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Abstract

Let G(V, E) be a connected graph. For a vertex v eV(G) and
a subset S of V(G), the distance d(v,S) from v to S is
min{d(v, w)|w e S}. For an ordered k-partition IT = {Sy, Sy, ..., S}
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of V(G), the representation of v with respect to IT is r(v|II) =
(d(v, Sy),d(v, Sp), ..., d(v, Sy ))- The k-partition IT is called a resolving
partition of G if all r(v|IT) for all veV(G) are distinct. The partition

dimension of a graph G is the smallest k such that G has a resolving
k-partition. In this paper, we derive an upper bound of the partition
dimension of the corona product G ®H, where G, H are connected

graphs and the diameter of H is at most 2. Furthermore, we also
determine the exact value of the partition dimension of this corona
product if G is either a path or a complete graph and H is a complete
graph.

1. Introduction

One of the problems in graph theory with applications to chemistry deals
with determining representations for the vertices of a graph such that distinct
vertices have distinct representations. A representation defined in terms of
distances and partitions was firstly studied by Chartrand et al. [4]. For any
u, v e V(G), define the distance d(u, v) from u to v as the length of the

shortest path connecting these two vertices in G. For veV(G) and S
E(G), the distance d(v, S) from u to S is defined as min{d(v, x)|x € S}.
In particular, if d(x, S)=d(y, S), then we shall say that x and y are
distinguished by S or x and y are distinguishable. For an ordered k-partition
I1={Sy, Sy, ..., S} of V(G) and v € V(G), the representation of v € V(G)

with respect to IT is the k-vector
r(v|IT) = (d(v, Sy), d(v, Sp), ..., d(v, Si)).
We call TT a resolving partition if r(u|IT) = r(v|IT) for every two distinct

vertices u, v e G. The partition dimension pd(G) of graph G is the minimum

cardinality of any resolving partition of V(G).

Let Sy,  be a double star, namely, a tree with two vertices of degree m

and n and the remaining vertices of degree 1. In [4], Chartrand et al. showed
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that the partition dimension of Sm,n is max{m, n} —1. Moreover, they also

gave the sharp lower and upper bounds of the partition dimension of a
caterpillar, namely, a tree having the property that the removal of its end-
vertices results in a path. A construction of a tree T on n vertices with
partition dimension k (for any k, 2 <k <n-1, but k # n—2) is also given.

Other result concerning caterpillar can be also seen in [5]. However, the
partition dimension of any general tree is an open problem.

Finding the partition dimension of any graph in general is classified as an
NP-hard problem [2]. The characterization studies for all graphs having
certain partition dimension have been also conducted, for instance, see [2]
and [10].

Some investigations have been also conducted to determine partition
dimensions with some additional criteria for certain classes of graphs. For
instance, Saenpholphat and Zhang [9] and Tomescu et al. [11] considered
connected resolving partition in which the induced subgraph of each set in
the partition is connected. Marinescu-Ghemeci and Tomescu [7] investigated
star partition dimension of generalized gear graphs and Ruxandra [8] studied
partition dimension of graph in which the induced subgraph of each set in the
partition is a path.

Finding a relationship (in terms of partition dimension) between the
original graphs and the resulting graph under some graph operation is also
interesting to be considered. For instances, let us define the corona product
G ®H between G and H as the graph obtained from G and H by taking one

copy of G and |V(G)| copies of H and then joining by an edge each vertex

of the ith-copy of H with the ith-vertex of G. In this paper, we are interested
in determining the partition dimension of graph G ® H. We derive an upper

bound of the partition dimension of a corona product graph G ®H for any

connected graphs G and H with the diameter of H is at most 2, namely,
pd(G®H) < pd(F)+ pd(H). We also show that this upper bound is tight.

Furthermore, we determine the partition dimension of G ® H, if G is either a
path or a complete graph and H is a complete graph.
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The following lemma is useful in determining the partition dimension of
a graph G.

Lemma 1 [3]. Let G be a connected non trivial graph. Let IT be a
resolving partition for G and u, v eV(G). If d(u, w)=d(v, w) for all

w e V(G) — {u, v}, then u and v belong to different sets in TI.
2. The Upper Bound of pd(G®H)

The diameter of a graph G is max{d(x, y)|x, y € V(G)}. In this section,
we shall derive an upper bound of pd(G ® H) for any connected graphs G
and H with diameter of H is at most 2.

Lemma 2. Let G and H be connected graphs. Let H; be ith-copy of H in
G ®H. Then any two vertices u and v of H; can be only distinguished by

some set in which has intersection not empty with the set of vertices of Hj.

Proof. Since d(u, w) = d(v, w) for all we V(G ®H)\H;, vertices u

and v can be only distinguished by some vertex in H;. O

Theorem 1. Let G and H be connected graphs. If the diameter of H is at
most 2, then pd(G®H) < pd(G)+ pd(H).

Proof. Let IIg and ITy be minimum resolving partitions of G and H,
respectively. Let |V(G)| =n. For i =1 2, .., n, partition the vertices of
each H; according to Iy, say {Hi, HZ, ..., H3}, where s = pd(H ). Now,
consider the partition IT = ITy UTI,, where TI; = {U"; H}, UL, HZ, ...

", HP} and II, =IIg. Then we shall show that IT is a resolving
partition of G ® H. Note that since the diameter of H is at most 2, the
distance of any two vertices u, v € V(H;), for any i, under the corona graph
G ®H is the same as its distance under the original graph H. Therefore, if

the vertices u, v e V(H;), for any i, are distinguishable by TTy, then they
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are distinguishable too by IT;. Let u and v be any two vertices of GO H. If
u, v e V(H;), then they will be clearly distinguished by U}_; Hit for some
t. If u,veV(G), then they will be distinguished by some set in TTg. Now,
assume that u e V(H;) and v e V(G). If u e U'_;H! for some t, then the

distances between u and v to U}_; Hit is 0 and 1, respectively. Therefore, u
and v are distinguished. Now, the only case we have not considered is
ueV(Hj) and v eV(Hj), fori=j Ifuve U?:lHit for some t, then u,
v are distinguished by some set in Tlg since Ilg is a resolving partition for

G. n

In the following sections, we will determine the exact value of
pd(Ge®H) if H = K, and G is either a path or a complete. We also show

that the bound in Theorem 1 is tight.

3. The Corona Product P, ® K,

Now, we consider the corona product G = R, ®K,, where Py
represents a path order m and K,, is the complete graph on n vertices. Let the

vertex-set V(G) = {x;[L<i <m}jU{a;[1<i<m,1< j<n} and the edge-set
E(G)={X_1x[2<i<mjU{xgj[l<i<m1<j<n}
Ufaiay |1<i<m, 1<k <l <nj.

We will show that the upper bound of Theorem 1 is satisfied by
pd(P,, ® Ky) provided m > n + 2.

Theorem 2. For m > 2 and n > 4, the partition dimension of P, ® K|

is as follows:

n+1ifm<n+ 2,

d(P Kp) =
pd(Pn © Kn) {n+2,ifm2n+3.
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Proof. Let IT = {S;, So, ..., Sy} be an ordered resolving partition of
GzPR,0K, Fori=12 .. m let V(Hj) = {aj, aj», ..., aj,} be vertices
of the ith-copy of K, in G. Then each vertex in H; must be in a different set

in TI. Since m> 2, we need at least n+1 sets in II. Otherwise, the

representations of aj; and aj; belonging to the same set in I1, for i # j,

are the same. Therefore, k > n +1.

Now, consider the case of m < n + 2. Define an ordered partition IT =
{S1, S, ..., Sp41} of G such that:

a. Xq € Sl' {Xz, X3, X4}> (- 85, {X5, X6y s Xm}> C Sl’

b. All vertices of H; are distributed equally into n partitions other than
Sl;

c. All vertices of H, are distributed equally into n partitions other than
82;

d. All vertices of Hj3 are distributed equally into n partitions other than
Sl;

e. For t = 4,5, ..., m, all vertices of H; are distributed equally into n

partitions other than S;_;. See Figure 1.

2H13 1H23 2H33 1H42 1H52 1Hs2
A AR A A A>T\
1 5 5 5 1 1

Figure 1. Resolving partition for corona product graph P; ® K.

We claim that TT is a resolving partition of G. To prove it, let us
consider two different vertices u, v of G in the same set in I1. If u € V(H;),
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veV(Hj) for i< j, and {i, j} # {1 3}, then d(u, Sj_4) = d(v, Sj_y) or
d(u, S1)=d(v, Sy). Therefore, r(u|IT)=r(v|IT1). Now, if ue{X, X9, ..., Xn }
and (V € {X, X2, ..., Xnj Or v € S;), then d(u, Sp) # d(v, Sp), where Sy, is
the partition not containing any vertex of Hy. Therefore, again r(u|IT) #
r(v|IT). Thus, we obtain that IT is the revolving partition of G. This implies
that pd(G)=n+1if m<n+2.

Now, consider the case of m > n + 3. We will show that pd(G)=n + 2.

To show the lower bound, for a contradiction assume there is an ordered
resolving partition IT of G with n + 1 sets. Let IT = {S;, S,, ..., Sp11}-

By Lemma 1, any two vertices in H;, for each i, belong to different sets
of IT. Therefore, for i =1, 2, ..., m we can define ¢; = b if no vertex of H;
iIs in Sy. Then since m>n+3 and 1<b <n+1 there existi, j, | and

I <j<Isuchthat ¢ =cj=c¢ =b for some b or there exist i, j, I, s and

i< j<l<ssuchthatci =cj=b and ¢, =cs = c for some b and c.

It is clear that the sets H; and H; which are the same cannot be
adjacent, namely, j = i+1. Since otherwise d(xj, Sp) = d(w, Sp) for some
w e V(H;) or d(x;, Sp) = d(w, Sp) for some w e V(H ;). Since d(x;, S;) =
d(xj, Sy)=d(w, S;) =1 for all t=b, r(x;|TT)=r(w|II) or r(x|I) =
r(w|IT), a contradiction. Therefore, j—i>1, |- j>1 and s—1>1.

Now, consider the first case, namely, ¢; = Cj=¢ = b. In order to have

the representation of each vertex of G with respect to IT is distinct, then
{d(Hi, Sb)’ d(Hj, Sb)’ d(H|, Sb)}= {1, 2, 3} (since j —i>land |- j >1),

where d(Hj, Sy) is the distance between the whole vertices of H; to S,.
This implies that one of {x;, xj, X} isiin Sp, say X; € Sp, and one of them
has distance 1 to Sy, say x;. But, then we get r(x; |TT) = r(w|IT) for some

w e V(H;), acontradiction. Therefore, the first case is not possible.
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Next, we consider the case of ¢; =cj =b and ¢ = ¢g = ¢ for some b
and c, b # c. Again, since j—i>1 |- j>1 and s—1>1 {d(H;j, Sp),
d(Hj, Sp)f = {1 2,3} and {d(H|, S¢), d(Hs, S¢)} < {1, 2, 3}. Clearly, at
most one of {x;, Xj} isin Sp. If x; € Sp, then all vertices of H; together
with x; are dominant, namely, all ordinates of its representation with respect

to IT are 1’s. Furthermore, if X; € Sp, then no one of {x, X} is in S.
Since otherwise, there are too many dominant vertices in G, namely, the
number of dominant vertices greater than the partition dimension. Therefore,
{d(Hy, S¢), d(Hg, S¢)} = {2, 3}. Thus, either one of {x, xs} has distance 1
to S¢, say X. This yields x as a dominant vertex; But now r(x |IT) =
r(w|IT), for some w e V(H;)U{x}. Therefore, as a conclusion, no one
of {xj, X;} is in Sy (similarly, no one of {x, xs} is in S¢). Hence,
{d(Hj, Sp), d(Hj, Sp)} =12, 3} and {d(H|, S¢), d(Hs, S¢)} = {2, 3}. In this
case, we may assume d(H;, Sp) =2 and d(H j, Sp) = 3. But, then r(x; [TT)
= r(w|IT), for some w e V(H;), a contradiction. Therefore, the second case

is also not possible. This means that pd(G) >n+2 if m>n+3.

Now, to show the upper bound, for m > n + 3, define a resolving
partition IT = {S;, So, ..., Sp.2} of G such that:

{alk, Aoy ooy amk}, if 1<k <n,
Sy = {X2, X3, vy Xm 1 if k=n+1,
{x1}, if k=n+2.

Clearly, any two vertices in Sy, for k € {1, 2, ..., n+1}, have different
distances to S,,,». Therefore, their representations with respect to IT will be
not the same. This means IT is the resolving partition of G; thus pd(G)

<n+2form=>n+3. O
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Now, let us consider the graph G = B,, ®K,,, with m> 2, and n =

2,3. For m < n+ 2, define a partition IT = {S;, So, ..., Sp1} of G such
that:

a
S1 = {ag1, as1, X3}, Sy = {@1, ag1, as2, X4},

S3 = {alz, doo, dzo, X, Xz}, for n = 2, m = 4,

S1 = {ap1, a1, 851, X3}, Sp = {a11, a3y, As2, 852, X4, X5},

S3 = {a12, 2, A3, A3, X, X2}, S4 = {A3, A3, Ag3, A3},
forn=3, m=>5.
It is easy to see that IT is a resolving partition of G. Now, if 2 <
m < n+1 then by removing all elements a; and x; with i >m+1 from

all sets in the above TI, we will get the resolving partition of G for this case
m. Next, consider m > n + 3 and n = 2, 3. By using the same argument and
the same partition like in the proof of the case m > n+ 3 and n > 4, we can
show that pd(G) = n + 2. Therefore, we have the following theorem:

Theorem 3. For m>2 and n =2, 3, the partition dimension of

Pn ® K, is as follows:

n+1ifm<n+ 2,

d(P Kp) =
pd(Pn © Kn) {n+2,ifm2n+3.

From Theorems 2 and 3, note that for m > n + 3 the partition dimension
pd(Py, ®Kp) is n+ 2. This means that the upper bound of Theorem 1 is
sharp.

4. The Corona Product K, ® K,

In this section, we determine the partition dimension of G = K, ® K,
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the corona product of the complete graph K,, to K. Let the vertex-set
V(G)={x|1<i<mjU{a;ll<i<m 1< j<njandthe edge-set

E(G)={xxjl1<i<j<miU{xgjl<i<m1<j<n}
U{aikai||1si£m,1sk<lgn}.

For simplicity, denote by V(H;) = {ai;, a7, ..., &y} the vertices of ith-copy

of K, with attach to vertex xj in K.

Theorem 4. Let G = K, ®K,,, with m > 2 and n > 3. Then

a. pd(G)=n+1 iﬁ2§ms(n:1}

b. pd(G) = n+ 2 iﬁ(n:1)+1§mg(n:2j+1.

c. pd(G) < n+k, if Ntk=1) g eme(NtK , and k > 3.
n n

Proof. We shall divide the proof into three cases:

Case 1. ngg(n:]rl).

Consider the vertices in Hj in G, for some i. By Lemma 1, any two

of them must be in different partitions in a resolving partition TT of G.
Therefore, we require n distinct partitions in I1 for the vertices of H; only.

But, since m > 2, |IT|>n+1. Now, if m < (n:l), then define an ordered
partition IT = {S;, S, ..., S;,41} of G such that:
a. All xjs, fori =1, 2, .., m belongto S;;

b. For each i, distribute equally all n vertices of H; into n distinct

partitions other than S;.
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Then, by this definition, it is easy to verify that IT is a resolving
partition of G. Now, let m > (n :1)+1 and assume for a contradiction
|TT| = n+1. Then there are two distinct H; and H j such that their vertices
are distributed to the same combination of n partitions of T1. Let¢; =cj =b
if no vertex of Hj(H;) is in S,. Then x; and x; must be in different
partitions and one of {x;, Xj} isin Sy, say x;. However, now r(x;|II) =

r(w|IT) for some w e V(H;), a contradiction. Therefore, the first statement

and the lower bound of the second statement have been proved.
Case 2. (n:1j+1§ m < (n::szrl.

Let T ={all n-combinations from n + 2 distinct numbers}.

Let IT = {S, Sy, ..., Sp42}. Since all vertices of each H; must be in n
different partitions, each H; can be associated with an n-combination in T.
Now, we can define ¢; = {a, b} if S; and S, both do not contain any vertex

of H;. Toshow pd(G) = n + 2, define IT as follows:
a. Assign Hj, for i =1, 2, ..., m toall members in T such that
q={2},c={,2}, cg={,3}, cs ={L 4}, ..., Cy_1, Cn
are in a lexicographical order,
b. 3 € S1, Xo € Sp, and

c.Fori=34,.,m putx into Sy if 2 e ¢j; Otherwise x; is put into

S,. See Figure 2.
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H1 H2 H3s H4 Hs He
C1={1,2} C2={1,2} C3={1,3} C4={1,4} C5={1,5} Ce={2,3}
3 4 3 4 2 4 2 3 2 3 1 4

« o
.
.
.

3 3
H11 H1o Ho Hs H7
C11={4,5} C10={3,5} C9={3,4} Cs={2,5} C7={2,4}

Figure 2. Resolving partition for corona product graph K;; ® Ks.

We shall show that TT is a resolving partition of G. To do so, take any
two vertices u, v in the same partition in TT. If u € V(H;) and v € (H ), for

i < J, then d(u, Sp) = d(v, Sy), where b e ¢; —cj and b # 1, 2 (provided
Cj —Cj = &, otherwise set b =1). Therefore, r(u|Il) = r(v|II). If ue
V(Hj) and v = x; for some i and j, then {u, v{ = S; or {u, v} < Sy. In
both cases, we will get d(u, Sp) = d(v, Sp), where b e ¢; —cj and b = 1, 2

(provided i = j; otherwise take any b e ¢j). Therefore, again, r(u|IT) =

r(v|IT). Now, let u € x; and v e xj for i < j. By a similar argument, we

can show that r(u|IT) # r(v|IT). Therefore, IT is a resolving partition of G

provided (n:ljJrlsmg(n;z)Jrl.

Next, we shall show that if pd(K,, ®K;)=n+ 2, then (n :1) +1<
n+2 .
m < ( 0 j +1. To do so, for a contradiction assume that pd(K,, ©® K,) =
n+2 . -
n+2 for m =( " j+ 2. Let IT be a resolving partition of K, ® K.

Since m =(n:2)+2, there exist i, j, | and i< j <1 such that ¢ =
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Cj=¢ = {a, b} or there exist i, j, I, sand i < j <I<s such that ¢; =

cj ={a b} and ¢ = c5 = {s, t}.

For the first case, we may assume, without loss of generality, ¢; = ¢ j
= ¢ = {1, 2}. Todistinguish all the vertices in H;, H;, and H, the vertices
Xi, Xj, X must be in different partition of IT and two of them must be in §;
and Sp, say Xj €Sy, Xj €Sy, X €Sz Then these three X;, xj, X are

dominant vertices, namely, the ordinates of their representations are all 1’s.
Now, consider the vertex X adjacent to Hp with c, = {1, 3}. Then x

must be also dominant. Therefore, x, ¢ S; US; U S3. We may assume
Xy, € S4. Now, consider the vertex X, adjacentto H, with c,, = {I, 4}.
Similarly, xp, € Ss. We do this process for all x, in Ky, to obtain that all

these vertices are dominant. Therefore, we have more than n + 2 dominant
vertices, a contradiction. Thus, the first case is not possible.

For the second case, we assume, without loss of generality, (¢; =c¢ j
={, 2tand ¢; =cs = {1, 3}) or (¢ =c; ={l, 2}and ¢| =cg = {3, 4}). First,
let ¢; =cj =11 2} and ¢ =¢s = {1, 3}. To distinguish all the vertices of
Hi, Hj and Hj, Hg, one of {X, xj} must be in either S; or S,, and one
of {x, X} must be in either S; or S;. By symmetry, we may assume that
Xi, X € S. Now, consider x; and Xs. If xj € Sy, then X and Xx; are
dominant vertices. Vertex xg cannot be in Ss, since otherwise x; becomes
dominant (too many dominant in S;, namely, more than one vertices in S;

are dominant). Thus, Xq is in either S, or S; for t > 4. If x4 € Sy, then

consider the vertex x, adjacent to Hy with ¢, = {2, 3. For sure, x,

cannot be in S; U S,, since otherwise its representation will be the same

with the one of x or xs. But, X, cannot be in Sz to avoid X and X

becoming dominant vertices from the same set. Therefore, Xp must be in
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St, t=4, say Xy €Sy Now, consider X, adjacent to H with
Cr, = {2, 4}. Then x,, must be a dominant vertex since it is adjacent to x;
and xp. Thus, w.l.o.g., ¢, € S4 or Ss. We do this process for all x in
K, to obtain that all these vertices are dominant. Therefore, we have more
than n + 2 dominant vertices, a contradiction.

Now, consider Xj € S, and X5 € S4. In this case, X;, X; are dominant.
Next, consider x, adjacentto H, with ¢, = {1. 4}. This vertex x; is also
dominant, since adjacent to X; and Xs. Therefore, x,, must in either S,
t >4, say X, € S4. We do this process for all x, in Ky, to obtain that all

these vertices are dominant. Therefore, we have more than n + 2 dominant
vertices, a contradiction.

Next, consider xj, X € S; and Xj € S3. In this case, x is dominant.

For sure, xg cannot be in S, (since X; and x; become both dominant) or S3
(by symmetry argument above). Therefore, x; must be in S;, t >4, say
w.l.o.g., X5 € S4. Now, consider the vertex X, adjacent to Hp with

Cp = {1, 4}. Thus, Xp, Must be a dominant vertex. Therefore, x, must be in
either S¢, t > 3, say Xy € S3. But, now xg is also dominant. Let us now
consider vertex X, adjacentto Hy, with c,, = {3, 4. Then x., mustbea
dominant vertex since it is adjacent to xs and Xg. Thus, w.l.o.g., ¢, € Ss.

We do this process for all x, in V(K;,) to obtain that all these vertices are

dominant. Therefore, we have more than n+ 2 dominant vertices, a
contradiction.

Second, consider ¢; = ¢ = {1, 2} and ¢ = ¢s = {3, 4}. To distinguish
all the vertices of Hj, Hj and Hy, Hs, then x; and Xx; must be in different
partitions and one of {x;, x;} is in either S; or Sy, and one of {x, X}
must be in either Sg or S, and they are in different partitions. By symmetry,
we may assume that x;j € S; and x; € S3. Now, consider x; and Xs. If one
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of either x; & S3 or X  S; holds, then we have three partitions holding
Xis Xjo X, Xs. Any two combinations will give another a dominant vertex

X, Dy similar method above. We do this process for all X in V(Ky) to

obtain that all these vertices are dominant. Therefore, we have more than
n + 2 dominant vertices, a contradiction.

Now, the only remaining case is X; € Sy, X € S3, Xj € Sz and X5 € S;.
Let us consider x,, adjacentto H, with c; = {1, 3}. Since it is also adjacent
to x; and x, then X, must be a dominant vertex. If x, & S; U Sg, then we
have three partitions holding X;, Xj, X, Xs and Xp, - Therefore, by the

similar method above, we will have too many dominant vertices, a
contradiction. Thus, x;, € S;. But, now consider vertex X, adjacentto Hy,

with ¢, ={2, 3}. This vertex cannot be in $;US, US3. Therefore, x., e S,

t > 4. Thus, we have three partitions holding these vertices so far. This
implies that there will be too many dominant vertices, a contradiction. This
completes the proof of the second statement.

Case 3. (n+:_1j+1£m£(n;k), and k > 3.

Let T = {all n-combinations from n + k distinct numbers}.

Let IT = {S, Sy, ..., SnikJ- Since all vertices of each H; must be in n
different partitions, each H; can be associated with an n-combination in T.

Then define TT as follows:

a. Assign Hj, for i =1, 2, .., m to a member in T so that no two H;,
H j have been assigned to the same member of T.

b. Put all vertices x{s isinto S;.

It is clear that IT is a resolving partition of G. Therefore, pd(G) < n+k

in this case. O
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