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Abstract 

We obtain some new Hessenberg matrices and their corresponding 
determinants by adding two well-known Hessenberg matrices. 

1. Introduction 

A matrix is said to be a Hessenberg matrix [1] if all entries above the 
superdiagonal are zero. For instance, the matrix [1], 
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is a Hessenberg matrix and its determinant is .22 +nF  In [1], the author 

introduced several types of Hessenberg matrices whose determinants are 
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Fibonacci numbers were calculated by using the basic definition of the 
determinant as a signed sum over the symmetric group. In [2], Li et al. 
proved the above results by investigating first the feasibility of LU 
factorization, i.e., a lower triangular matrix with unit main diagonal and an 
upper triangular matrix. Furthermore, they found the determinant of a new 
class of Hessenberg matrices. 

In this paper, we try to calculate the determinants of some new 
Hessenberg matrices obtained by adding two well-known Hessenberg 
matrices. 

2. Main Results 

Let tnA ,  be the nn ×  Hessenberg matrix in which the superdiagonal 

entries are 1, all main diagonal entries are 1 except the last one, which is 
,1+t  and the entries of each column below the main diagonal alternate 0’s 

and 1’s, starting with 0 and t is an indeterminate. Let tnC ,  be the matrix in 

which the superdiagonal entries are –1’s, all main diagonal are 2’s except the 
last one, which is ,1+t  and all entries below the diagonal are 1’s. Let nG  be 

the Hessenberg matrix in which the superdiagonal entries are 1’s, the main 
diagonal entries are 2’s, and the entries of each column below the main 
diagonal alternate –1’s and 1’s, starting with –1. Let tnG ,  be the matrix 

obtained from nG  by replacing the lowest diagonal 2 with .1+t  Let nH  be 

the matrix obtained by changing the superdiagonal entries of nG  to –1’s. Let 

tnH ,  be the matrix obtained from nH  by replacing the lowest diagonal 2 

with .1+t  

Now we are in a position to state and prove the main theorems. 

Theorem 2.1. ( ) ( ).132det 1
,, +×=+ − tCA n
tntn  
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Proof. Because 
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so tntn CA ,, +  is a lower triangular matrix and also a Hessenberg matrix. As 

we know, the determinant of a triangular matrix is the product of the main 
diagonals, hence 

( ) ( ) ( ).13222333det 1
,, +×=+××××=+ − ttCA n
tntn  

This completes the proof. 

Example 2.1. Let .5=n  Then 
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And 

( ) ( ) ( ).132223333det 4
,5,5 +×=+××××=+ ttCA tt  

Theorem 2.2. ( ) ( ).12det 12
,, +=+ − tGC n
tntn  

Proof. Because 
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so it is obvious that tntn GC ,, +  is a lower triangular matrix and also a 

Hessenberg matrix. As we know, the determinant of a triangular matrix is the 
product of the main diagonals, hence 

( ) ( ) ( ).1222444det 12
,, +=+××××=+ − ttGC n
tntn  

This completes the proof. 

Example 2.2. Let .5=n  Then 
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And 

( ) ( ) ( ).12224444det 9
,5,5 +=+××××=+ ttGC tt  

Theorem 2.3. ( ) ( ).12det 12
,, +=+ − tHG n
tntn  

Proof. Because 

,

2222
022

22
422

0042
04

,,

























+−
−

−
−

−

=+

t

HG tntn  

so it is obvious that tntn HG ,, +  is a lower triangular matrix and also a 

Hessenberg matrix. As we know, the determinant of a triangular matrix is the 
product of the main diagonals, hence 

( ) ( ) ( ).1222444det 12
,, +=+××××=+ − ttHG n
tntn  

This completes the proof. 

Example 2.3. Let .5=n  Then 
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;
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And 

( ) ( ) ( ).12224444det 9
,5,5 +=+××××=+ ttGC tt  

3. Conclusions 

In the near future, we will discuss the sums of another two Hessenberg 
matrices and try to calculate the determinants of the referred Hessenberg 
matrices. 
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