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Abstract 

In this paper, we consider the standard AK Solow model when delay 
in production is presented. In contrast to neoclassical growth models 
with delay, it is found that there are no cycles. 

1. Introduction 

In [11], Kalecki assumed that there is a gestation period or a time lag 
after which capital equipment is available for production. Kalecki’s 
assumption on time lag investment caused the appearance of cycles in output. 
Whether this result holds in neoclassical models was explored by Asea and 
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Zak [1], who showed that such models produce cycles, confirming that 
Kalecki’s model holds in general equilibrium settings. In this paper, we 
formulate the AK Solow model [2] where a time delay is presented in 
production and prove that cycles cannot be generated. Furthermore, we find 
that the model’s dynamics are as usual AK Solow model without delay, i.e., 
the economy is asymptotically stable or unstable according to the value of 
savings rate adjusted by the level of technology relative to the rate of 
population growth. A final remark. In the past few years, some extensions of 
the neoclassical growth models have emerged (see, e.g., Ferrara and Guerrini 
[3-5], Guerrini [6-10]). For future research, we propose to investigate the 
introduction of time lag in these models. 

2. The Model 

We consider an AK production function case in the Solow model [13]. 
The function at time t is therefore given by ,tt AKY =  where ,tY  tK  and 

0>A  denote output, capital and the level of technology, respectively. 
Assuming that the rate of saving is exogenous and constant, the evolution of 

capital is ,tt sYK =  with a dot over a variable denoting differentiation with 

respect to time and 0>s  is the rate of saving. For simplicity, there is no 
depreciation of capital. By defining tk  as capital per unit of labor, the 

evolution of tk  is described by 

 ,ttt nksAkk −=  (1) 

where 0>n  is the growth rate of the labor force. Eq. (1) has a closed-form 

solution for the exact time path of tk  given by ( ) ,0
tnsA

t ekk −=  where 0k  is 

the initial capital stock per-worker. We derive that the economy in the very 
long-run will approach an infinitely large level of capital per-worker if 

,nsA >  whether it will converge in the long-run to a capital stock per-

worker equal to zero if .nsA <  Finally, any level of initial capital will be a 
steady-state with zero growth in the per-worker capital stock if .nsA =  
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3. The Model with Delay in Production 

We now modify the Solow model with AK technology by introducing a 
delay of 0>T  periods in the production function. Consequently, the 
resulting dynamic model is described by 

 ,tTtt nksAkk −= −  (2) 

for some initial function ,ttk φ=  [ ].0,Tt −∈  Instead of an initial point 

value for an ordinary differential equation, the initial function tφ  is required, 

which is defined over the range of time delimited by the delay. The 
characteristic equation of our scalar system simply writes as 

 ,nsAe T −=λ λ−  (3) 

which is a transcendental equation. We recall that all the eigenvalues λ of Eq. 
(3) should lie in the left half of the complex λ-plane for the equilibrium point 
to be stable, i.e., for all the eigenvalues 0Re <λ  must hold. Notice that the 
root of Eq. (3) with 0=T  satisfies .nsA −=λ  Hence, the zero solution is 
asymptotically stable for ,nsA <  unstable for .nsA >  

Proposition 3.1. Let .nsA <  Then the zero equilibrium of Eq. (2) is 
asymptotically stable for all delay .0≥T  

Proof. For ,0>T  clearly 0=λ  is not a root to Eq. (3). Let =λ  
( )0>ωωi  be a root of Eq. (3). Then we have 

( ) .sincos nTiTsAi −ω−ω=ω  

Separating the real and imaginary parts gives 

nTsA =ωcos  and .sin ω−=ωTsA  

It follows 

 ( ) .222 nsA −=ω  (4) 

Equation (4) makes sense if and only if nsA >  holds. Thus, under this 
inequality, Eq. (3) has no root appearing on the imaginary axis. Recalling 
that the root of Eq. (2.3) with 0=T  has negative real part, an application of 
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Corollary 2.4 in Ruan and Wei [12] yields that all roots of Eq. (3) have 
negative real parts, completing the proof. 

Remark 1. If ,nsA =  then 0=λ  is a solution of Eq. (3) for 0=T       
and furthermore such a solution is invariant with respect to the delay T.         
In conclusion, the system cannot be asymptotically stable due to the 
characteristic root at zero. 

Proposition 3.2. Let .nsA >  Then the zero equilibrium of Eq. (2) is 
unstable for all delay .0≥T  

Proof. From the previous discussion, we know that if ,nsA >  then Eq. 
(3) has a pair of purely imaginary roots 0ω± i  at the critical value ,0T  where 

( ) .tan1, 01
0

0
22

0 





 ω

ω
=−=ω −

nTnsA  

Let ( ) ( ) ( )TiTT ω+µ=λ  denote a root of Eq. (4) near 0TT =  such that 

( ) 00 =µ T  and ( ) .00 ω=ω T  Differentiating the characteristic Eq. (3) with 

respect to T, we get 

,0=




 λ+λ+λ λ−

dT
dTsAedT

d T  

which gives 

.
1

λ
−

λ
−=





 λ λ− T

sA
e

dT
d T

 

Hence, 

( )
,01Re 2

1

0
>=





 λ −

= sAdT
d

TT
 i.e., ( ) ,0Re

0
>λ

ω=λ idT
d  

yielding that the root ( )Tλ  of characteristic Eq. (3) near 0T  crosses the 

imaginary axis from the left to the right. Note that the crossing direction is 
toward instability, so that Eq. (2) is stable or unstable depending on the 
stability or instability of the corresponding equation free of delay. The 
conclusion holds. 
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