

SOME RESULTS ON HESSENBERG MATRICES

Hsuan-Chu Li

Department of Medical Technology Jen-Teh Junior College of Medicine, Nursing and Management Miaoli, Taiwan

Abstract

We obtain some new Hessenberg matrices and their corresponding determinants by adding two well-known Hessenberg matrices.

1. Introduction

A matrix is said to be a *Hessenberg matrix* [1] if all entries above the superdiagonal are zero. For instance, the matrix [1],

$$E_n = \begin{bmatrix} 3 & 1 & 0 & \cdots & \cdots & 0 \\ 1 & 3 & 1 & \cdots & \cdots & \vdots \\ 0 & 1 & 3 & 1 & \cdots & \vdots \\ \vdots & \cdots & \cdots & \cdots & \cdots & 0 \\ 0 & \cdots & \cdots & 1 & 3 & 1 \\ 0 & \cdots & \cdots & \cdots & 1 & 3 \end{bmatrix}$$

is a Hessenberg matrix and its determinant is F_{2n+2} . In [1], the author introduced several types of Hessenberg matrices whose determinants are $\boxed{©}$ 2012 Pushpa Publishing House

2010 Mathematics Subject Classification: Primary 15A23. Keywords and phrases: Hessenberg matrix, determinant.

Received January 17, 2012

Fibonacci numbers were calculated by using the basic definition of the determinant as a signed sum over the symmetric group. In [2], Li et al. proved the above results by investigating first the feasibility of LU factorization, i.e., a lower triangular matrix with unit main diagonal and an upper triangular matrix. Furthermore, they found the determinant of a new class of Hessenberg matrices.

In this paper, we try to calculate the determinants of some new Hessenberg matrices obtained by adding two well-known Hessenberg matrices.

2. Main Results

Let $A_{n,t}$ be the $n \times n$ Hessenberg matrix in which the superdiagonal entries are 1, all main diagonal entries are 1 except the last one, which is t+1, and the entries of each column below the main diagonal alternate 0's and 1's, starting with 0 and t is an indeterminate. Let $C_{n,t}$ be the matrix in which the superdiagonal entries are -1's, all main diagonal are 2's except the last one, which is t+1, and all entries below the diagonal are 1's. Let G_n be the Hessenberg matrix in which the superdiagonal entries are 1's, the main diagonal entries are 2's, and the entries of each column below the main diagonal alternate -1's and 1's, starting with -1. Let $G_{n,t}$ be the matrix obtained from G_n by replacing the lowest diagonal 2 with t+1. Let H_n be the matrix obtained by changing the superdiagonal entries of G_n to -1's. Let $H_{n,t}$ be the matrix obtained from H_n by replacing the lowest diagonal 2 with t+1.

Now we are in a position to state and prove the main theorems.

Theorem 2.1.
$$\det(A_{n,t} + C_{n,t}) = 2 \times 3^{n-1}(t+1)$$
.

Proof. Because

$$A_{n,t} + C_{n,t} = \begin{bmatrix} 3 & 0 & & & & \\ 1 & 3 & 0 & & 0 & \\ 2 & 1 & 3 & \ddots & & \\ 1 & 2 & \ddots & \ddots & \ddots & \\ 2 & 1 & \ddots & \ddots & \ddots & 0 \\ \dots & \dots & \dots & 2 & 1 & 2t+2 \end{bmatrix},$$

so $A_{n,t} + C_{n,t}$ is a lower triangular matrix and also a Hessenberg matrix. As we know, the determinant of a triangular matrix is the product of the main diagonals, hence

$$\det(A_{n,t} + C_{n,t}) = 3 \times 3 \times \dots \times 3 \times (2t+2) = 2 \times 3^{n-1}(t+1).$$

This completes the proof.

Example 2.1. Let n = 5. Then

$$A_{5,t} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & t+1 \end{bmatrix};$$

$$C_{5,t} = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ 1 & 2 & -1 & 0 & 0 \\ 1 & 1 & 2 & -1 & 0 \\ 1 & 1 & 1 & 2 & -1 \\ 1 & 1 & 1 & 1 & t+1 \end{bmatrix};$$

$$A_{5,t} + C_{5,t} = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ 1 & 3 & 0 & 0 & 0 \\ 2 & 1 & 3 & 0 & 0 \\ 1 & 2 & 1 & 3 & 0 \\ 2 & 1 & 2 & 1 & 2t + 2 \end{bmatrix}.$$

And

$$\det(A_{5,t} + C_{5,t}) = 3 \times 3 \times 3 \times 3 \times (2t+2) = 2 \times 3^4(t+1).$$

Theorem 2.2. $\det(C_{n,t} + G_{n,t}) = 2^{2n-1}(t+1).$

Proof. Because

$$C_{n,t} + G_{n,t} = \begin{bmatrix} 4 & 0 & & & & & \\ 0 & 4 & 0 & & 0 & & \\ 2 & 0 & 4 & \ddots & & & \\ 0 & 2 & \ddots & \ddots & \ddots & \ddots & \\ 2 & 0 & \ddots & \ddots & \ddots & \ddots & 0 \\ \dots & \dots & \dots & 2 & 0 & 2t+2 \end{bmatrix},$$

so it is obvious that $C_{n,t} + G_{n,t}$ is a lower triangular matrix and also a Hessenberg matrix. As we know, the determinant of a triangular matrix is the product of the main diagonals, hence

$$\det(C_{n,t} + G_{n,t}) = 4 \times 4 \times \cdots \times 4 \times (2t+2) = 2^{2n-1}(t+1).$$

This completes the proof.

Example 2.2. Let n = 5. Then

$$C_{5,t} = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ 1 & 2 & -1 & 0 & 0 \\ 1 & 1 & 2 & -1 & 0 \\ 1 & 1 & 1 & 2 & -1 \\ 1 & 1 & 1 & 1 & t+1 \end{bmatrix};$$

$$G_{5,t} = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ -1 & 2 & 1 & 0 & 0 \\ 1 & -1 & 2 & 1 & 0 \\ -1 & 1 & -1 & 2 & 1 \\ 1 & -1 & 1 & -1 & t+1 \end{bmatrix};$$

$$C_{5,t} + G_{5,t} = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 \\ 2 & 0 & 4 & 0 & 0 \\ 0 & 2 & 0 & 4 & 0 \\ 2 & 0 & 2 & 0 & 2t + 2 \end{bmatrix}.$$

And

$$\det(C_{5,t} + G_{5,t}) = 4 \times 4 \times 4 \times 4 \times (2t+2) = 2^{9}(t+1).$$

Theorem 2.3.
$$\det(G_{n,t} + H_{n,t}) = 2^{2n-1}(t+1).$$

Proof. Because

so it is obvious that $G_{n,t} + H_{n,t}$ is a lower triangular matrix and also a Hessenberg matrix. As we know, the determinant of a triangular matrix is the product of the main diagonals, hence

$$\det(G_{n,t} + H_{n,t}) = 4 \times 4 \times \dots \times 4 \times (2t+2) = 2^{2n-1}(t+1).$$

This completes the proof.

Example 2.3. Let n = 5. Then

$$G_{5,t} = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ -1 & 2 & 1 & 0 & 0 \\ 1 & -1 & 2 & 1 & 0 \\ -1 & 1 & -1 & 2 & 1 \\ 1 & -1 & 1 & -1 & t+1 \end{bmatrix};$$

$$H_{5,t} = \begin{bmatrix} 2 & -1 & 0 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ 1 & -1 & 2 & -1 & 0 \\ -1 & 1 & -1 & 2 & -1 \\ 1 & -1 & 1 & -1 & t+1 \end{bmatrix};$$

$$G_{5,t} + H_{5,t} = \begin{bmatrix} 4 & 0 & 0 & 0 & 0 \\ -2 & 4 & 0 & 0 & 0 \\ 2 & -2 & 4 & 0 & 0 \\ -2 & 2 & -2 & 4 & 0 \\ 2 & -2 & 2 & -2 & 2t + 2 \end{bmatrix}.$$

And

$$\det(C_{5,t} + G_{5,t}) = 4 \times 4 \times 4 \times 4 \times (2t+2) = 2^{9}(t+1).$$

3. Conclusions

In the near future, we will discuss the sums of another two Hessenberg matrices and try to calculate the determinants of the referred Hessenberg matrices.

References

- [1] Morteza Esmaeili, More on the Fibonacci sequence and Hessenberg matrices, Integers 6 (2006), #A32.
- [2] Hsuan-Chu Li, Young-Ming Chen and Eng-Tjioe Tan, Counting determinants of Fibonacci-Hessenberg matrices using LU factorizations, Integers 9 (2009), #A37.