
applications.

2. Main Results

2.1. Asymptotic density of a subset E of ∗N

Definition 2.1. Let E be a subset of .∗N  We consider, for an integer

,1≥n  the expression defined by

( ) ( )∑
=

=ν
n

k
En kI

n
E

1

,1:

where ( )kIE  is the indicator function of the set E.

(a) We say that E has the number l  as a lower asymptotic density, if

( ),inflim En
n

ν=l

when n tends to .∞+  We denote this limit by ( );Ed  notice that this limit

belongs to [0, 1].

(b) We say that E has the number l  as an upper asymptotic density,
if

( ),suplim En
n

ν=l

when n tends to .∞+  We denote this limit by ( );Ed  notice that this limit

belongs to [0, 1].

Proposition 2.1. Let E be a subset of .∗N  Then

( ) ( ) .10 ≤≤≤ EdEd

We give a theorem which characterizes the set of upper and lower

densities; its proof requires several constructions.
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Theorem 2.2 ([1, pp. 38-39], [4, p. 179]). (1) Let E be an infinite

subset of ,∗N  and let F be a subset of E. We put

( ) sEd =   and  ( ) .iEd =

Then, the set of couples

( ) {( ( ) ( )) [ ] [ ] }EFFdFdES ⊂⊂×∈= :1,01,0,: 2R

possesses the following properties:

(a) ( )ES  is enclosing in the closed trapezium of vertices:

( ) ( ) ( ) ( );;,;,0;,0;0 iiiss

(b) ( )ES  contains the closed triangle of vertices:

( ) ( ) ( );;,0;,0;0 iss

(c) ( )ES  is a convex set;

(d) ( )ES  is a closed set.

(2) Conversely, consider two real numbers s and i such that

,10 ≤≤≤ si

and a subset S of 2R  satisfies (a)-(d) as above, then there exists a subset E
with

( ) ( ) iEdsEd == ,   and  ( ) .SES =

We are interested in the asymptotic behaviour of the sequence
( )( ) .1≥ν nn E

Proposition 2.3. The set of limit points of the sequence ( )( ) 1≥ν nn E  is

the interval [ ( ) ( )]., EdEd

Definition 2.2. We say that a subset E of ∗N  admits an asymptotic

density ,l  if the numerical sequence ( )( ) 1≥ν nn E  admits a limit equal to ,l

(necessarily this limit belongs to [0, 1]), when n tends to .∞+  If this is

the case, we shall denote this limit by ( ),Ed  and we shall say that ( )Ed

is an asymptotic density of the set E.
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We write D  for a class of subsets of ∗N  which has an asymptotic

density.

2.2. Some applications

Proposition 2.4. The set E of even natural integers admits an

asymptotic density ( ),Ed  and ( ) .
2
1=Ed

Proposition 2.5. Generally, for all ,∗∈ Nm  the class ∗Nm  of

integral multiples of m (or divisible by m) belongs to ,D  and

( ) .1
m

md =∗N

Theorem 2.6. For an integer ,2≥b  the set

,
0

k
k

b EE
≥

= U

where { },: 122 +<≤= kk
k bnbnE  0≥k  does not admit an asymptotic

density.

Proof. It is enough to construct two subsequences of the sequence

( )( ) 1≥ν nn E  which converge to two distinct limits. We choose as

subsequences those whose indices coincide with the antecedents and the

consequents of connected components [ [122 , +rr bb  of ,∗N  i.e., with

12 −rb  and .12 +rb

– Subsequence indexed by .1,12 ≥−= rbn r

( ) ( { }) [ [ 







== +

−

=

− 122
1

0

12 ,...,,1 kk
r

k

r
n bbcardbEcardEN UI

( ) ( ) ( )∑ ∑
−

=

−

=

+
+
−=−=−=

1

0

1

0

2
2212

1
11

r

k

r

k

r
kkk

b
bbbbb

( ) ( )
1

1

1

1
1
1

2

2

+
=

−
⋅

+
−==ν

bbb
b

n
EN

E
r

r
n

n
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and

( ) .
1

1
+

=
b

Ed

– Subsequence indexed by .0,12 ≥= + rbn r

( ) ( ) ( ) ( ) ( )
( )

( )∑ ∑
=

+

= −
−−=−=−=

r

k

r
k

r

k

k
n

b

bbbbbbEN
0

2

12

0

22 .
1

1111

( ) ( ) ( )
( )22

12

2212

12
1

1
1

1
1

1
11 −−

+

++

+
−

+
=−

+
=

+
−==ν r

r

rr

r
n

n b
b

b

b

b
bb

b

bn
EN

E

and

( ) .
1+

=
b

bEd

So, the sequence ( )( ) 1≥ν nn E  does not converge, and hence .D∉E

Below are examples of subsets of ∗N  which do not possess asymptotic

density.

Corollary 2.7. Let E be the set of natural integers whose decimal

development contains an odd number of digits. Then, E does not have an

asymptotic density.

Proof. We write E as disjoint union of its connected components. Let

m be an element of E with ( )12 +k  digits. Then

[ [122

0
10,10, +

≥
== kk

kk
k

EEE U  with ∅=ji EE I  for all .ji ≠

We prove that E does not admit an asymptotic density. It is enough to

construct two subsequences namely those whose indices coincide with the

antecedents and the consequents of connected components [ [,10,10 122 +kk

i.e., with 1102 −k  and .10 12 +k  The results follow from Theorem 2.6:

• Subsequence indexed by .1,1102 ≥−= rn r  Then ( ) .
11
1=Ed
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• Subsequence indexed by ,10 12 += rn  .0≥r  Then ( ) .
11
10=Ed  It

follows that the sequence ( )( ) 1≥ν nn E  does not converge, and hence E does

not admit an asymptotic density.

Corollary 2.8. Let E be the set of natural integers whose binary

development contains an odd number of digits. Then, E does not admit an

asymptotic density. In other words, the set

,
0

k
k

EE
≥

= U

where { },22: 122 +<≤= kk
k nnE  0≥k  does not admit an asymptotic

density.

Proof. It is enough to construct two subsequences of the sequence

( )( ) 1≥ν nn E  which converge to two distinct limits.

We choose as subsequences those whose indices coincide with the

antecedents and the consequents of connected components [ [122 2,2 +rr  of

,∗N  i.e., with 122 −r  and .2 12 +r  The results follow from Theorem 2.6:

• Subsequence indexed by .1,122 ≥−= rn r  Then ( ) .
3
1=Ed

• Subsequence indexed by .0,2 12 ≥= + rn r  Then ( ) .
3
2=Ed  So, the

sequence ( )( ) 1≥ν nn E  does not converge, and hence .D∉E

3. Properties of Asymptotic Density of a Subset E of ∗N

Proposition 3.1. The set D  contains the algebra A  of finite and

cofinite subsets of .∗N

Proposition 3.2. Let D∈E  and N∈k  such that ( ).∗℘∈+ NkE

Then, D∈+ kE  and ( ) ( ).EdkEd =+  In other words, the asymptotic

density d is invariant under translation.
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Proposition 3.3. Let D∈E  and .∗∈ Nk  Then, D∈kE  and

( ) ( ).1 Ed
k

kEd =

Proposition 3.4. (a) Let .∗⊂ NE  If E is finite, then ( ) ;0=Ed  if E is

cofinite, then ( ) .1=Ed

(b) ,D∈∗N  and ( ) .1=∗Nd

Proposition 3.5. (a) D  is a weak Dynkin class,

(b) d is additive.

Proposition 3.6. Let 1E  and 2E  be two elements of .D  Then, the

following four properties are equivalent:

( ) ;p 211 D∈EE U

( ) ;p 212 D∈EE I

( ) ;\p 213 D∈EE

( ) .\p 124 D∈EE

Moreover, if any one of these four properties is satisfied, then

( ) ( ) ( ) ( ).212121 EEdEdEdEEd IU −+=

Proof. • ( ) ( )21 pp ⇒  For this purpose, let 1E  and 2E  be two

elements of .D  We suppose that ,21 D∈EE U  and prove that 21 EE I

is an element of .D  D  is stable under proper difference. Let

.21 D∈EE U  Then

( ) ( ) ,\,\ 221121 DD ∈=∈= EEEFEEEE UU   and  .∅=FE I

So

( ) ( ) ( ) .\2121 D∈= FEEEEE UUI

• ( ) ( )32 pp ⇒  For this purpose, let 1E  and 2E  be two elements of .D

We suppose that ,21 D∈EE I  and that 21\EE  is an element of .D

Then
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( ),\\ 21121 EEEEE I=

whence the result, since D  is stable under proper difference.

• In an analogous way, we prove that

( ) ( )43 pp ⇒  and ( ) ( ),pp 14 ⇒

and that

( ) ( ) ( ) ( ).212121 EEdEdEdEEd IU −+=

Theorem 3.7. The class D  is not a σ-algebra.

Proof. Since D  contains the finite and cofinite subsets of ,∗N  the

σ-algebra ( )Dσ  generated by D  coincide with the set of subsets of ,∗N
i.e.,

( ) ( ).∗℘=σ ND

Thus D  being a σ-field, it coincides with ( ).∗℘ N

To prove that D  is not a σ-field, it is enough to construct a subset

( )∗℘∈ NE  which does not belong to .D  It is precisely what we did in

Corollaries 2.7 and 2.8.

Theorem 3.8. The class D  is not stable under finite intersections, so

it is not an algebra.

Proof. We start from the set E of Corollary 2.8, which does not admit

an asymptotic density.

,
0

k
k

EE
≥

= U

where

{ } .0,22: 122 ≥<≤= + knnE kk
k

We note that

,
0

k
k

c FE
≥

= U
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where

{ } .0,22: 2212 ≥<≤= ++ knnF kk
k

We introduce the sets

∗= N2A  the set of even numbers ;0>

12 += NB  the set of odd numbers .0>

By Corollary 2.7 and Proposition 3.2, it follows that D∈BA,  and that

( ) ( ) .
2
1== BdAd

We consider at present the set

( ) ( ).cEBEAF IUI=

It is the disjoint union of even numbers of E, and odd numbers of .cE

• We show that ,D∈F  and that ( ) .
2
1=Fd  For this purpose, the

union

( ) ( )cEBEA IUI

is disjoint. For all ,1≥n

( ) ( ) ( ),c
nnn EBEAF II ν+ν=ν (1)

and the same structure of the set

k
k

c FE
0≥

= U

shows that

( ) ( ) ( ).nIEANEBN cEA
c

n
c

n I
II −=

So, for all ,1≥n

( ) ( ) ( ).1 nI
n

EAEB cEA
c

n
c

n I
II −ν=ν (2)
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It follows from (1) and (2) that

( ) ( ) ( ) ( ) ( ) ( ).11 nI
n

AnI
n

EAEAF cc EAnEA
c

nnn II
II −ν=−ν+ν=ν

So, by taking limit when n tends to ,∞+  ( )Fnν  tends to .
2
1  It

follows that ,D∈F  and ( ) .
2
1=Fd

• For sets A and F in ;D  we show that the intersection FA I  does

not belong to ,D  and thus D  is not an algebra. For this purpose, we have

.EAFA II =

So, for all 1≥n

( ) ( ) ,1
2
1

nnn n
EEA ε+ν=ν I

where .1≤εn

But then, since E does not belong to ,D  the sequence ( )( ) 1≥ν nn E  does

not converge, so the sequence ( )( ) 1≥ν nn EA I  does not converge. Again,

then

.D∉= EAFA II

Theorem 3.9. Consider [ ]1,0: →Dd  which assigns an element

D∈E  to its asymptotic density ( ).Ed  Then d is not σ-additive on .D  In

other words, if ( ) 1≥nnE  is a sequence of disjoint elements of D  such that

,
1

D∈=
≥

n
n

EE U  with ,∅=ji EE I  for all ,ji ≠ (3)

then the following is not necessarily true:

( ) ( )∑
≥

=
1

.
n

nEdEd

Proof. We take

{ } .1, ≥= nnEn
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Then, for all ,1≥n

D∈nE     and    ( ) .0=nEd

The set of natural integers can be represented in the form

,
1

D∈=
≥

∗
n

n
EUN

with ,∅=ji EE I  for all .ji ≠  Since

D∈∗N   and  ( ) ,1=∗Nd

we have

( ) ( )∑
≥≥

∗ =≠





==

11
.01

n
nn

n
EdEdd UN

So, d is not σ-additive on .D

We have the following theorem which gives the structure of d.

Theorem 3.10. The assignment [ ]1,0: →Dd  sending an element

D∈E   to its asymptotic density ( )Ed  is a finitely additive probability

measure, i.e., it satisfies

( ) ( ) ;1p1 =∗Nd

( )2p   if ( ) nkkE ≤≤1  is a finite sequence of disjoint elements of ,D  then

( )∑
==

=






 n

k
kk

n

k
EdEd

11
;U

( )3p  ( )13p  d is invariant under translation, i.e., for all D∈E  and for

all ,N∈k

( ) ( );EdkEd =+

( )23p  d satisfies, for all D∈E  and for all ,∗∈ Nk

( ) ( ).1 Ed
k

kEd =
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Proof. The proof follows on the lines of the previous results.

Theorem 3.11. The class D  of subsets of ∗N  possessing asymptotic

densities is an α-class. In other words, it satisfies the following properties:

( )1p   ;D∈∗N

( )2p   D  is stable under complementation;

( )3p   D  is stable under finite disjoint unions;

( )4p  ( )14p   D  is stable under translation, i.e., for all D∈E  and for

all ,N∈k

;D∈+ kE

( )24p   D  is stable under the change of scale, i.e., for all D∈E  and

for all ,∗∈ Nk

.D∈kE

Proof. • Properties ( ) ( ) ( )321 p,p,p  and ( )14p  can be verified easily.

• For ( )24p  we observe that for all D∈E  for all ,∗∈ Nk

( )
( ) ( ).1lim Ed

k
kEn

n
=ν

+∞→

Theorem 3.12. Let E be an element of .D  Then for all ,l  with

( ),0 Ed≤≤ l  there exists a subset ∗E  of E such that ( ) .l=∗Ed

Proof. We look at the following three cases:

• ,0=l  in which case the result is obvious;

• ( ),Ed=l  in which case the result is obvious;

• We give the proof for ;∗⊂ NE  for all ] [,1,0∈l  there exists

D∈E  such that ( ) .l=Ed  We construct

[ [kk
k

qpE ,
1≥

= U
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as follows: :1p  arbitrary, :1q  the first integer 1p>  such that

( ) l>ν Eq1

( )
( )





>ν>

<ν>

l

l

Epq

Eqp

q

p

2

2

thatsuchintegerfirstthe:

,thatsuchintegerfirstthe:

22

12

and, by induction

( )
( )





>ν>

<ν> −

.thatsuchintegerfirstthe:

,thatsuchintegerfirstthe: 1

l

l

Epq

Eqp

k

k

qkk

pkk

Then, we have for all 1>k

( ) ( ) ( )

( ) ( ) ( )







≤ν−ν≤−ν

≤ν−ν≤−ν

−

−

,1

,1

1

1

k
qqq

k
ppp

q
EEE

p
EEE

kkk

kkk

l

l

so

( ) l→ν E
kp  and ( ) ,l→ν E

kq  as ( ).+∞→k

The proof, for ,EE ⊂∗  holds immediately from the above argument. For

this purpose, :1p  arbitrary, :1q  the first integer 1p>  such that

( ) lI >ν ∗EEq1

( )
( )





>ν>

<ν>
∗

∗

lI

lI

EEpq

EEqp

q

p

2

2

thatsuchintegerfirstthe:

,thatsuchintegerfirstthe:

22

12

and, by induction

( )
( )





>ν>

<ν>
∗

∗
−

.thatsuchintegerfirstthe:

,thatsuchintegerfirstthe: 1

lI

lI

EEpq

EEqp

k

k

qkk

pkk

Then, we have for all 1>k

( ) ( ) ( )

( ) ( ) ( )







≤ν−ν≤−ν

≤ν−ν≤−ν

∗∗∗

∗∗∗

−

−

,1

,1

1

1

k
qqq

k
ppp

q
EEEEEE

p
EEEEEE

kkk

kkk

IIlI

IIlI
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so

( ) lI →ν ∗EE
kp  and where ( ) ,lI →ν ∗EE

kq  as ( ).+∞→k

4. Existence Criteria of an Asymptotic Density of a Subset E of ∗N

Let E be a subset of ,∗N  which is neither finite nor cofinite. It can be

represented by the disjoint union of its connected components, i.e., by

[ [,,
1

nn
n

qpE
≥

= U

where ( ) ,1≥nnp  ( ) 1≥nnq  denote two sequences of strictly positive integers

satisfying

,,1 1+<<≥∀ nnn pqpn

where

[ [ { }nnnn qkpkqp <≤∈= ∗ :, N

denotes the nth connected component of E.

Criterion >  ([1, p.47], [3]). Let

[ [,,
1

nn
n

qpE
≥

= U

be a subset of ,∗N  neither finite nor cofinite and

( ) ( ).11, 01 =≥−=σ−=ρ − qnqqpq nnnnnn

Let l  be a real number such that 10 ≤< l  and the following

properties hold:

( )1p   ,~ 1−nn qp  as ( );+∞→n

( )2p   ,l→
σ
ρ

n

n  as ( ).+∞→n

Then, E admits an asymptotic density ( )Ed  and ( ) .l=Ed  If ,0=l  then

the only condition ( )2p  implies that ( ) .0=Ed
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Proposition 4.1. Let

( ) ( )[ [,,
1

kQkPE
k≥

= U

where ( )kP  and ( )kQ  are polynomials with integral coefficients 0>  in k,

defined by

( ) ( )
( ) ( )




++=
++=

−−

−−

,
,

11

11

nnn

nnn

kOckakkQ

kObkakkP

where ∗∈ Nn  is the common degree of P and of Q.

We suppose that

.10 <−<
na

bc

Then, E admits an asymptotic density ( )Ed  and ( ) .
na

bcEd −=

Remark 4.1.

• If ( ) ( ),degdeg QP >  then from some rank each of the intervals

( ) ( )[ [kQkP ,  is empty, E is finite and ( ) .0=Ed

• If ( ) ( ),degdeg QP <  then each of intervals ( ) ( )[ [kQkP ,  overlaps the

next, E is cofinite and ( ) .1=Ed

The condition ( ) ( )QP degdeg =  is thus a necessary condition in order

that from some rank all intervals ( ) ( )[ [kQkP ,  are nonempty and

disjoint. In other words, there exists a ∗∈ N0k  such that

( ) ( ) ( ).1,0 +<<≥∀ kPkQkPkk (4)

We say this case to be the regular case, E is then neither finite nor

cofinite.

Remark 4.2. We put

( ) ( )
( ) ( )





+=

+=
∗ ,

,
nn

nn

kOkakQ

kOakkP

where ∗∈ Nn  is the common degree of P and Q.
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The condition (4) implies that

( ) ( ) ( ) ( )nnnnnn kOkakOkakOak ++<+<+ ∗ 1

so it holds that

,, aaaa ≤≤ ∗∗      i.e.,      .∗= aa

By taking this condition into account, we put

( ) ( )
( ) ( )





++=

++=
−−

−−

,

,
11

11

nnn

nnn

kOckakkQ

kObkakkP

where ∗∈ Nn  is the common degree of P and Q.

The condition (4) implies the following two conditions:

( ) ( )
( ) ( ) ( )





+<+−

+<+
−−−−

−−−−

,

,
1111

1111

nnnn

nnnn

kObkkOknac

kOckkObk

so it holds that

., bnaccb ≤−≤

In other words,

.10 ≤−≤
na

bc (5)

This condition is a necessary condition in order to have (4), but it is
not sufficient.

We obtain a sufficient condition to fill in (5) the sign of weak
inequalities by the sign of strict inequalities. In other words to fill (5) by

.10 <−<
na

bc (6)

In this case, we put

( ) ( )
( ) ( )





<−<
++==

++==
−−

−−
10

,

,
11

11

na
bc

kOckakkQq

kObkakkPp
nnn

k

nnn
k

( ) ( )
( )





+=−=σ

+−=−=ρ
−−

−

−−

.

,
11

1

11

nn
kkk

nn
kkk

kOnakqq

kOkbcpq
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We verify that

( )1p   ,~ 1−kk qp  as ( );+∞→k

( )2p   ,
na

bc

k

k −→
σ
ρ

 as ( ).+∞→k

It follows that E admits an asymptotic density ( )Ed  and ( ) .
na

bc
Ed

−=

We have the following particular case of the previous proposition.

Proposition 4.2. Let

[ [nnE
n

2,12
1

−=
≥
U

be the set of odd integers .0>  Then, E admits an asymptotic density ( )Ed

and ( ) .
2
1=Ed

Proof. For this purpose, we put









=−=σ

=−=ρ

=−=

− .2

,1

,2,12

1nnn

nnn

nn

qq

pq

nqnp

We verify that

( )1p   ,~ 1−nn qp  as ( );+∞→n

( )2p   .
2
1=

σ
ρ

n

n

Then E admits an asymptotic density ( )Ed  and ( ) .
2
1=Ed

Proposition 4.3. Let E be a subset of ,∗N  which we write in the form

[ [,,
1

kk
k

qpE
≥

= U

( ) ( )
( ) ( )





+==

+==

.,10

,,10

cakkQq

bakkPp
kQ

k

kP
k
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We suppose that a, b, c are real numbers satisfying:

(1) ;0>a

(2) for all ,1≥k  kp  and kq  are integers ;1≥

(3) .10 <−<
a

bc

Then, E does not admit an asymptotic density.

Proof. For this purpose, we put

( )





−=−=σ

−=−=ρ
+−+

−

++

.1010

1010
1

1
ckacak

kkk

bakcak
kkk

qq

pq

We verify that

( )1p   ;110
1

1 <=





 −−−

− a
bca

k

k
p

q

( )2p   
( )

.
101

101
a

bc

k

k
−

−−

−
−=

σ
ρ

It follows from Theorem VII.9 in [1, Chapter VII] that E does not admit

an asymptotic density but

( )
( )

a

bc
a

bca
Ed

−

−−




 −−−

−
−=

101

10110
1

and

( )
( )

.
101

101
a

bc
Ed

−

−−

−
−=

5. Conditional Asymptotic Density

A good amount of work in analytic number theory is concerned with

the distribution of prime numbers. To answer some questions in this

area, it is natural to consider conditional asymptotic density on the prime

numbers.
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Definition 5.1. Let E be a subset of ,∗N  ( )n∏  be the number of

prime numbers n≤  and ( )nE∏  be the number of prime numbers n≤  in

E. Then, we put

( ) ( )
( ) .:
n
n

E E
n ∏

∏
=|ν P

We say that E admits the number l  as a conditional asymptotic density,

related to ,P  if the limit, 
( )

( )P|ν
+∞→

En
n
lim  exists and equals to ,l

(necessarily this limit belongs to [0, 1]). If this is the case, then we shall

denote the conditional density by ( ),P|Ed  or plainly by ( ).Edc

Definition 5.2 [5]. Let +∗ → RN:f  be a positive arithmetic

function such that

( )∑
+∞

=

+∞=
1n

nf

and

( )

( ) ( ) ( )

( )
.0

1

lim

1

1

1 =

+−+

∑

∑

=

−

=
+∞→ n

k

n

k

n
kf

kfkfnf

Let E be a subset of ∗N  and

( )

( )

( )
.:

1

,1

∑

∑

=

∈≤≤=|ν
n

k

Eknk
n

kf

kf

fE

Then we say that E admits the number l  as a conditional asymptotic

density, conditionally to f, if ( )fEn |ν  tends to ,l  when n tends to +∞

(necessarily this limit value belongs to [0, 1]). If this is the case, we

denote this conditional density by ( ).Edc
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We have the following theorem:

Theorem 5.1 [1]. (1) Let E be an infinite subset of ∗N  and let F be a

subset of E. We denote by ( )Edc  the lower conditional asymptotic density

and by ( )Edc  the upper conditional asymptotic density of the sequence

( ).fEn |ν  Then the set of couples

( ) {( ( ) ( )) [ ] [ ] }EFFdFdES ccc ⊂⊂×∈= :1,01,0;: 2R

has the following properties:

(a) ( )ESc  encloses the closed trapezium having vertices:

( ) ( ) ( ) ( );;,;,0;,0;0 iiiss

(b) ( )ESc  contains the closed triangle of vertices:

( ) ( ) ( );;,0;,0;0 iss

(c) ( )ESc  is a convex set;

(d) ( )ESc  is a closed set.

(2) Conversely, consider two real numbers s and i, such that

.10 ≤≤≤ si

If a subset S of 2R  satisfies (a)-(d) as above, then there exists a subset E
with

( ) ( ) iEdsEd cc == ,     and    ( ) .SESc =
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