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Abstract 

Let ( )EVG ,  be a connected graph. For a vertex ( )GVv ∈  and          

a subset S of ( ),GV  the distance ( )Svd ,  from v to S is 

( ){ }.,min Swwvd ∈|  For an ordered k-partition { }kSSS ...,,, 21=Π  
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of ( ),GV  the representation of v with respect to Π  is ( ) =Π|vr  

( ) ( ) ( )( ).,...,,,,, 21 kSvdSvdSvd  The k-partition Π  is called a resolving 

partition of G if all ( )Π|vr  for all ( )GVv∈  are distinct. The partition 

dimension of a graph G is the smallest k such that G has a resolving 
k-partition. In this paper, we derive an upper bound of the partition 
dimension of the corona product ,HG  where G, H are connected 

graphs and the diameter of H is at most 2. Furthermore, we also 
determine the exact value of the partition dimension of this corona 
product if G is either a path or a complete graph and H is a complete 
graph. 

1. Introduction 

One of the problems in graph theory with applications to chemistry deals 
with determining representations for the vertices of a graph such that distinct 
vertices have distinct representations. A representation defined in terms of 
distances and partitions was firstly studied by Chartrand et al. [4]. For any 

( ),, GVvu ∈  define the distance ( )vud ,  from u to v as the length of the 

shortest path connecting these two vertices in G. For ( )GVv ∈  and ⊂S  

( ),GE  the distance ( )Svd ,  from u to S is defined as ( ){ }.,min Sxxvd ∈|   

In particular, if ( ) ( ),,, SydSxd ≠  then we shall say that x and y are 

distinguished by S or x and y are distinguishable. For an ordered k-partition 
{ }kSSS ...,,, 21=Π  of ( )GV  and ( ),GVv ∈  the representation of ( )GVv ∈  

with respect to Π  is the k-vector 

( ) ( ) ( ) ( )( ).,...,,,,, 21 kSvdSvdSvdvr =Π|  

We call Π  a resolving partition if ( ) ( )Π|≠Π| vrur  for every two distinct 

vertices ., Gvu ∈  The partition dimension ( )Gpd  of graph G is the minimum 

cardinality of any resolving partition of ( ).GV  

Let nmS ,  be a double star, namely, a tree with two vertices of degree m 

and n and the remaining vertices of degree 1. In [4], Chartrand et al. showed 
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that the partition dimension of nmS ,  is { } .1,max −nm  Moreover, they also 

gave the sharp lower and upper bounds of the partition dimension of a 
caterpillar, namely, a tree having the property that the removal of its end-
vertices results in a path. A construction of a tree T on n vertices with 
partition dimension k ( )2but,12,anyfor −≠−≤≤ nknkk  is also given. 

Other result concerning caterpillar can be also seen in [5]. However, the 
partition dimension of any general tree is an open problem. 

Finding the partition dimension of any graph in general is classified as an 
NP-hard problem [2]. The characterization studies for all graphs having 
certain partition dimension have been also conducted, for instance, see [2] 
and [10]. 

Some investigations have been also conducted to determine partition 
dimensions with some additional criteria for certain classes of graphs. For 
instance, Saenpholphat and Zhang [9] and Tomescu et al. [11] considered 
connected resolving partition in which the induced subgraph of each set in 
the partition is connected. Marinescu-Ghemeci and Tomescu [7] investigated 
star partition dimension of generalized gear graphs and Ruxandra [8] studied 
partition dimension of graph in which the induced subgraph of each set in the 
partition is a path. 

Finding a relationship (in terms of partition dimension) between the 
original graphs and the resulting graph under some graph operation is also 
interesting to be considered. For instances, let us define the corona product 

HG  between G and H as the graph obtained from G and H by taking one 

copy of G and ( )GV  copies of H and then joining by an edge each vertex 

of the ith-copy of H with the ith-vertex of G. In this paper, we are interested 
in determining the partition dimension of graph .HG  We derive an upper 

bound of the partition dimension of a corona product graph HG  for any 

connected graphs G and H with the diameter of H is at most 2, namely, 
( ) ( ) ( ).HpdFpdHGpd +≤  We also show that this upper bound is tight. 

Furthermore, we determine the partition dimension of ,HG  if G is either a 

path or a complete graph and H is a complete graph. 
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The following lemma is useful in determining the partition dimension of 
a graph G. 

Lemma 1 [3]. Let G be a connected non trivial graph. Let Π  be a 
resolving partition for G and ( )., GVvu ∈  If ( ) ( )wvdwud ,, =  for all 

( ) { },, vuGVw −∈  then u and v belong to different sets in .Π  

2. The Upper Bound of ( )HGpd  

The diameter of a graph G is ( ) ( ){ }.,,max GVyxyxd ∈|  In this section, 

we shall derive an upper bound of ( )HGpd  for any connected graphs G 

and H with diameter of H is at most 2. 

Lemma 2. Let G and H be connected graphs. Let iH  be ith-copy of H in 

.HG  Then any two vertices u and v of iH  can be only distinguished by 

some set in which has intersection not empty with the set of vertices of .iH  

Proof. Since ( ) ( )wvdwud ,, =  for all ( ) ,\ iHHGVw ∈  vertices u 

and v can be only distinguished by some vertex in .iH   

Theorem 1. Let G and H be connected graphs. If the diameter of H is at 
most 2, then ( ) ( ) ( ).HpdGpdHGpd +≤  

Proof. Let GΠ  and HΠ  be minimum resolving partitions of G and H, 

respectively. Let ( ) .nGV =  For ,...,,2,1 ni =  partition the vertices of 

each iH  according to ,HΠ  say { },...,,, 21 s
iii HHH  where ( ).Hpds =  Now, 

consider the partition ,21 ΠΠ=Π ∪  where { ...,,, 2
1

1
11 i

n
ii

n
i HH ===Π ∪∪  

}s
i

n
i H1=∪  and .2 GΠ=Π  Then we shall show that Π  is a resolving 

partition of .HG  Note that since the diameter of H is at most 2, the 

distance of any two vertices ( ),, iHVvu ∈  for any i, under the corona graph 

HG  is the same as its distance under the original graph H. Therefore, if 

the vertices ( ),, iHVvu ∈  for any i, are distinguishable by ,HΠ  then they 
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are distinguishable too by .1Π  Let u and v be any two vertices of .HG  If 

( ),, iHVvu ∈  then they will be clearly distinguished by t
i

n
i H1=∪  for some 

t. If ( ),, GVvu ∈  then they will be distinguished by some set in .GΠ  Now, 

assume that ( )iHVu ∈  and ( ).GVv ∈  If t
i

n
i Hu 1=∈ ∪  for some t, then the 

distances between u and v to t
i

n
i H1=∪  is 0 and 1, respectively. Therefore, u 

and v are distinguished. Now, the only case we have not considered is 

( )iHVu ∈  and ( ),jHVv ∈  for .ji ≠  If t
i

n
i Hvu 1, =∈ ∪  for some t, then u, 

v are distinguished by some set in GΠ  since GΠ  is a resolving partition for 

G.  

In the following sections, we will determine the exact value of 
( )HGpd  if nKH ≅  and G is either a path or a complete. We also show 

that the bound in Theorem 1 is tight. 

3. The Corona Product nm KP  

Now, we consider the corona product ,nm KPG ≅  where mP  

represents a path order m and nK  is the complete graph on n vertices. Let the 

vertex-set ( ) { } { }njmiamixGV iji ≤≤≤≤|≤≤|= 1,11 ∪  and the edge-set 

( ) { } { }njmiaxmixxGE ijiii ≤≤≤≤|≤≤|= − 1,121 ∪  

{ }.1,1 nlkmiaa ilik ≤≤≤≤≤|∪  

We will show that the upper bound of Theorem 1 is satisfied by 
( )nm KPpd  provided .2+> nm  

Theorem 2. For 2≥m  and ,4≥n  the partition dimension of nm KP  

is as follows: 

( )
⎩
⎨
⎧

+≥+
+≤+

=
.3,2
,2,1

nmifn
nmifn

KPpd nm  
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Proof. Let { }kSSS ...,,, 21=Π  be an ordered resolving partition of 

.nm KPG ≅  For ,...,,2,1 mi =  let ( ) { }iniii aaaHV ...,,, 21=  be vertices 

of the ith-copy of nK  in G. Then each vertex in iH  must be in a different set 

in .Π  Since ,2≥m  we need at least 1+n  sets in .Π  Otherwise, the 

representations of 1ia  and 1ja  belonging to the same set in ,Π  for ,ji ≠  

are the same. Therefore, .1+≥ nk  

Now, consider the case of .2+≤ nm  Define an ordered partition =Π  
{ }121 ...,,, +nSSS  of G such that: 

a. { } { } ;...,,,,,,, 165543211 SxxxSxxxSx m ⊂⊂∈  

b. All vertices of 1H  are distributed equally into n partitions other than 

;1S  

c. All vertices of 2H  are distributed equally into n partitions other than 

;2S  

d. All vertices of 3H  are distributed equally into n partitions other than 

;1S  

e. For ,...,,5,4 mt =  all vertices of tH  are distributed equally into n 

partitions other than .1−tS  See Figure 1. 

 

Figure 1. Resolving partition for corona product graph .46 KP  

We claim that Π  is a resolving partition of G. To prove it, let us 
consider two different vertices u, v of G in the same set in .Π  If ( ),iHVu ∈  
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( )jHVv ∈  for ,ji <  and { } { },3,1, ≠ji  then ( ) ( )11 ,, −− ≠ jj SvdSud  or 

( ) ( ).,, 11 SvdSud ≠  Therefore, ( ) ( ).Π|≠Π| vrur  Now, if { }mxxxu ...,,, 21∈  

and { }( ),or...,,, 21 tm Svxxxv ∈∈  then ( ) ( ),,, bb SvdSud ≠  where bS  is 

the partition not containing any vertex of .tH  Therefore, again ( ) ≠Π|ur  

( ).Π|vr  Thus, we obtain that Π  is the revolving partition of G. This implies 

that ( ) 1+= nGpd  if .2+≤ nm  

Now, consider the case of .3+≥ nm  We will show that ( ) .2+= nGpd  

To show the lower bound, for a contradiction assume there is an ordered 
resolving partition Π  of G with 1+n  sets. Let { }....,,, 121 +=Π nSSS  

By Lemma 1, any two vertices in ,iH  for each i, belong to different sets 

of .Π  Therefore, for mi ...,,2,1=  we can define bci =  if no vertex of iH  

is in .bS  Then since 3+≥ nm  and ,11 +≤≤ nb  there exist i, j, l and 

lji <<  such that bccc lji ===  for some b or there exist i, j, l, s and 

slji <<<  such that bcc ji ==  and ccc sl ==  for some b and c. 

It is clear that the sets iH  and jH  which are the same cannot be 

adjacent, namely, .1+≠ ij  Since otherwise ( ) ( )bbj SwdSxd ,, =  for some 

( )iHVw ∈  or ( ) ( )bbi SwdSxd ,, =  for some ( ).jHVw ∈  Since ( ) =ti Sxd ,  

( ) ( ) 1,, == ttj SwdSxd  for all ,bt ≠  ( ) ( )Π|=Π| wrxr j  or ( ) =Π|ixr  

( ),Π|wr  a contradiction. Therefore, ,1>− ij  ,1>− jl  and .1>− ls  

Now, consider the first case, namely, .bccc lji ===  In order to have 

the representation of each vertex of G with respect to Π  is distinct, then 
{ ( ) ( ) ( )} { }3,2,1,,,,, =blbjbi SHdSHdSHd  (since 1>− ij  and ,)1>− jl  

where ( )bi SHd ,  is the distance between the whole vertices of iH  to .bS  

This implies that one of { }lji xxx ,,  is in ,bS  say ,bi Sx ∈  and one of them 

has distance 1 to ,bS  say .jx  But, then we get ( ) ( )Π|=Π| wrxr j  for some 

( ),iHVw ∈  a contradiction. Therefore, the first case is not possible. 
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Next, we consider the case of bcc ji ==  and ccc sl ==  for some b 

and ., cbc ≠  Again, since ,1>− ij  ,1>− jl  and ,1>− ls  { ( ),, bi SHd  

( )} { }3,2,1, ⊂bj SHd  and ( ) ( ){ } { }.3,2,1,,, ⊂cscl SHdSHd  Clearly, at 

most one of { }ji xx ,  is in .bS  If ,bi Sx ∈  then all vertices of iH  together 

with ix  are dominant, namely, all ordinates of its representation with respect 

to Π  are 1’s. Furthermore, if ,bi Sx ∈  then no one of { }sl xx ,  is in .cS  

Since otherwise, there are too many dominant vertices in G, namely, the 
number of dominant vertices greater than the partition dimension. Therefore, 

( ) ( ){ } { }.3,2,,, =cscl SHdSHd  Thus, either one of { }sl xx ,  has distance 1 

to ,cS  say .lx  This yields lx  as a dominant vertex; But now ( ) =Π|lxr  

( ),Π|wr  for some ( ) { }.ii xHVw ∪∈  Therefore, as a conclusion, no one      

of { }ji xx ,  is in bS  (similarly, no one of { }sl xx ,  is in ).cS  Hence, 

{ ( ) ( )} { }3,2,,, =bjbi SHdSHd  and ( ) ( ){ } { }.3,2,,, =cscl SHdSHd  In this 

case, we may assume ( ) 2, =bi SHd  and ( ) .3, =bj SHd  But, then ( )Π|jxr  

( ),Π|= wr  for some ( ),iHVw ∈  a contradiction. Therefore, the second case 

is also not possible. This means that ( ) 2+≥ nGpd  if .3+≥ nm  

Now, to show the upper bound, for ,3+≥ nm  define a resolving 

partition { }221 ...,,, +=Π nSSS  of G such that: 

{ }
{ }
{ }⎪
⎩

⎪
⎨

⎧

+=

+=

≤≤

=

.2if,

,1if,...,,,

,1if,...,,,

1

32

21

nkx

nkxxx

nkaaa

S m

mkkk

k  

Clearly, any two vertices in ,kS  for { },1...,,2,1 +∈ nk  have different 

distances to .2+nS  Therefore, their representations with respect to Π  will be 

not the same. This means Π  is the resolving partition of G; thus ( )Gpd  

2+≤ n  for .3+≥ nm   
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Now, let us consider the graph ,nm KPG ≅  with ,2≥m  and =n  

.3,2  For ,2+≤ nm  define a partition { }121 ...,,, +=Π nSSS  of G such 

that: 

a. 

{ } { },,,,,,, 44231112341211 xaaaSxaaS ==  

{ },,,,, 213222123 xxaaaS =  for ;4,2 == mn  

b. 

{ } { },,,,,,,,,, 5452423111235141211 xxaaaaSxaaaS ==  

{ } { },,,,,,,,,, 43332313421533222123 aaaaSxxaaaaS ==  

for .5,3 == mn  

It is easy to see that Π  is a resolving partition of G. Now, if ≤2  
,1+≤ nm  then by removing all elements ija  and ix  with 1+≥ mi  from 

all sets in the above ,Π  we will get the resolving partition of G for this case 
m. Next, consider 3+≥ nm  and .3,2=n  By using the same argument and 

the same partition like in the proof of the case 3+≥ nm  and ,4≥n  we can 
show that ( ) .2+= nGpd  Therefore, we have the following theorem: 

Theorem 3. For 2≥m  and ,3,2=n  the partition dimension of 

nm KP  is as follows: 

( )
⎩
⎨
⎧

+≥+
+≤+

=
.3,2
,2,1

nmifn
nmifn

KPpd nm  

From Theorems 2 and 3, note that for 3+≥ nm  the partition dimension 
( )nm KPpd  is .2+n  This means that the upper bound of Theorem 1 is 

sharp. 

4. The Corona Product nm KK  

In this section, we determine the partition dimension of ,nm KKG ≅  
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the corona product of the complete graph mK  to .nK  Let the vertex-set 

( ) { } { }njmiamixGV iji ≤≤≤≤|≤≤|= 1,11 ∪  and the edge-set 

( ) { } { }njmiaxmjixxGE ijiji ≤≤≤≤|≤<≤|= 1,11 ∪  

{ }.1,1 nlkmiaa ilik ≤<≤≤≤|∪  

For simplicity, denote by ( ) { }iniii aaaHV ...,,, 21=  the vertices of ith-copy 

of nK  with attach to vertex ix  in .mK  

Theorem 4. Let ,nm KKG ≅  with 2≥m  and .3≥n  Then 

a. ( ) 1+= nGpd  iff .12 ⎟
⎠
⎞

⎜
⎝
⎛ +

≤≤
n

nm  

b. ( ) 2+= nGpd  iff .1211
+⎟

⎠
⎞

⎜
⎝
⎛ +

≤≤+⎟
⎠
⎞

⎜
⎝
⎛ +

n
nm

n
n  

c. ( ) ,knGpd +≤  if ,11
⎟
⎠
⎞

⎜
⎝
⎛ +

≤≤+⎟
⎠
⎞

⎜
⎝
⎛ −+

n
knm

n
kn  and .3≥k  

Proof. We shall divide the proof into three cases: 

Case 1. .12 ⎟
⎠
⎞

⎜
⎝
⎛ +

≤≤
n

nm  

Consider the vertices in iH  in G, for some i. By Lemma 1, any two      

of them must be in different partitions in a resolving partition Π  of G. 
Therefore, we require n distinct partitions in Π  for the vertices of iH  only. 

But, since ,2≥m  .1+≥Π n  Now, if ,1
⎟
⎠
⎞

⎜
⎝
⎛ +

≤
n

nm  then define an ordered 

partition { }121 ...,,, +=Π nSSS  of G such that: 

a. All ,six′  for mi ...,,2,1=  belong to ;1S  

b. For each i, distribute equally all n vertices of iH  into n distinct 

partitions other than .iS  
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Then, by this definition, it is easy to verify that Π  is a resolving 

partition of G. Now, let 11
+⎟

⎠
⎞

⎜
⎝
⎛ +

≥
n

nm  and assume for a contradiction 

.1+=Π n  Then there are two distinct iH  and jH  such that their vertices 

are distributed to the same combination of n partitions of .Π  Let bcc ji ==  

if no vertex of ( )ji HH  is in .bS  Then ix  and jx  must be in different 

partitions and one of { }ji xx ,  is in ,bS  say .ix  However, now ( ) =Π|jxr  

( )Π|wr  for some ( ),iHVw ∈  a contradiction. Therefore, the first statement 

and the lower bound of the second statement have been proved. 

Case 2. .1211
+⎟

⎠
⎞

⎜
⎝
⎛ +

≤≤+⎟
⎠
⎞

⎜
⎝
⎛ +

n
nm

n
n  

Let =T {all n-combinations from 2+n  distinct numbers}. 

Let { }....,,, 221 +=Π nSSS  Since all vertices of each iH  must be in n 

different partitions, each iH  can be associated with an n-combination in T. 

Now, we can define { }baci ,=  if aS  and bS  both do not contain any vertex 

of .iH  To show ( ) ,2+= nGpd  define Π  as follows: 

a. Assign ,iH  for mi ...,,2,1=  to all members in T such that 

{ },2,11 =c  { },2,12 =c  { },3,13 =c  { } ,...,,4,1 14 −= mcc  mc  

are in a lexicographical order, 

b. ,, 2211 SxSx ∈∈  and 

c. For ,...,,4,3 mi =  put ix  into 1S  if ;2 ic∈  Otherwise ix  is put into 

.2S  See Figure 2. 



Edy Tri Baskoro and Darmaji 192 

 

Figure 2. Resolving partition for corona product graph .311 KK  

We shall show that Π  is a resolving partition of G. To do so, take any 
two vertices u, v in the same partition in .Π  If ( )iHVu ∈  and ( ),jHv ∈  for 

,ji <  then ( ) ( ),,, bb SvdSud ≠  where ji ccb −∈  and 2,1≠b  (provided 

;∅≠− ji cc  otherwise set ).1=b  Therefore, ( ) ( ).Π|≠Π| vrur  If ∈u  

( )iHV  and jxv =  for some i and j, then { } 1, Svu ⊂  or { } ., 2Svu ⊂  In 

both cases, we will get ( ) ( ),,, bb SvdSud ≠  where ji ccb −∈  and 2,1≠b  

(provided ;ji ≠  otherwise take any ).icb ∈  Therefore, again, ( ) ≠Π|ur  

( ).Π|vr  Now, let ixu ∈  and jxv ∈  for .ji <  By a similar argument, we 

can show that ( ) ( ).Π|≠Π| vrur  Therefore, Π  is a resolving partition of G 

provided .1211
+⎟

⎠
⎞

⎜
⎝
⎛ +

≤≤+⎟
⎠
⎞

⎜
⎝
⎛ +

n
nm

n
n  

Next, we shall show that if ( ) ,2+= nKKpd nm  then ≤+⎟
⎠
⎞

⎜
⎝
⎛ + 11

n
n  

.12
+⎟

⎠
⎞

⎜
⎝
⎛ +

≤
n

nm  To do so, for a contradiction assume that ( ) =nm KKpd  

2+n  for .22
+⎟

⎠
⎞

⎜
⎝
⎛ +

=
n

nm  Let Π  be a resolving partition of .nm KK  

Since ,22
+⎟

⎠
⎞

⎜
⎝
⎛ +

=
n

nm  there exist i, j, l and lji <<  such that =ic  
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{ }bacc lj ,==  or there exist i, j, l, s and slji <<<  such that =ic  

{ }bac j ,=  and { }., tscc sl ==  

For the first case, we may assume, without loss of generality, ji cc =  

{ }.2,1== lc  To distinguish all the vertices in ,, ji HH  and ,lH  the vertices 

lji xxx ,,  must be in different partition of Π  and two of them must be in 1S  

and ,2S  say ,1Sxi ∈  ,2Sx j ∈  .3Sxl ∈  Then these three lji xxx ,,  are 

dominant vertices, namely, the ordinates of their representations are all 1’s. 
Now, consider the vertex 1rx  adjacent to 1rH  with { }.3,11 =rc  Then 1rx  

must be also dominant. Therefore, .3211 SSSxr ∪∪∉  We may assume 

.41 Sxr ∈  Now, consider the vertex 2rx  adjacent to 2rH  with { }.4,12 =rc  

Similarly, .52 Sxr ∈  We do this process for all hx  in mK  to obtain that all 

these vertices are dominant. Therefore, we have more than 2+n  dominant 
vertices, a contradiction. Thus, the first case is not possible. 

For the second case, we assume, without loss of generality, ( ji cc =  

{ } { })3,1and2,1 === sl cc  or ( { } { }).4,3and2,1 ==== slji cccc  First, 

let { }2,1== ji cc  and { }.3,1== sl cc  To distinguish all the vertices of 

ji HH ,  and ,, sl HH  one of { }ji xx ,  must be in either 1S  or ,2S  and one 

of { }sl xx ,  must be in either 1S  or .3S  By symmetry, we may assume that 

., 1Sxx li ∈  Now, consider jx  and .sx  If ,2Sx j ∈  then ix  and jx  are 

dominant vertices. Vertex sx  cannot be in ,3S  since otherwise lx  becomes 

dominant (too many dominant in ,1S  namely, more than one vertices in 1S  

are dominant). Thus, sx  is in either 2S  or tS  for .4≥t  If ,2Sxs ∈  then 

consider the vertex 1rx  adjacent to 1rH  with { }.3,21 =rc  For sure, 1rx  

cannot be in ,21 SS ∪  since otherwise its representation will be the same 

with the one of lx  or .sx  But, 1rx  cannot be in 3S  to avoid lx  and ix  

becoming dominant vertices from the same set. Therefore, 1rx  must be in 
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,tS  ,4≥t  say .41 Sxr ∈  Now, consider 2rx  adjacent to 2rH  with 

{ }.4,22 =rc  Then 2rx  must be a dominant vertex since it is adjacent to jx  

and .1rx  Thus, w.l.o.g., 42 Scr ∈  or .5S  We do this process for all hx  in 

mK  to obtain that all these vertices are dominant. Therefore, we have more 

than 2+n  dominant vertices, a contradiction. 

Now, consider 2Sx j ∈  and .4Sxs ∈  In this case, ji xx ,  are dominant. 

Next, consider 1rx  adjacent to 1rH  with { }.4.11 =rc  This vertex 1rx  is also 

dominant, since adjacent to ix  and .sx  Therefore, 1rx  must in either ,tS  

,4≥t  say .41 Sxr ∈  We do this process for all hx  in mK  to obtain that all 

these vertices are dominant. Therefore, we have more than 2+n  dominant 
vertices, a contradiction. 

Next, consider 1, Sxx li ∈  and .3Sx j ∈  In this case, lx  is dominant. 

For sure, sx  cannot be in 2S  (since ix  and lx  become both dominant) or 3S  

(by symmetry argument above). Therefore, sx  must be in ,tS  ,4≥t  say 

w.l.o.g., .4Sxs ∈  Now, consider the vertex 1rx  adjacent to 1rH  with 

{ }.4,11 =rc  Thus, 1rx  must be a dominant vertex. Therefore, 1rx  must be in 

either ,3, ≥tSt  say .31 Sxr ∈  But, now sx  is also dominant. Let us now 

consider vertex 2rx  adjacent to 2rH  with { }.4,32 =rc  Then 2rx  must be a 

dominant vertex since it is adjacent to sx  and .1rx  Thus, w.l.o.g., .52 Scr ∈  

We do this process for all hx  in ( )mKV  to obtain that all these vertices are 
dominant. Therefore, we have more than 2+n  dominant vertices, a 
contradiction. 

Second, consider { }2,1== ji cc  and { }.4,3== sl cc  To distinguish 

all the vertices of ji HH ,  and ,, sl HH  then ix  and jx  must be in different 

partitions and one of { }ji xx ,  is in either 1S  or ,2S  and one of { }sl xx ,  

must be in either 3S  or 4S  and they are in different partitions. By symmetry, 

we may assume that 1Sxi ∈  and .3Sxl ∈  Now, consider jx  and .sx  If one 
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of either 3Sx j ∉  or 1Sxs ∉  holds, then we have three partitions holding 

,ix  ,jx  ,lx  .sx  Any two combinations will give another a dominant vertex 

1rx  by similar method above. We do this process for all hx  in ( )mKV  to 

obtain that all these vertices are dominant. Therefore, we have more than 
2+n  dominant vertices, a contradiction. 

Now, the only remaining case is ,1Sxi ∈  ,3Sxl ∈  3Sx j ∈  and .1Sxs ∈  

Let us consider 1rx  adjacent to 1rH  with { }.3,11 =rc  Since it is also adjacent 

to ix  and ,lx  then 1rx  must be a dominant vertex. If ,311 SSxr ∪∉  then we 

have three partitions holding ,ix  ,jx  ,lx  sx  and .1rx  Therefore, by the 

similar method above, we will have too many dominant vertices, a 
contradiction. Thus, .11 Sxr ∈  But, now consider vertex 2rx  adjacent to 2rH  

with { }.3,22 =rc  This vertex cannot be in .321 SSS ∪∪  Therefore, ,2 tr Sx ∈  

.4≥t  Thus, we have three partitions holding these vertices so far. This 
implies that there will be too many dominant vertices, a contradiction. This 
completes the proof of the second statement. 

Case 3. ,11
⎟
⎠
⎞

⎜
⎝
⎛ +

≤≤+⎟
⎠
⎞

⎜
⎝
⎛ −+

n
knm

n
kn  and .3≥k  

Let =T  {all n-combinations from kn +  distinct numbers}. 

Let { }....,,, 21 knSSS +=Π  Since all vertices of each iH  must be in n 

different partitions, each iH  can be associated with an n-combination in T. 

Then define Π  as follows: 

a. Assign ,iH  for mi ...,,2,1=  to a member in T so that no two ,iH  

jH  have been assigned to the same member of T. 

b. Put all vertices sxi′  is into .1S  

It is clear that Π  is a resolving partition of G. Therefore, ( ) knGpd +≤  

in this case.  
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