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Abstract

In this paper, the extended coupled sub-ODEs expansion method has
been used to construct a series of double soliton-like solutions, double
triangular function solitons and complexiton solitons for the (2 +1) -

dimensional Painlevé integrable Burgers equations with variable
coefficients. This method can also apply to other NLPDEs.
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1. Introduction

In recent years, the exact solitons of nonlinear PDEs have been
investigated by many authors (see, for example, [11, 12]) who are
investigated in nonlinear physical phenomena. Many powerful methods have
been presented by those authors such as the inverse scattering transform [1],
the Bécklund transform [2], the generalized Riccati equation [3], the Jacobi
elliptic expansion [4], the extended tanh-function method [5], the
F-expansion method [6], the exp-function expansion method [7], the sub-
ODE method [8], the homogeneous balance method [9], the extended sine-
cosine methods [10], the complex hyperbolic function method [11], the

(%j -expansion method [12] and so on. Recently, the coupled sub-equations

expansion method as the extension of multiple Riccati equations expansion
method is efficiently applied by many researchers to a great variety of
NLPDEs [13]. In these papers, the solutions of different Riccati equations
with different parameters are used as different variables in the components of
rational expansion.

The present paper is motivated by the desire to extend the multiple
Riccati equation expansion method and use two ODEs expansion method to
construct a series of some types of traveling wave solutions, namely, the
doubled soliton-like solutions, double triangular function solutions and
complexiton soliton solutions for the (2 + 1)-dimensional Painlevé integrable

Burgers equations with variable coefficients.

2. Summary of the Extended Coupled Sub-equations
Expansion Method

In this section, we would like to outline the main steps of this method as
follows:

Step 1. We consider the following nonlinear partial differential equation
with some physical field u(x, y, t):

U (U, Ug, Uy, Uy, Uyy, Uyg, Ury, Ugg, Uyy, Uy, o) = 0. (2.1)
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Step 2. We introduce a more generalized ansatz in terms of a finite form
expansion in the following forms:

_ Y a0 E@) (G
Y0 = 20X+ kz:“;kagm( ollem) e

where ap(X), aij(X) (i, j=0,1 2, .., n) are functions of X =(x, y, t) to
be determined later, while the new variables F(§) and G(n) satisfy the

following two equations:
F"(&) + eF'(§) + OF(§) = 0, (2.3)
G'(n) + AG'(n) + uG(n) = 0, (2.4)

d°F(E) )= IFE)

where ¢, 0, A, u are arbitrary constants, F"(§) =

2
G'(n) = ddGT(n) G'(m) = de—gln) The parameters &, n are given by § =
n

ki + iy + A(t) and m = kox + I,y + Ao(t), where ki, bk, ky, I, are

arbitrary constants, Aq(t), A,(t) are functions of t.

Step 3. Determine the positive integer n of the formal polynomial
solution (2.2) by balancing the highest nonlinear terms and the highest partial
derivative terms in the given system equations, and then give the formal
solution.

Step 4. Substitute (2.2) into (2.1), along with (2.3) and (2.4) and then set

- i&)iG'(n)j.._ .
all the coefficients of [F(&)J [—G(ﬂ)} (i, j=0,1, 2, ..) of the resulting

system’s numerator to be zero. We get an over-determined system of
differential equations with respect to ky, ko, b, lo, A(t), Ao(t), € 6,2, b,

ag(X) and aij(X) (i,j=012,..n).
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Step 5. Solving the over-determined system of differential equations
by using the symbolic computation as Maple, we end up with explicit

expressions for ky, ko, l, 1o, Aq(t), Ao(t), & 6, A, n, ag(X) and aij(x)
(i, j=0,1,2,..,n).

Step 6. It is well known that the general solutions of the differential
equations (2.3) and (2.4) are listed as follows [14]:

(i) when g2 > 40 and 2% > 4u, then

m:_i+ ¢2 _ 49 | Hisinlh——— §+H2cosh

X ’ ’ H, cosh ——— \/_ 40 &+ Hpsinh ———— F 49
w__&Jr 7»2—4M Clsinh—”7”22_4”n+C2 cosh—“;“zz_ﬂ'“n 25)
&) ? ? C@osh@erz sinh@n |

(if) When €2 < 40 and 1% < 4u, then

F'(&) e /49_82 —Hysin———— §+Hzcos

=+
F(&) 2 2 \/49_8 . \/49—8 :
2

H1COST§+ Ho sin
VA=A n+C coOS——F— V4

St w37 | s
Gm) - 27 2 \/7 \/7 '

C, cos ———

n+ Cy sin ———

(iii) When €2 < 40 and 2% > 4y, then

[ 2 [ 2
F/(£) c /49_82 —HlsinhgﬁLHzcosh

=—=+

5~ 2" 2 \/7 \/7

H;icos————& + Hysin———
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C,sinh———F— NN 4 n+C cosh——— VA 4“

' 2
% = _% " N 2—4u \/_ o
Cy cosh ————— L N+ Cysinh X =—— 4“
F@_ e, _Hp
G(m) _ A r2-4 Clsinh@nH:Z cosh@n
n ] : 2 , (2.8)

==t
G(n) 2 2 [ 2 [L2
Clcosh%n +Cysinh %ﬂ

where Hq, H,, Cq, C, are constants and H,C, = 0.

3. New Multiple Soliton-like Solutions for the (2 + 1)-dimensional

Painlevé Integrable Burgers Equations with Variable Coefficients

In this section, we will apply the extended coupled sub-ODEs expansion
method to construct travelling wave solutions for the (2 + 1)-dimensional

Painlevé integrable Burgers equations with variable coefficients [14]:
—Ug + Uuy + o(t)Vuy + Bt)uyy + a(t)B(t)uy =0,
Uy —Vy = 0. 3.1)
Let us now solve the system (3.1) by the sub-ODEs expansion method.
By balancing the nonlinear terms and the highest order linear partial

derivative terms of (3.1), we get m{ =1 and m, =1. Thus, the (2 +1)-

dimensional Painlevé integrable Burgers equations with variable coefficients
(3.1) have the following exact solutions:

u(x, y, t) = ag(t) + a(t) II::,(%)) +ap(t) (( ))
n)

VX ¥, ) = Bol®) + b0 + baO G, (32
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where & = kX + iy + A4(t), n =kox+ 1oy +2A5(t) and ag(t), a(t), ax(t),
bo(t), by(t), byo(t), Aq(t), A,(t) are functions of t to be determined later.
With the aid of Maple, we substitute (3.2) along with (2.3) and (2.4) into

(3.1) and set the coefficients of [%}m[%}n(m, n=0,1 2, ..) to be

zero, then yield a set of over-determined differential equations with respect
to ki, ky, I, o, a(t) (i=0,12) and bj(t) (j =0,1 2). On using the

Maple software package, we solve the over-determined differential equations.
Consequently, we get the following results:

Case 1.

= al(t)kl | =_k2al(t)
SOOI

ag(t) = C3, (t) = Cy4, a(t) = Cs,

by(t) = Cg, byt) = — 22000

at)

al(t) + a()bZ(t) = O,

A (t) = J'_ (ag()by(t) + 23 (OB M) kg (V) 4o\

b2 (1) "
_ (—(ag()by(t) + &g (t)bg (1)) kpay(t)
Do (t) _j 20 dt + Ca. (3.3)
Case 2.
bk, . a®ky | a(t)k C1by(t)
R O O R L 7

ag(t) = C3, (t) = Cy, ay(t) = Cs,
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by(t) = Cg, by(t) = C7,

2
o) - O
O "0
koay (1) (ag(t)by(t)e + 2ag(t)by(t)

Ag(t) = J‘% —by(t)ay(t)e ;;g;(t)bo(t)) dt

ap(t)ka(=by(t)ap(t)T + 2ag(t)by(t)
1 — 2 (t)bg(t) + aq(t)thy(t))
0= [ R
where koby(t)bo(t)ay(t) = 0. Note that, there are other cases, are omitted

here. According to (2.3) and (2.4) and the general solutions (2.5)-(2.10) listed
in Step 6, we obtain the following families of new multiple soliton-like
solutions corresponding to Case 1 for equations (3.1):

+CS,

dt + C, (3.4)

Family 1. When €2 > 40, A2 > 4p and koby (t)b (t)ay(t) 0, the double

soliton-like solutions of equations (3.1) have the following forms:

e
w(x, ¥, 1) =C3-C4 5

[2 [2
<2 _40 HlsinhgT_‘m§+H2coshT4e§
+C4
2 V&2 — 40 Vg2 _4p
Hy cosh === + Hpsinh~*—=¢

2
ot P om

2 2

C, sinh—— VA
F_ m
2

\/7
\/_4u

n + C, cosh————+—

C, cosh n+ Cy sinh ———
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vi(x, v, t)
€
=bo(t) -Ce 5
Vg2 Ve —40
c c2 40 Hysinh——— §+ H, cosh——— 5 g C<Cq A
6 _ £
H; cosh——— §+ H,sinh——— 5 &

J___
f_4u

n + C, cosh ———

. C5C6 ’7\.2 —dp Cl sinh ———+—
Ca 2 J_—u
2

C, cosh

(3.5)
n+ Cysinh ———

Family 2. When €2 < 40, 32 < 4p and k,by (t)b(t)ay(t) = 0, the double
triangular function solitons of equations (3.1) have the following forms:

ua(X, v, t)
e /49_82 —Hysin——— <:+Hzcos
=C3—C4—+C4
2 2 / /
H; cos ———— 46 & H, sin 462_8 12

A Vap -2

—C55+C5 2

Cysin——— N — A
C cos\/4_“T

Vu f
J_xz’

n+C coS ——F—

X

n+ Cysin———
V(X v, t)

. 140 — £? 40 — &2
[ag _ o2 | -Hysin————¢& + Hycos————&
= by(t) ~ Co & + Cg 20 2 2

H, cos £+ stinT_g
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_CsCe 2
Cs 2

P,
r w

C5C6 /4u 22 Clsln“
Ca 2 \/72— N

C, cos

n+C coOS————

(3.6)
n+Cysin——5—"F—

Family 3. When &2 <40, 22 >4 and koby(t)by(t)ay(t) = 0, the

complexiton soliton solutions of equations (3.1) have the following forms:

uz(x, y,t)
c 40 — g2 | ~Hisin——-— <: Hy cOS ————
=C3—C4§+C4 ) \/7 \/7
Hycos ————¢& + Hy sin————
R VW 4u
2 c X2_4“ C; sinh ——— n+C cosh———
—C5—+ 5 X
2 2 / /
C, cosh Hn+C sinh———7~+ 4“
v3(x, y, t)
© c /49_82 —Hj sin———— §+ H, cos ————
=b0t —C6—+C6
2 2 / /
H; cos ———— E_,+H Sin ————

_CsCs 1 CsCe
C, 2 C,

m Cy sinh —“7“22_4“11 + C, cosh —“)”22_4“11
2 \/77—4u \/7»7—4un
2 2

X

(3.7)

C,; cosh n+ C, sinh
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Family 4. When 2 =40, 22 >4 and koby (t)bo(t)ay(t) = 0, the

complexiton soliton solutions of equations (3.1) have the following forms:

€ H A
Ug(X, Y, t)=C3—C4§+C4H1+—2H2<:—C5§

x2_4“ Cysinh——— N A
2 Jz_ 4y
2

C, cosh

\/7»2 —4u .
2

= ,
Jk24un

n + Cy cosh——

+C5
n+ C,sinh

£ Hp  CsCe 1 CsCe V22 —du
va(x, y, t) = bo(t)—C6§+C6 Hy + HE  Cy 27 (o 2

Clsmh VA Ap n+C cosh *———— V2
Clcoshr Au \/_ 4“

(3.8)
n+ Cysinh ———=—

where

£ = kyx + 8K C4 Ly J‘ (CsCp + C4bo(t))k1C4 it + Cy.
cé

_ kx4 Sake C J’ (=CsCe + C4bo(t))kzc4 dt + Cq.
cé

We should point out that the solutions obtained in this paper are not only
the (3.5)-(3.8). We list some new ones corresponding to Case 1, to show
that our method is effective in constructing the new multiple soliton-like
solutions of equations (3.1).

4. Summary and Conclusion

In summary, the extended coupled sub-ODEs method with symbolic
computation is developed to deal with the nonlinear (2 +1)-dimensional
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Painlevé integrable Burgers equations with variable coefficients (3.1). Then
when applying the proposed method to the above nonlinear equations, a rich
variety of exact solutions which include: (a) double solitary-like wave
solutions, (b) double trigonometric function solutions, (c¢) complexiton
soliton solutions, is obtained. The extended sub-ODEs can also apply to
other NLPDEs.
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