THE PARTITION DIMENSION OF THE CORONA PRODUCT OF TWO GRAPHS ## Edy Tri Baskoro and Darmaji* Combinatorial Mathematics Research Group Faculty of Mathematics and Natural Sciences Institut Teknologi Bandung (ITB) Jalan Ganesha No. 10 Bandung 40132 Indonesia e-mail: ebaskoro@math.itb.ac.id darmaji@students.itb.ac.id *Permanent address Jurusan Matematika FMIPA Institut Teknologi Sepuluh Nopember (ITS) Jl. Arif Rahman Hakim No. 10 Surabaya 60111 Indonesia e-mail: darmaji@matematika.its.ac.id ## **Abstract** Let G(V, E) be a connected graph. For a vertex $v \in V(G)$ and a subset S of V(G), the distance d(v, S) from v to S is $\min\{d(v, w)|w \in S\}$. For an ordered k-partition $\Pi = \{S_1, S_2, ..., S_k\}$ © 2012 Pushpa Publishing House 2010 Mathematics Subject Classification: 05C12. Keywords and phrases: partition dimension, resolving partition, corona product, path, complete graph. This research is supported by Indonesian Research Grant *Hibah Pascasarjana* 2011, Directorate General of Higher Education, Ministry of National Education, Indonesia. Received December 27, 2011 of V(G), the representation of v with respect to Π is $r(v|\Pi) = (d(v, S_1), d(v, S_2), ..., d(v, S_k))$. The k-partition Π is called a resolving partition of G if all $r(v|\Pi)$ for all $v \in V(G)$ are distinct. The partition dimension of a graph G is the smallest k such that G has a resolving k-partition. In this paper, we derive an upper bound of the partition dimension of the corona product $G \odot H$, where G, H are connected graphs and the diameter of H is at most 2. Furthermore, we also determine the exact value of the partition dimension of this corona product if G is either a path or a complete graph and H is a complete graph. ## 1. Introduction One of the problems in graph theory with applications to chemistry deals with determining representations for the vertices of a graph such that distinct vertices have distinct representations. A representation defined in terms of distances and partitions was firstly studied by Chartrand et al. [4]. For any $u, v \in V(G)$, define the distance d(u, v) from u to v as the length of the shortest path connecting these two vertices in G. For $v \in V(G)$ and $S \subset E(G)$, the distance d(v, S) from u to S is defined as $\min\{d(v, x) | x \in S\}$. In particular, if $d(x, S) \neq d(y, S)$, then we shall say that x and y are distinguished by S or x and y are distinguishable. For an ordered k-partition $\Pi = \{S_1, S_2, ..., S_k\}$ of V(G) and $v \in V(G)$, the representation of $v \in V(G)$ with respect to Π is the k-vector $$r(v|\Pi) = (d(v, S_1), d(v, S_2), ..., d(v, S_k)).$$ We call Π a *resolving partition* if $r(u|\Pi) \neq r(v|\Pi)$ for every two distinct vertices $u, v \in G$. The *partition dimension* pd(G) of graph G is the minimum cardinality of any resolving partition of V(G). Let $S_{m,n}$ be a double star, namely, a tree with two vertices of degree m and n and the remaining vertices of degree 1. In [4], Chartrand et al. showed that the partition dimension of $S_{m,n}$ is $\max\{m,n\}-1$. Moreover, they also gave the sharp lower and upper bounds of the partition dimension of a caterpillar, namely, a tree having the property that the removal of its end-vertices results in a path. A construction of a tree T on n vertices with partition dimension k (for any k, $2 \le k \le n-1$, but $k \ne n-2$) is also given. Other result concerning caterpillar can be also seen in [5]. However, the partition dimension of any general tree is an open problem. Finding the partition dimension of any graph in general is classified as an *NP*-hard problem [2]. The characterization studies for all graphs having certain partition dimension have been also conducted, for instance, see [2] and [10]. Some investigations have been also conducted to determine partition dimensions with some additional criteria for certain classes of graphs. For instance, Saenpholphat and Zhang [9] and Tomescu et al. [11] considered connected resolving partition in which the induced subgraph of each set in the partition is connected. Marinescu-Ghemeci and Tomescu [7] investigated star partition dimension of generalized gear graphs and Ruxandra [8] studied partition dimension of graph in which the induced subgraph of each set in the partition is a path. Finding a relationship (in terms of partition dimension) between the original graphs and the resulting graph under some graph operation is also interesting to be considered. For instances, let us define the *corona product* $G \odot H$ between G and H as the graph obtained from G and H by taking one copy of G and |V(G)| copies of H and then joining by an edge each vertex of the ith-copy of H with the ith-vertex of G. In this paper, we are interested in determining the partition dimension of graph $G \odot H$. We derive an upper bound of the partition dimension of a corona product graph $G \odot H$ for any connected graphs G and H with the diameter of H is at most G0, namely, G1, G2, G3, G3, G4, G4, G5, G5, G5, G6, G6, G7, G8, G8, G8, G9, The following lemma is useful in determining the partition dimension of a graph G. **Lemma 1** [3]. Let G be a connected non trivial graph. Let Π be a resolving partition for G and $u, v \in V(G)$. If d(u, w) = d(v, w) for all $w \in V(G) - \{u, v\}$, then u and v belong to different sets in Π . # **2.** The Upper Bound of $pd(G \odot H)$ The *diameter* of a graph G is $\max\{d(x, y)|x, y \in V(G)\}$. In this section, we shall derive an upper bound of $pd(G \odot H)$ for any connected graphs G and H with diameter of H is at most 2. **Lemma 2.** Let G and H be connected graphs. Let H_i be ith-copy of H in $G \odot H$. Then any two vertices u and v of H_i can be only distinguished by some set in which has intersection not empty with the set of vertices of H_i . **Proof.** Since d(u, w) = d(v, w) for all $w \in V(G \odot H) \backslash H_i$, vertices u and v can be only distinguished by some vertex in H_i . **Theorem 1.** Let G and H be connected graphs. If the diameter of H is at most 2, then $pd(G \odot H) \leq pd(G) + pd(H)$. **Proof.** Let Π_G and Π_H be minimum resolving partitions of G and H, respectively. Let |V(G)| = n. For i = 1, 2, ..., n, partition the vertices of each H_i according to Π_H , say $\{H_i^1, H_i^2, ..., H_i^s\}$, where s = pd(H). Now, consider the partition $\Pi = \Pi_1 \cup \Pi_2$, where $\Pi_1 = \{\bigcup_{i=1}^n H_i^1, \bigcup_{i=1}^n H_i^2, ..., \bigcup_{i=1}^n H_i^s\}$ and $\Pi_2 = \Pi_G$. Then we shall show that Π is a resolving partition of $G \odot H$. Note that since the diameter of H is at most 2, the distance of any two vertices $u, v \in V(H_i)$, for any i, under the corona graph $G \odot H$ is the same as its distance under the original graph H. Therefore, if the vertices $u, v \in V(H_i)$, for any i, are distinguishable by Π_H , then they are distinguishable too by Π_1 . Let u and v be any two vertices of $G \odot H$. If $u, v \in V(H_i)$, then they will be clearly distinguished by $\bigcup_{i=1}^n H_i^t$ for some t. If $u, v \in V(G)$, then they will be distinguished by some set in Π_G . Now, assume that $u \in V(H_i)$ and $v \in V(G)$. If $u \in \bigcup_{i=1}^n H_i^t$ for some t, then the distances between u and v to $\bigcup_{i=1}^n H_i^t$ is 0 and 1, respectively. Therefore, u and v are distinguished. Now, the only case we have not considered is $u \in V(H_i)$ and $v \in V(H_j)$, for $i \neq j$. If $u, v \in \bigcup_{i=1}^n H_i^t$ for some t, then u, v are distinguished by some set in u is a resolving partition for u. In the following sections, we will determine the exact value of $pd(G \odot H)$ if $H \cong K_n$ and G is either a path or a complete. We also show that the bound in Theorem 1 is tight. # **3.** The Corona Product $P_m \odot K_n$ Now, we consider the corona product $G \cong P_m \odot K_n$, where P_m represents a path order m and K_n is the complete graph on n vertices. Let the vertex-set $V(G) = \{x_i \mid 1 \le i \le m\} \cup \{a_{ij} \mid 1 \le i \le m, 1 \le j \le n\}$ and the edge-set $$E(G) = \{x_{i-1}x_i \mid 2 \le i \le m\} \cup \{x_i a_{ij} \mid 1 \le i \le m, 1 \le j \le n\}$$ $$\cup \{a_{ik}a_{il} \mid 1 \le i \le m, 1 \le k \le l \le n\}.$$ We will show that the upper bound of Theorem 1 is satisfied by $pd(P_m \odot K_n)$ provided m > n + 2. **Theorem 2.** For $m \ge 2$ and $n \ge 4$, the partition dimension of $P_m \odot K_n$ is as follows: $$pd(P_m \odot K_n) = \begin{cases} n+1, & \text{if } m \le n+2, \\ n+2, & \text{if } m \ge n+3. \end{cases}$$ **Proof.** Let $\Pi = \{S_1, S_2, ..., S_k\}$ be an ordered resolving partition of $G \cong P_m \odot K_n$. For i = 1, 2, ..., m, let $V(H_i) = \{a_{i1}, a_{i2}, ..., a_{in}\}$ be vertices of the *i*th-copy of K_n in G. Then each vertex in H_i must be in a different set in Π . Since $m \ge 2$, we need at least n+1 sets in Π . Otherwise, the representations of a_{i1} and a_{j1} belonging to the same set in Π , for $i \ne j$, are the same. Therefore, $k \ge n+1$. Now, consider the case of $m \le n+2$. Define an ordered partition $\Pi = \{S_1, S_2, ..., S_{n+1}\}$ of G such that: a. $$x_1 \in S_1$$, $\{x_2, x_3, x_4\} \subset S_5$, $\{x_5, x_6, ..., x_m\} \subset S_1$; - b. All vertices of H_1 are distributed equally into n partitions other than S_1 ; - c. All vertices of H_2 are distributed equally into n partitions other than S_2 ; - d. All vertices of H_3 are distributed equally into n partitions other than S_1 ; - e. For t = 4, 5, ..., m, all vertices of H_t are distributed equally into n partitions other than S_{t-1} . See Figure 1. **Figure 1.** Resolving partition for corona product graph $P_6 \odot K_4$. We claim that Π is a resolving partition of G. To prove it, let us consider two different vertices u, v of G in the same set in Π . If $u \in V(H_i)$, $v \in V(H_j)$ for i < j, and $\{i, j\} \neq \{1, 3\}$, then $d(u, S_{j-1}) \neq d(v, S_{j-1})$ or $d(u, S_1) \neq d(v, S_1)$. Therefore, $r(u|\Pi) \neq r(v|\Pi)$. Now, if $u \in \{x_1, x_2, ..., x_m\}$ and $\{v \in \{x_1, x_2, ..., x_m\} \text{ or } v \in S_t\}$, then $d(u, S_b) \neq d(v, S_b)$, where S_b is the partition not containing any vertex of H_t . Therefore, again $r(u|\Pi) \neq r(v|\Pi)$. Thus, we obtain that Π is the revolving partition of G. This implies that pd(G) = n + 1 if $m \leq n + 2$. Now, consider the case of $m \ge n+3$. We will show that pd(G) = n+2. To show the lower bound, for a contradiction assume there is an ordered resolving partition Π of G with n+1 sets. Let $\Pi = \{S_1, S_2, ..., S_{n+1}\}$. By Lemma 1, any two vertices in H_i , for each i, belong to different sets of Π . Therefore, for i=1, 2, ..., m we can define $c_i=b$ if no vertex of H_i is in S_b . Then since $m \ge n+3$ and $1 \le b \le n+1$, there exist i, j, l and i < j < l such that $c_i = c_j = c_l = b$ for some b or there exist i, j, l, s and i < j < l < s such that $c_i = c_j = b$ and $c_l = c_s = c$ for some b and c. It is clear that the sets H_i and H_j which are the same cannot be adjacent, namely, $j \neq i+1$. Since otherwise $d(x_j, S_b) = d(w, S_b)$ for some $w \in V(H_i)$ or $d(x_i, S_b) = d(w, S_b)$ for some $w \in V(H_j)$. Since $d(x_i, S_t) = d(x_j, S_t) = d(w, S_t) = 1$ for all $t \neq b$, $r(x_j | \Pi) = r(w | \Pi)$ or $r(x_i | \Pi) = r(w | \Pi)$, a contradiction. Therefore, j - i > 1, l - j > 1, and s - l > 1. Now, consider the first case, namely, $c_i = c_j = c_l = b$. In order to have the representation of each vertex of G with respect to Π is distinct, then $\{d(H_i, S_b), d(H_j, S_b), d(H_l, S_b)\} = \{1, 2, 3\}$ (since j - i > 1 and l - j > 1), where $d(H_i, S_b)$ is the distance between the whole vertices of H_i to S_b . This implies that one of $\{x_i, x_j, x_l\}$ is in S_b , say $x_i \in S_b$, and one of them has distance 1 to S_b , say x_j . But, then we get $r(x_j | \Pi) = r(w | \Pi)$ for some $w \in V(H_i)$, a contradiction. Therefore, the first case is not possible. Next, we consider the case of $c_i = c_j = b$ and $c_l = c_s = c$ for some band $c, b \neq c$. Again, since j - i > 1, l - j > 1, and s - l > 1, $\{d(H_i, S_b),$ $d(H_i, S_b) \subset \{1, 2, 3\}$ and $\{d(H_l, S_c), d(H_s, S_c)\} \subset \{1, 2, 3\}$. Clearly, at most one of $\{x_i, x_i\}$ is in S_b . If $x_i \in S_b$, then all vertices of H_i together with x_i are dominant, namely, all ordinates of its representation with respect to Π are 1's. Furthermore, if $x_i \in S_b$, then no one of $\{x_l, x_s\}$ is in S_c . Since otherwise, there are too many dominant vertices in G, namely, the number of dominant vertices greater than the partition dimension. Therefore, $\{d(H_l, S_c), d(H_s, S_c)\} = \{2, 3\}$. Thus, either one of $\{x_l, x_s\}$ has distance 1 to S_c , say x_l . This yields x_l as a dominant vertex; But now $r(x_l | \Pi) =$ $r(w|\Pi)$, for some $w \in V(H_i) \cup \{x_i\}$. Therefore, as a conclusion, no one of $\{x_i, x_j\}$ is in S_b (similarly, no one of $\{x_l, x_s\}$ is in S_c). Hence, ${d(H_i, S_b), d(H_i, S_b)} = {2, 3}$ and ${d(H_i, S_c), d(H_s, S_c)} = {2, 3}$. In this case, we may assume $d(H_i, S_b) = 2$ and $d(H_i, S_b) = 3$. But, then $r(x_i | \Pi)$ $= r(w|\Pi)$, for some $w \in V(H_i)$, a contradiction. Therefore, the second case is also not possible. This means that $pd(G) \ge n + 2$ if $m \ge n + 3$. Now, to show the upper bound, for $m \ge n + 3$, define a resolving partition $\Pi = \{S_1, S_2, ..., S_{n+2}\}$ of G such that: $$S_k = \begin{cases} \{a_{1k}, a_{2k}, ..., a_{mk}\}, & \text{if } 1 \le k \le n, \\ \{x_2, x_3, ..., x_m\}, & \text{if } k = n+1, \\ \{x_1\}, & \text{if } k = n+2. \end{cases}$$ Clearly, any two vertices in S_k , for $k \in \{1, 2, ..., n+1\}$, have different distances to S_{n+2} . Therefore, their representations with respect to Π will be not the same. This means Π is the resolving partition of G; thus $pd(G) \leq n+2$ for $m \geq n+3$. Now, let us consider the graph $G \cong P_m \odot K_n$, with $m \geq 2$, and n = 2, 3. For $m \leq n + 2$, define a partition $\Pi = \{S_1, S_2, ..., S_{n+1}\}$ of G such that: a. $$S_1 = \{a_{21}, a_{41}, x_3\}, S_2 = \{a_{11}, a_{31}, a_{42}, x_4\},$$ $S_3 = \{a_{12}, a_{22}, a_{32}, x_1, x_2\}, \text{ for } n = 2, m = 4;$ b. $$S_1 = \{a_{21}, a_{41}, a_{51}, x_3\}, S_2 = \{a_{11}, a_{31}, a_{42}, a_{52}, x_4, x_5\},$$ $S_3 = \{a_{12}, a_{22}, a_{32}, a_{53}, x_1, x_2\}, S_4 = \{a_{13}, a_{23}, a_{33}, a_{43}\},$ for $n = 3$, $m = 5$. It is easy to see that Π is a resolving partition of G. Now, if $2 \le m \le n+1$, then by removing all elements a_{ij} and x_i with $i \ge m+1$ from all sets in the above Π , we will get the resolving partition of G for this case m. Next, consider $m \ge n+3$ and n=2, 3. By using the same argument and the same partition like in the proof of the case $m \ge n+3$ and $n \ge 4$, we can show that pd(G) = n+2. Therefore, we have the following theorem: **Theorem 3.** For $m \ge 2$ and n = 2, 3, the partition dimension of $P_m \odot K_n$ is as follows: $$pd(P_m \odot K_n) = \begin{cases} n+1, & \text{if } m \le n+2, \\ n+2, & \text{if } m \ge n+3. \end{cases}$$ From Theorems 2 and 3, note that for $m \ge n+3$ the partition dimension $pd(P_m \odot K_n)$ is n+2. This means that the upper bound of Theorem 1 is sharp. ## **4.** The Corona Product $K_m \odot K_n$ In this section, we determine the partition dimension of $G \cong K_m \odot K_n$, the corona product of the complete graph K_m to K_n . Let the vertex-set $V(G) = \{x_i \mid 1 \le i \le m\} \cup \{a_{ij} \mid 1 \le i \le m, 1 \le j \le n\}$ and the edge-set $$E(G) = \{x_i x_j \mid 1 \le i < j \le m\} \cup \{x_i a_{ij} \mid 1 \le i \le m, 1 \le j \le n\}$$ $$\cup \{a_{ik} a_{il} \mid 1 \le i \le m, 1 \le k < l \le n\}.$$ For simplicity, denote by $V(H_i) = \{a_{i1}, a_{i2}, ..., a_{in}\}$ the vertices of *i*th-copy of K_n with attach to vertex x_i in K_m . **Theorem 4.** Let $G \cong K_m \odot K_n$, with $m \ge 2$ and $n \ge 3$. Then a. $$pd(G) = n + 1$$ iff $2 \le m \le \binom{n+1}{n}$. b. $$pd(G) = n + 2$$ iff $\binom{n+1}{n} + 1 \le m \le \binom{n+2}{n} + 1$. c. $$pd(G) \le n+k$$, if $\binom{n+k-1}{n} + 1 \le m \le \binom{n+k}{n}$, and $k \ge 3$. **Proof.** We shall divide the proof into three cases: **Case 1.** $$2 \le m \le \binom{n+1}{n}$$. Consider the vertices in H_i in G, for some i. By Lemma 1, any two of them must be in different partitions in a resolving partition Π of G. Therefore, we require n distinct partitions in Π for the vertices of H_i only. But, since $m \ge 2$, $|\Pi| \ge n+1$. Now, if $m \le \binom{n+1}{n}$, then define an ordered partition $\Pi = \{S_1, S_2, ..., S_{n+1}\}$ of G such that: a. All $$x_i$$'s, for $i = 1, 2, ..., m$ belong to S_1 ; b. For each i, distribute equally all n vertices of H_i into n distinct partitions other than S_i . Then, by this definition, it is easy to verify that Π is a resolving partition of G. Now, let $m \geq \binom{n+1}{n} + 1$ and assume for a contradiction $|\Pi| = n + 1$. Then there are two distinct H_i and H_j such that their vertices are distributed to the same combination of n partitions of Π . Let $c_i = c_j = b$ if no vertex of $H_i(H_j)$ is in S_b . Then x_i and x_j must be in different partitions and one of $\{x_i, x_j\}$ is in S_b , say x_i . However, now $r(x_j|\Pi) = r(w|\Pi)$ for some $w \in V(H_i)$, a contradiction. Therefore, the first statement and the lower bound of the second statement have been proved. Case 2. $$\binom{n+1}{n} + 1 \le m \le \binom{n+2}{n} + 1$$. Let $T = \{ all \ n\text{-combinations from } n+2 \ distinct \ numbers \}.$ Let $\Pi = \{S_1, S_2, ..., S_{n+2}\}$. Since all vertices of each H_i must be in n different partitions, each H_i can be associated with an n-combination in T. Now, we can define $c_i = \{a, b\}$ if S_a and S_b both do not contain any vertex of H_i . To show pd(G) = n + 2, define Π as follows: a. Assign H_i , for i = 1, 2, ..., m to all members in T such that $$c_1 = \{1, 2\}, c_2 = \{1, 2\}, c_3 = \{1, 3\}, c_4 = \{1, 4\}, ..., c_{m-1}, c_m$$ are in a lexicographical order, b. $$x_1 \in S_1, x_2 \in S_2$$, and c. For i = 3, 4, ..., m, put x_i into S_1 if $2 \in c_i$; Otherwise x_i is put into S_2 . See Figure 2. **Figure 2.** Resolving partition for corona product graph $K_{11} \odot K_3$. We shall show that Π is a resolving partition of G. To do so, take any two vertices u, v in the same partition in Π . If $u \in V(H_i)$ and $v \in (H_j)$, for i < j, then $d(u, S_b) \neq d(v, S_b)$, where $b \in c_i - c_j$ and $b \neq 1$, 2 (provided $c_i - c_j \neq \emptyset$; otherwise set b = 1). Therefore, $r(u|\Pi) \neq r(v|\Pi)$. If $u \in V(H_i)$ and $v = x_j$ for some i and j, then $\{u, v\} \subset S_1$ or $\{u, v\} \subset S_2$. In both cases, we will get $d(u, S_b) \neq d(v, S_b)$, where $b \in c_i - c_j$ and $b \neq 1$, 2 (provided $i \neq j$; otherwise take any $b \in c_i$). Therefore, again, $r(u|\Pi) \neq r(v|\Pi)$. Now, let $u \in x_i$ and $v \in x_j$ for i < j. By a similar argument, we can show that $r(u|\Pi) \neq r(v|\Pi)$. Therefore, Π is a resolving partition of G provided $\binom{n+1}{n} + 1 \leq m \leq \binom{n+2}{n} + 1$. Next, we shall show that if $pd(K_m \odot K_n) = n+2$, then $\binom{n+1}{n} + 1 \le m \le \binom{n+2}{n} + 1$. To do so, for a contradiction assume that $pd(K_m \odot K_n) = n+2$ for $m = \binom{n+2}{n} + 2$. Let Π be a resolving partition of $K_m \odot K_n$. Since $m = \binom{n+2}{n} + 2$, there exist i, j, l and i < j < l such that $c_i = \binom{n+2}{n} + 2$. The Partition Dimension of the Corona Product of Two Graphs 193 $c_j = c_l = \{a, b\}$ or there exist i, j, l, s and i < j < l < s such that $c_i = c_j = \{a, b\}$ and $c_l = c_s = \{s, t\}$. For the first case, we may assume, without loss of generality, $c_i = c_j$ = $c_l = \{1, 2\}$. To distinguish all the vertices in H_i , H_j , and H_l , the vertices x_i , x_j , x_l must be in different partition of Π and two of them must be in S_1 and S_2 , say $x_i \in S_1$, $x_j \in S_2$, $x_l \in S_3$. Then these three x_i , x_j , x_l are dominant vertices, namely, the ordinates of their representations are all 1's. Now, consider the vertex x_η adjacent to H_η with $c_\eta = \{1, 3\}$. Then x_η must be also dominant. Therefore, $x_\eta \notin S_1 \cup S_2 \cup S_3$. We may assume $x_\eta \in S_4$. Now, consider the vertex x_{r_2} adjacent to H_{r_2} with $c_{r_2} = \{1, 4\}$. Similarly, $x_{r_2} \in S_5$. We do this process for all x_h in K_m to obtain that all these vertices are dominant. Therefore, we have more than n + 2 dominant vertices, a contradiction. Thus, the first case is not possible. For the second case, we assume, without loss of generality, $(c_i = c_j = \{1, 2\} \text{ and } c_l = c_s = \{1, 3\})$ or $(c_i = c_j = \{1, 2\} \text{ and } c_l = c_s = \{3, 4\})$. First, let $c_i = c_j = \{1, 2\}$ and $c_l = c_s = \{1, 3\}$. To distinguish all the vertices of H_i , H_j and H_l , H_s , one of $\{x_i, x_j\}$ must be in either S_1 or S_2 , and one of $\{x_l, x_s\}$ must be in either S_1 or S_3 . By symmetry, we may assume that x_i , $x_l \in S_1$. Now, consider x_j and x_s . If $x_j \in S_2$, then x_i and x_j are dominant vertices. Vertex x_s cannot be in S_3 , since otherwise x_l becomes dominant (too many dominant in S_1 , namely, more than one vertices in S_1 are dominant). Thus, x_s is in either S_2 or S_t for $t \geq 4$. If $x_s \in S_2$, then consider the vertex x_n adjacent to H_n with $c_n = \{2, 3\}$. For sure, x_n cannot be in $S_1 \cup S_2$, since otherwise its representation will be the same with the one of x_l or x_s . But, x_n cannot be in S_3 to avoid x_l and x_i becoming dominant vertices from the same set. Therefore, x_n must be in S_t , $t \ge 4$, say $x_n \in S_4$. Now, consider x_{r_2} adjacent to H_{r_2} with $c_{r_2} = \{2, 4\}$. Then x_{r_2} must be a dominant vertex since it is adjacent to x_j and x_n . Thus, w.l.o.g., $c_{r_2} \in S_4$ or S_5 . We do this process for all x_h in K_m to obtain that all these vertices are dominant. Therefore, we have more than n+2 dominant vertices, a contradiction. Now, consider $x_j \in S_2$ and $x_s \in S_4$. In this case, x_i , x_j are dominant. Next, consider x_η adjacent to H_η with $c_\eta = \{1, 4\}$. This vertex x_η is also dominant, since adjacent to x_i and x_s . Therefore, x_η must in either S_t , $t \geq 4$, say $x_\eta \in S_4$. We do this process for all x_h in K_m to obtain that all these vertices are dominant. Therefore, we have more than n+2 dominant vertices, a contradiction. Next, consider $x_i, x_l \in S_1$ and $x_j \in S_3$. In this case, x_l is dominant. For sure, x_s cannot be in S_2 (since x_i and x_l become both dominant) or S_3 (by symmetry argument above). Therefore, x_s must be in $S_t, t \geq 4$, say w.l.o.g., $x_s \in S_4$. Now, consider the vertex x_n adjacent to H_n with $c_n = \{1, 4\}$. Thus, x_n must be a dominant vertex. Therefore, x_n must be in either $S_t, t \geq 3$, say $x_n \in S_3$. But, now x_s is also dominant. Let us now consider vertex x_{r_2} adjacent to H_{r_2} with $c_{r_2} = \{3, 4\}$. Then x_{r_2} must be a dominant vertex since it is adjacent to x_s and x_n . Thus, w.l.o.g., $x_n \in S_5$. We do this process for all x_n in $V(K_m)$ to obtain that all these vertices are dominant. Therefore, we have more than n+2 dominant vertices, a contradiction. Second, consider $c_i = c_j = \{1, 2\}$ and $c_l = c_s = \{3, 4\}$. To distinguish all the vertices of H_i , H_j and H_l , H_s , then x_i and x_j must be in different partitions and one of $\{x_i, x_j\}$ is in either S_1 or S_2 , and one of $\{x_l, x_s\}$ must be in either S_3 or S_4 and they are in different partitions. By symmetry, we may assume that $x_i \in S_1$ and $x_l \in S_3$. Now, consider x_j and x_s . If one of either $x_j \notin S_3$ or $x_s \notin S_1$ holds, then we have three partitions holding x_i, x_j, x_l, x_s . Any two combinations will give another a dominant vertex x_n by similar method above. We do this process for all x_h in $V(K_m)$ to obtain that all these vertices are dominant. Therefore, we have more than n+2 dominant vertices, a contradiction. Now, the only remaining case is $x_i \in S_1$, $x_l \in S_3$, $x_j \in S_3$ and $x_s \in S_1$. Let us consider x_n adjacent to H_n with $c_n = \{1, 3\}$. Since it is also adjacent to x_i and x_l , then x_n must be a dominant vertex. If $x_n \notin S_1 \cup S_3$, then we have three partitions holding x_i , x_j , x_l , x_s and x_n . Therefore, by the similar method above, we will have too many dominant vertices, a contradiction. Thus, $x_n \in S_1$. But, now consider vertex x_{r_2} adjacent to H_{r_2} with $c_{r_2} = \{2, 3\}$. This vertex cannot be in $S_1 \cup S_2 \cup S_3$. Therefore, $x_{r_2} \in S_t$, $t \ge 4$. Thus, we have three partitions holding these vertices so far. This implies that there will be too many dominant vertices, a contradiction. This completes the proof of the second statement. Case 3. $$\binom{n+k-1}{n} + 1 \le m \le \binom{n+k}{n}$$, and $k \ge 3$. Let $T = \{ all \ n\text{-combinations from } n + k \text{ distinct numbers} \}.$ Let $\Pi = \{S_1, S_2, ..., S_{n+k}\}$. Since all vertices of each H_i must be in n different partitions, each H_i can be associated with an n-combination in T. Then define Π as follows: a. Assign H_i , for i = 1, 2, ..., m to a member in T so that no two H_i , H_i have been assigned to the same member of T. b. Put all vertices $x_i's$ is into S_1 . It is clear that Π is a resolving partition of G. Therefore, $pd(G) \le n + k$ in this case. ## References - [1] G. Chappell, J. Gimbel and C. Hartman, Bounds on the metric and partition dimension of a graph, Ars Combin. 88 (2008), 349-366. - [2] G. Chartrand, E. Salehi and P. Zhang, The partition dimension of a graph, Aequationes Math. 59 (2000), 45-54. - [3] G. Chartrand and P. Zhang, The theory and application of resolvability in graphs, Congr. Numer. 160 (2003), 47-68. - [4] G. Chartrand, P. Zhang and E. Salehi, On the partition dimension of a graph, Congr. Numer. 130 (1998), 157-168. - [5] Darmaji, S. Uttunggadewa, R. Simanjuntak and E. T. Baskoro, The partition dimension of complete multipartite graph, a special caterpillar and a windmill, J. Combin. Math. Combin. Comput. 71 (2009), 209-215. - [6] R. Frucht and F. Harary, On the coronas of two graphs, Aequationes Math. 4 (1970), 322-324. - [7] R. Marinescu-Ghemeci and I. Tomescu, On star partition dimension of generalized gear graph, Bull. Math. Soc. Sci. Math. Roumanie 53(101) (2010), 261-268. - [8] V. Ruxandra, Path partition dimension of a graph, preprint. - [9] V. Saenpholphat and P. Zhang, Connected partition dimensions of graphs, Discuss. Math. Graph Theory 22 (2002), 305-323. - [10] I. Tomescu, Discrepancies between metric dimension and partition dimension of a connected graph, Discrete Math. 308 (2008), 5026-5031. - [11] I. Tomescu, I. Javaid and Slamin, On the partition dimension and connected partition dimension of wheels, Ars Combin. 84 (2007), 311-317.