THE PARTITION DIMENSION OF THE CORONA PRODUCT OF TWO GRAPHS

Edy Tri Baskoro and Darmaji ${ }^{*}$
Combinatorial Mathematics Research Group
Faculty of Mathematics and Natural Sciences
Institut Teknologi Bandung (ITB)
Jalan Ganesha No. 10 Bandung 40132
Indonesia
e-mail: ebaskoro@math.itb.ac.id
darmaji@students.itb.ac.id
*Permanent address
Jurusan Matematika FMIPA
Institut Teknologi Sepuluh Nopember (ITS)
Jl. Arif Rahman Hakim No. 10 Surabaya 60111
Indonesia
e-mail: darmaji@matematika.its.ac.id

Abstract

Let $G(V, E)$ be a connected graph. For a vertex $v \in V(G)$ and a subset S of $V(G)$, the distance $d(v, S)$ from v to S is $\min \{d(v, w) \mid w \in S\}$. For an ordered k-partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$

© 2012 Pushpa Publishing House
2010 Mathematics Subject Classification: 05C12.
Keywords and phrases: partition dimension, resolving partition, corona product, path, complete graph.

This research is supported by Indonesian Research Grant Hibah Pascasarjana 2011, Directorate General of Higher Education, Ministry of National Education, Indonesia.
Received December 27, 2011
of $V(G)$, the representation of v with respect to Π is $r(v \mid \Pi)=$ $\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \ldots, d\left(v, S_{k}\right)\right)$. The k-partition Π is called a resolving partition of G if all $r(v \mid \Pi)$ for all $v \in V(G)$ are distinct. The partition dimension of a graph G is the smallest k such that G has a resolving k-partition. In this paper, we derive an upper bound of the partition dimension of the corona product $G \odot H$, where G, H are connected graphs and the diameter of H is at most 2. Furthermore, we also determine the exact value of the partition dimension of this corona product if G is either a path or a complete graph and H is a complete graph.

1. Introduction

One of the problems in graph theory with applications to chemistry deals with determining representations for the vertices of a graph such that distinct vertices have distinct representations. A representation defined in terms of distances and partitions was firstly studied by Chartrand et al. [4]. For any $u, v \in V(G)$, define the distance $d(u, v)$ from u to v as the length of the shortest path connecting these two vertices in G. For $v \in V(G)$ and $S \subset$ $E(G)$, the distance $d(v, S)$ from u to S is defined as $\min \{d(v, x) \mid x \in S\}$. In particular, if $d(x, S) \neq d(y, S)$, then we shall say that x and y are distinguished by S or x and y are distinguishable. For an ordered k-partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ of $V(G)$ and $v \in V(G)$, the representation of $v \in V(G)$ with respect to Π is the k-vector

$$
r(v \mid \Pi)=\left(d\left(v, S_{1}\right), d\left(v, S_{2}\right), \ldots, d\left(v, S_{k}\right)\right) .
$$

We call Π a resolving partition if $r(u \mid \Pi) \neq r(v \mid \Pi)$ for every two distinct vertices $u, v \in G$. The partition dimension $\operatorname{pd}(G)$ of graph G is the minimum cardinality of any resolving partition of $V(G)$.

Let $S_{m, n}$ be a double star, namely, a tree with two vertices of degree m and n and the remaining vertices of degree 1. In [4], Chartrand et al. showed
that the partition dimension of $S_{m, n}$ is $\max \{m, n\}-1$. Moreover, they also gave the sharp lower and upper bounds of the partition dimension of a caterpillar, namely, a tree having the property that the removal of its endvertices results in a path. A construction of a tree T on n vertices with partition dimension k (for any $k, 2 \leq k \leq n-1$, but $k \neq n-2$) is also given. Other result concerning caterpillar can be also seen in [5]. However, the partition dimension of any general tree is an open problem.

Finding the partition dimension of any graph in general is classified as an $N P$-hard problem [2]. The characterization studies for all graphs having certain partition dimension have been also conducted, for instance, see [2] and [10].

Some investigations have been also conducted to determine partition dimensions with some additional criteria for certain classes of graphs. For instance, Saenpholphat and Zhang [9] and Tomescu et al. [11] considered connected resolving partition in which the induced subgraph of each set in the partition is connected. Marinescu-Ghemeci and Tomescu [7] investigated star partition dimension of generalized gear graphs and Ruxandra [8] studied partition dimension of graph in which the induced subgraph of each set in the partition is a path.

Finding a relationship (in terms of partition dimension) between the original graphs and the resulting graph under some graph operation is also interesting to be considered. For instances, let us define the corona product $G \odot H$ between G and H as the graph obtained from G and H by taking one copy of G and $|V(G)|$ copies of H and then joining by an edge each vertex of the ith-copy of H with the i th-vertex of G. In this paper, we are interested in determining the partition dimension of graph $G \odot H$. We derive an upper bound of the partition dimension of a corona product graph $G \odot H$ for any connected graphs G and H with the diameter of H is at most 2, namely, $p d(G \odot H) \leq p d(F)+p d(H)$. We also show that this upper bound is tight. Furthermore, we determine the partition dimension of $G \odot H$, if G is either a path or a complete graph and H is a complete graph.

The following lemma is useful in determining the partition dimension of a graph G.

Lemma 1 [3]. Let G be a connected non trivial graph. Let Π be a resolving partition for G and $u, v \in V(G)$. If $d(u, w)=d(v, w)$ for all $w \in V(G)-\{u, v\}$, then u and v belong to different sets in Π.

2. The Upper Bound of $\operatorname{pd}(G \odot H)$

The diameter of a graph G is $\max \{d(x, y) \mid x, y \in V(G)\}$. In this section, we shall derive an upper bound of $p d(G \odot H)$ for any connected graphs G and H with diameter of H is at most 2 .

Lemma 2. Let G and H be connected graphs. Let H_{i} be ith-copy of H in $G \odot H$. Then any two vertices u and v of H_{i} can be only distinguished by some set in which has intersection not empty with the set of vertices of H_{i}.

Proof. Since $d(u, w)=d(v, w)$ for all $w \in V(G \odot H) \backslash H_{i}$, vertices u and v can be only distinguished by some vertex in H_{i}.

Theorem 1. Let G and H be connected graphs. If the diameter of H is at most 2, then $p d(G \odot H) \leq p d(G)+p d(H)$.

Proof. Let Π_{G} and Π_{H} be minimum resolving partitions of G and H, respectively. Let $|V(G)|=n$. For $i=1,2, \ldots, n$, partition the vertices of each H_{i} according to Π_{H}, say $\left\{H_{i}^{1}, H_{i}^{2}, \ldots, H_{i}^{s}\right\}$, where $s=p d(H)$. Now, consider the partition $\Pi=\Pi_{1} \cup \Pi_{2}$, where $\Pi_{1}=\left\{\bigcup_{i=1}^{n} H_{i}^{1}, \bigcup_{i=1}^{n} H_{i}^{2}, \ldots\right.$, $\left.\bigcup_{i=1}^{n} H_{i}^{s}\right\}$ and $\Pi_{2}=\Pi_{G}$. Then we shall show that Π is a resolving partition of $G \odot H$. Note that since the diameter of H is at most 2, the distance of any two vertices $u, v \in V\left(H_{i}\right)$, for any i, under the corona graph $G \odot H$ is the same as its distance under the original graph H. Therefore, if the vertices $u, v \in V\left(H_{i}\right)$, for any i, are distinguishable by Π_{H}, then they
are distinguishable too by Π_{1}. Let u and v be any two vertices of $G \odot H$. If $u, v \in V\left(H_{i}\right)$, then they will be clearly distinguished by $\bigcup_{i=1}^{n} H_{i}^{t}$ for some t. If $u, v \in V(G)$, then they will be distinguished by some set in Π_{G}. Now, assume that $u \in V\left(H_{i}\right)$ and $v \in V(G)$. If $u \in \bigcup_{i=1}^{n} H_{i}^{t}$ for some t, then the distances between u and v to $\bigcup_{i=1}^{n} H_{i}^{t}$ is 0 and 1 , respectively. Therefore, u and v are distinguished. Now, the only case we have not considered is $u \in V\left(H_{i}\right)$ and $v \in V\left(H_{j}\right)$, for $i \neq j$. If $u, v \in \bigcup_{i=1}^{n} H_{i}^{t}$ for some t, then u, v are distinguished by some set in Π_{G} since Π_{G} is a resolving partition for G.

In the following sections, we will determine the exact value of $p d(G \odot H)$ if $H \cong K_{n}$ and G is either a path or a complete. We also show that the bound in Theorem 1 is tight.

3. The Corona Product $P_{m} \odot K_{n}$

Now, we consider the corona product $G \cong P_{m} \odot K_{n}$, where P_{m} represents a path order m and K_{n} is the complete graph on n vertices. Let the vertex-set $V(G)=\left\{x_{i} \mid 1 \leq i \leq m\right\} \cup\left\{a_{i j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and the edge-set

$$
\begin{aligned}
E(G)= & \left\{x_{i-1} x_{i} \mid 2 \leq i \leq m\right\} \cup\left\{x_{i} a_{i j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\} \\
& \cup\left\{a_{i k} a_{i l} \mid 1 \leq i \leq m, 1 \leq k \leq l \leq n\right\} .
\end{aligned}
$$

We will show that the upper bound of Theorem 1 is satisfied by $p d\left(P_{m} \odot K_{n}\right)$ provided $m>n+2$.

Theorem 2. For $m \geq 2$ and $n \geq 4$, the partition dimension of $P_{m} \odot K_{n}$ is as follows:

$$
p d\left(P_{m} \odot K_{n}\right)=\left\{\begin{array}{l}
n+1, \text { if } m \leq n+2, \\
n+2, \text { if } m \geq n+3 .
\end{array}\right.
$$

Proof. Let $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ be an ordered resolving partition of $G \cong P_{m} \odot K_{n}$. For $i=1,2, \ldots, m$, let $V\left(H_{i}\right)=\left\{a_{i 1}, a_{i 2}, \ldots, a_{i n}\right\}$ be vertices of the i th-copy of K_{n} in G. Then each vertex in H_{i} must be in a different set in Π. Since $m \geq 2$, we need at least $n+1$ sets in Π. Otherwise, the representations of $a_{i 1}$ and $a_{j 1}$ belonging to the same set in Π, for $i \neq j$, are the same. Therefore, $k \geq n+1$.

Now, consider the case of $m \leq n+2$. Define an ordered partition $\Pi=$ $\left\{S_{1}, S_{2}, \ldots, S_{n+1}\right\}$ of G such that:
a. $x_{1} \in S_{1},\left\{x_{2}, x_{3}, x_{4}\right\} \subset S_{5},\left\{x_{5}, x_{6}, \ldots, x_{m}\right\} \subset S_{1}$;
b. All vertices of H_{1} are distributed equally into n partitions other than S_{1};
c. All vertices of H_{2} are distributed equally into n partitions other than $S_{2} ;$
d. All vertices of H_{3} are distributed equally into n partitions other than S_{1};
e. For $t=4,5, \ldots, m$, all vertices of H_{t} are distributed equally into n partitions other than S_{t-1}. See Figure 1 .

Figure 1. Resolving partition for corona product graph $P_{6} \odot K_{4}$.
We claim that Π is a resolving partition of G. To prove it, let us consider two different vertices u, v of G in the same set in Π. If $u \in V\left(H_{i}\right)$,
$v \in V\left(H_{j}\right)$ for $i<j$, and $\{i, j\} \neq\{1,3\}$, then $d\left(u, S_{j-1}\right) \neq d\left(v, S_{j-1}\right)$ or $d\left(u, S_{1}\right) \neq d\left(v, S_{1}\right)$. Therefore, $r(u \mid \Pi) \neq r(v \mid \Pi)$. Now, if $u \in\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $\left(v \in\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}\right.$ or $\left.v \in S_{t}\right)$, then $d\left(u, S_{b}\right) \neq d\left(v, S_{b}\right)$, where S_{b} is the partition not containing any vertex of H_{t}. Therefore, again $r(u \mid \Pi) \neq$ $r(v \mid \Pi)$. Thus, we obtain that Π is the revolving partition of G. This implies that $\operatorname{pd}(G)=n+1$ if $m \leq n+2$.

Now, consider the case of $m \geq n+3$. We will show that $p d(G)=n+2$. To show the lower bound, for a contradiction assume there is an ordered resolving partition Π of G with $n+1$ sets. Let $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{n+1}\right\}$.

By Lemma 1, any two vertices in H_{i}, for each i, belong to different sets of Π. Therefore, for $i=1,2, \ldots, m$ we can define $c_{i}=b$ if no vertex of H_{i} is in S_{b}. Then since $m \geq n+3$ and $1 \leq b \leq n+1$, there exist i, j, l and $i<j<l$ such that $c_{i}=c_{j}=c_{l}=b$ for some b or there exist i, j, l, s and $i<j<l<s$ such that $c_{i}=c_{j}=b$ and $c_{l}=c_{s}=c$ for some b and c.

It is clear that the sets H_{i} and H_{j} which are the same cannot be adjacent, namely, $j \neq i+1$. Since otherwise $d\left(x_{j}, S_{b}\right)=d\left(w, S_{b}\right)$ for some $w \in V\left(H_{i}\right)$ or $d\left(x_{i}, S_{b}\right)=d\left(w, S_{b}\right)$ for some $w \in V\left(H_{j}\right)$. Since $d\left(x_{i}, S_{t}\right)=$ $d\left(x_{j}, S_{t}\right)=d\left(w, S_{t}\right)=1$ for all $t \neq b, \quad r\left(x_{j} \mid \Pi\right)=r(w \mid \Pi)$ or $r\left(x_{i} \mid \Pi\right)=$ $r(w \mid \Pi)$, a contradiction. Therefore, $j-i>1, l-j>1$, and $s-l>1$.

Now, consider the first case, namely, $c_{i}=c_{j}=c_{l}=b$. In order to have the representation of each vertex of G with respect to Π is distinct, then $\left\{d\left(H_{i}, S_{b}\right), d\left(H_{j}, S_{b}\right), d\left(H_{l}, S_{b}\right)\right\}=\{1,2,3\}$ (since $j-i>1$ and $l-j>1$), where $d\left(H_{i}, S_{b}\right)$ is the distance between the whole vertices of H_{i} to S_{b}. This implies that one of $\left\{x_{i}, x_{j}, x_{l}\right\}$ is in S_{b}, say $x_{i} \in S_{b}$, and one of them has distance 1 to S_{b}, say x_{j}. But, then we get $r\left(x_{j} \mid \Pi\right)=r(w \mid \Pi)$ for some $w \in V\left(H_{i}\right)$, a contradiction. Therefore, the first case is not possible.

Next, we consider the case of $c_{i}=c_{j}=b$ and $c_{l}=c_{s}=c$ for some b and $c, b \neq c$. Again, since $j-i>1, l-j>1$, and $s-l>1,\left\{d\left(H_{i}, S_{b}\right)\right.$, $\left.d\left(H_{j}, S_{b}\right)\right\} \subset\{1,2,3\}$ and $\left\{d\left(H_{l}, S_{c}\right), d\left(H_{s}, S_{c}\right)\right\} \subset\{1,2,3\}$. Clearly, at most one of $\left\{x_{i}, x_{j}\right\}$ is in S_{b}. If $x_{i} \in S_{b}$, then all vertices of H_{i} together with x_{i} are dominant, namely, all ordinates of its representation with respect to Π are 1 's. Furthermore, if $x_{i} \in S_{b}$, then no one of $\left\{x_{l}, x_{s}\right\}$ is in S_{c}. Since otherwise, there are too many dominant vertices in G, namely, the number of dominant vertices greater than the partition dimension. Therefore, $\left\{d\left(H_{l}, S_{c}\right), d\left(H_{s}, S_{c}\right)\right\}=\{2,3\}$. Thus, either one of $\left\{x_{l}, x_{s}\right\}$ has distance 1 to S_{c}, say x_{l}. This yields x_{l} as a dominant vertex; But now $r\left(x_{l} \mid \Pi\right)=$ $r(w \mid \Pi)$, for some $w \in V\left(H_{i}\right) \cup\left\{x_{i}\right\}$. Therefore, as a conclusion, no one of $\left\{x_{i}, x_{j}\right\}$ is in S_{b} (similarly, no one of $\left\{x_{l}, x_{s}\right\}$ is in S_{c}). Hence, $\left\{d\left(H_{i}, S_{b}\right), d\left(H_{j}, S_{b}\right)\right\}=\{2,3\}$ and $\left\{d\left(H_{l}, S_{c}\right), d\left(H_{s}, S_{c}\right)\right\}=\{2,3\}$. In this case, we may assume $d\left(H_{i}, S_{b}\right)=2$ and $d\left(H_{j}, S_{b}\right)=3$. But, then $r\left(x_{j} \mid \Pi\right)$ $=r(w \mid \Pi)$, for some $w \in V\left(H_{i}\right)$, a contradiction. Therefore, the second case is also not possible. This means that $p d(G) \geq n+2$ if $m \geq n+3$.

Now, to show the upper bound, for $m \geq n+3$, define a resolving partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{n+2}\right\}$ of G such that:

$$
S_{k}= \begin{cases}\left\{a_{1 k}, a_{2 k}, \ldots, a_{m k}\right\}, & \text { if } 1 \leq k \leq n, \\ \left\{x_{2}, x_{3}, \ldots, x_{m}\right\}, & \text { if } k=n+1, \\ \left\{x_{1}\right\}, & \text { if } k=n+2 .\end{cases}
$$

Clearly, any two vertices in S_{k}, for $k \in\{1,2, \ldots, n+1\}$, have different distances to S_{n+2}. Therefore, their representations with respect to Π will be not the same. This means Π is the resolving partition of G; thus $\operatorname{pd}(G)$ $\leq n+2$ for $m \geq n+3$.

Now, let us consider the graph $G \cong P_{m} \odot K_{n}$, with $m \geq 2$, and $n=$ 2, 3. For $m \leq n+2$, define a partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{n+1}\right\}$ of G such that:
a.

$$
\begin{aligned}
& S_{1}=\left\{a_{21}, a_{41}, x_{3}\right\}, S_{2}=\left\{a_{11}, a_{31}, a_{42}, x_{4}\right\} \\
& S_{3}=\left\{a_{12}, a_{22}, a_{32}, x_{1}, x_{2}\right\}, \text { for } n=2, m=4
\end{aligned}
$$

b.

$$
\begin{aligned}
& S_{1}=\left\{a_{21}, a_{41}, a_{51}, x_{3}\right\}, S_{2}=\left\{a_{11}, a_{31}, a_{42}, a_{52}, x_{4}, x_{5}\right\} \\
& S_{3}=\left\{a_{12}, a_{22}, a_{32}, a_{53}, x_{1}, x_{2}\right\}, S_{4}=\left\{a_{13}, a_{23}, a_{33}, a_{43}\right\} \\
& \text { for } n=3, m=5
\end{aligned}
$$

It is easy to see that Π is a resolving partition of G. Now, if $2 \leq$ $m \leq n+1$, then by removing all elements $a_{i j}$ and x_{i} with $i \geq m+1$ from all sets in the above Π, we will get the resolving partition of G for this case m. Next, consider $m \geq n+3$ and $n=2$, 3 . By using the same argument and the same partition like in the proof of the case $m \geq n+3$ and $n \geq 4$, we can show that $\operatorname{pd}(G)=n+2$. Therefore, we have the following theorem:

Theorem 3. For $m \geq 2$ and $n=2$, 3 , the partition dimension of $P_{m} \odot K_{n}$ is as follows:

$$
\operatorname{pd}\left(P_{m} \odot K_{n}\right)=\left\{\begin{array}{l}
n+1, \text { if } m \leq n+2 \\
n+2, \text { if } m \geq n+3
\end{array}\right.
$$

From Theorems 2 and 3, note that for $m \geq n+3$ the partition dimension $\operatorname{pd}\left(P_{m} \odot K_{n}\right)$ is $n+2$. This means that the upper bound of Theorem 1 is sharp.

4. The Corona Product $K_{m} \odot K_{n}$

In this section, we determine the partition dimension of $G \cong K_{m} \odot K_{n}$,
the corona product of the complete graph K_{m} to K_{n}. Let the vertex-set $V(G)=\left\{x_{i} \mid 1 \leq i \leq m\right\} \cup\left\{a_{i j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and the edge-set

$$
\begin{gathered}
E(G)=\left\{x_{i} x_{j} \mid 1 \leq i<j \leq m\right\} \cup\left\{x_{i} a_{i j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\} \\
\\
\cup\left\{a_{i k} a_{i l} \mid 1 \leq i \leq m, 1 \leq k<l \leq n\right\} .
\end{gathered}
$$

For simplicity, denote by $V\left(H_{i}\right)=\left\{a_{i 1}, a_{i 2}, \ldots, a_{i n}\right\}$ the vertices of i th-copy of K_{n} with attach to vertex x_{i} in K_{m}.

Theorem 4. Let $G \cong K_{m} \odot K_{n}$, with $m \geq 2$ and $n \geq 3$. Then
a. $p d(G)=n+1$ iff $2 \leq m \leq\binom{ n+1}{n}$.
b. $p d(G)=n+2$ iff $\binom{n+1}{n}+1 \leq m \leq\binom{ n+2}{n}+1$.
c. $p d(G) \leq n+k$, if $\binom{n+k-1}{n}+1 \leq m \leq\binom{ n+k}{n}$, and $k \geq 3$.

Proof. We shall divide the proof into three cases:
Case 1. $2 \leq m \leq\binom{ n+1}{n}$.
Consider the vertices in H_{i} in G, for some i. By Lemma 1, any two of them must be in different partitions in a resolving partition Π of G. Therefore, we require n distinct partitions in Π for the vertices of H_{i} only. But, since $m \geq 2,|\Pi| \geq n+1$. Now, if $m \leq\binom{ n+1}{n}$, then define an ordered partition $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{n+1}\right\}$ of G such that:
a. All $x_{i}^{\prime} \mathrm{S}$, for $i=1,2, \ldots, m$ belong to S_{1};
b. For each i, distribute equally all n vertices of H_{i} into n distinct partitions other than S_{i}.

Then, by this definition, it is easy to verify that Π is a resolving partition of G. Now, let $m \geq\binom{ n+1}{n}+1$ and assume for a contradiction $|\Pi|=n+1$. Then there are two distinct H_{i} and H_{j} such that their vertices are distributed to the same combination of n partitions of Π. Let $c_{i}=c_{j}=b$ if no vertex of $H_{i}\left(H_{j}\right)$ is in S_{b}. Then x_{i} and x_{j} must be in different partitions and one of $\left\{x_{i}, x_{j}\right\}$ is in S_{b}, say x_{i}. However, now $r\left(x_{j} \mid \Pi\right)=$ $r(w \mid \Pi)$ for some $w \in V\left(H_{i}\right)$, a contradiction. Therefore, the first statement and the lower bound of the second statement have been proved.

Case 2. $\binom{n+1}{n}+1 \leq m \leq\binom{ n+2}{n}+1$.
Let $T=\{$ all n-combinations from $n+2$ distinct numbers $\}$.
Let $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{n+2}\right\}$. Since all vertices of each H_{i} must be in n different partitions, each H_{i} can be associated with an n-combination in T. Now, we can define $c_{i}=\{a, b\}$ if S_{a} and S_{b} both do not contain any vertex of H_{i}. To show $\operatorname{pd}(G)=n+2$, define Π as follows:
a. Assign H_{i}, for $i=1,2, \ldots, m$ to all members in T such that

$$
c_{1}=\{1,2\}, c_{2}=\{1,2\}, c_{3}=\{1,3\}, c_{4}=\{1,4\}, \ldots, c_{m-1}, c_{m}
$$

are in a lexicographical order,
b. $x_{1} \in S_{1}, x_{2} \in S_{2}$, and
c. For $i=3,4, \ldots, m$, put x_{i} into S_{1} if $2 \in c_{i}$; Otherwise x_{i} is put into S_{2}. See Figure 2.

Figure 2. Resolving partition for corona product graph $K_{11} \odot K_{3}$.
We shall show that Π is a resolving partition of G. To do so, take any two vertices u, v in the same partition in Π. If $u \in V\left(H_{i}\right)$ and $v \in\left(H_{j}\right)$, for $i<j$, then $d\left(u, S_{b}\right) \neq d\left(v, S_{b}\right)$, where $b \in c_{i}-c_{j}$ and $b \neq 1$, 2 (provided $c_{i}-c_{j} \neq \varnothing$; otherwise set $b=1$). Therefore, $r(u \mid \Pi) \neq r(v \mid \Pi)$. If $u \in$ $V\left(H_{i}\right)$ and $v=x_{j}$ for some i and j, then $\{u, v\} \subset S_{1}$ or $\{u, v\} \subset S_{2}$. In both cases, we will get $d\left(u, S_{b}\right) \neq d\left(v, S_{b}\right)$, where $b \in c_{i}-c_{j}$ and $b \neq 1,2$ (provided $i \neq j$; otherwise take any $b \in c_{i}$). Therefore, again, $r(u \mid \Pi) \neq$ $r(v \mid \Pi)$. Now, let $u \in x_{i}$ and $v \in x_{j}$ for $i<j$. By a similar argument, we can show that $r(u \mid \Pi) \neq r(v \mid \Pi)$. Therefore, Π is a resolving partition of G provided $\binom{n+1}{n}+1 \leq m \leq\binom{ n+2}{n}+1$.

Next, we shall show that if $p d\left(K_{m} \odot K_{n}\right)=n+2$, then $\binom{n+1}{n}+1 \leq$ $m \leq\binom{ n+2}{n}+1$. To do so, for a contradiction assume that $\operatorname{pd}\left(K_{m} \odot K_{n}\right)=$ $n+2$ for $m=\binom{n+2}{n}+2$. Let Π be a resolving partition of $K_{m} \odot K_{n}$. Since $m=\binom{n+2}{n}+2$, there exist i, j, l and $i<j<l$ such that $c_{i}=$
$c_{j}=c_{l}=\{a, b\}$ or there exist i, j, l, s and $i<j<l<s$ such that $c_{i}=$ $c_{j}=\{a, b\}$ and $c_{l}=c_{s}=\{s, t\}$.

For the first case, we may assume, without loss of generality, $c_{i}=c_{j}$ $=c_{l}=\{1,2\}$. To distinguish all the vertices in H_{i}, H_{j}, and H_{l}, the vertices x_{i}, x_{j}, x_{l} must be in different partition of Π and two of them must be in S_{1} and S_{2}, say $x_{i} \in S_{1}, x_{j} \in S_{2}, x_{l} \in S_{3}$. Then these three x_{i}, x_{j}, x_{l} are dominant vertices, namely, the ordinates of their representations are all 1's. Now, consider the vertex $x_{r_{1}}$ adjacent to $H_{r_{1}}$ with $c_{r_{1}}=\{1,3\}$. Then $x_{r_{1}}$ must be also dominant. Therefore, $x_{r_{1}} \notin S_{1} \cup S_{2} \cup S_{3}$. We may assume $x_{r_{1}} \in S_{4}$. Now, consider the vertex $x_{r_{2}}$ adjacent to $H_{r_{2}}$ with $c_{r_{2}}=\{1,4\}$. Similarly, $x_{r_{2}} \in S_{5}$. We do this process for all x_{h} in K_{m} to obtain that all these vertices are dominant. Therefore, we have more than $n+2$ dominant vertices, a contradiction. Thus, the first case is not possible.

For the second case, we assume, without loss of generality, $\left(c_{i}=c_{j}\right.$ $=\{1,2\}$ and $\left.c_{l}=c_{s}=\{1,3\}\right)$ or $\left(c_{i}=c_{j}=\{1,2\}\right.$ and $\left.c_{l}=c_{S}=\{3,4\}\right)$. First, let $c_{i}=c_{j}=\{1,2\}$ and $c_{l}=c_{s}=\{1,3\}$. To distinguish all the vertices of H_{i}, H_{j} and H_{l}, H_{s}, one of $\left\{x_{i}, x_{j}\right\}$ must be in either S_{1} or S_{2}, and one of $\left\{x_{l}, x_{s}\right\}$ must be in either S_{1} or S_{3}. By symmetry, we may assume that $x_{i}, x_{l} \in S_{1}$. Now, consider x_{j} and x_{s}. If $x_{j} \in S_{2}$, then x_{i} and x_{j} are dominant vertices. Vertex x_{s} cannot be in S_{3}, since otherwise x_{l} becomes dominant (too many dominant in S_{1}, namely, more than one vertices in S_{1} are dominant). Thus, x_{s} is in either S_{2} or S_{t} for $t \geq 4$. If $x_{s} \in S_{2}$, then consider the vertex $x_{r_{1}}$ adjacent to $H_{r_{1}}$ with $c_{r_{1}}=\{2,3\}$. For sure, $x_{r_{1}}$ cannot be in $S_{1} \cup S_{2}$, since otherwise its representation will be the same with the one of x_{l} or x_{s}. But, $x_{r_{1}}$ cannot be in S_{3} to avoid x_{l} and x_{i} becoming dominant vertices from the same set. Therefore, $x_{r_{1}}$ must be in
$S_{t}, t \geq 4$, say $x_{r_{1}} \in S_{4}$. Now, consider $x_{r_{2}}$ adjacent to $H_{r_{2}}$ with $c_{r_{2}}=\{2,4\}$. Then $x_{r_{2}}$ must be a dominant vertex since it is adjacent to x_{j} and $x_{r_{1}}$. Thus, w.l.o.g., $c_{r_{2}} \in S_{4}$ or S_{5}. We do this process for all x_{h} in K_{m} to obtain that all these vertices are dominant. Therefore, we have more than $n+2$ dominant vertices, a contradiction.

Now, consider $x_{j} \in S_{2}$ and $x_{s} \in S_{4}$. In this case, x_{i}, x_{j} are dominant. Next, consider $x_{r_{1}}$ adjacent to $H_{r_{1}}$ with $c_{r_{1}}=\{1.4\}$. This vertex $x_{r_{1}}$ is also dominant, since adjacent to x_{i} and x_{s}. Therefore, $x_{r_{1}}$ must in either S_{t}, $t \geq 4$, say $x_{r_{1}} \in S_{4}$. We do this process for all x_{h} in K_{m} to obtain that all these vertices are dominant. Therefore, we have more than $n+2$ dominant vertices, a contradiction.

Next, consider $x_{i}, x_{l} \in S_{1}$ and $x_{j} \in S_{3}$. In this case, x_{l} is dominant. For sure, x_{s} cannot be in S_{2} (since x_{i} and x_{l} become both dominant) or S_{3} (by symmetry argument above). Therefore, x_{s} must be in $S_{t}, t \geq 4$, say w.l.o.g., $x_{s} \in S_{4}$. Now, consider the vertex $x_{r_{1}}$ adjacent to $H_{r_{1}}$ with $c_{r_{1}}=\{1,4\}$. Thus, $x_{r_{1}}$ must be a dominant vertex. Therefore, $x_{r_{1}}$ must be in either $S_{t}, t \geq 3$, say $x_{r_{1}} \in S_{3}$. But, now x_{s} is also dominant. Let us now consider vertex $x_{r_{2}}$ adjacent to $H_{r_{2}}$ with $c_{r_{2}}=\{3,4\}$. Then $x_{r_{2}}$ must be a dominant vertex since it is adjacent to x_{s} and $x_{r_{1}}$. Thus, w.l.o.g., $c_{r_{2}} \in S_{5}$. We do this process for all x_{h} in $V\left(K_{m}\right)$ to obtain that all these vertices are dominant. Therefore, we have more than $n+2$ dominant vertices, a contradiction.

Second, consider $c_{i}=c_{j}=\{1,2\}$ and $c_{l}=c_{S}=\{3,4\}$. To distinguish all the vertices of H_{i}, H_{j} and H_{l}, H_{s}, then x_{i} and x_{j} must be in different partitions and one of $\left\{x_{i}, x_{j}\right\}$ is in either S_{1} or S_{2}, and one of $\left\{x_{1}, x_{s}\right\}$ must be in either S_{3} or S_{4} and they are in different partitions. By symmetry, we may assume that $x_{i} \in S_{1}$ and $x_{l} \in S_{3}$. Now, consider x_{j} and x_{s}. If one
of either $x_{j} \notin S_{3}$ or $x_{s} \notin S_{1}$ holds, then we have three partitions holding $x_{i}, x_{j}, x_{l}, x_{s}$. Any two combinations will give another a dominant vertex $x_{r_{1}}$ by similar method above. We do this process for all x_{h} in $V\left(K_{m}\right)$ to obtain that all these vertices are dominant. Therefore, we have more than $n+2$ dominant vertices, a contradiction.

Now, the only remaining case is $x_{i} \in S_{1}, x_{l} \in S_{3}, x_{j} \in S_{3}$ and $x_{s} \in S_{1}$. Let us consider $x_{r_{1}}$ adjacent to $H_{r_{1}}$ with $c_{r_{1}}=\{1,3\}$. Since it is also adjacent to x_{i} and x_{l}, then $x_{r_{1}}$ must be a dominant vertex. If $x_{r_{1}} \notin S_{1} \cup S_{3}$, then we have three partitions holding $x_{i}, x_{j}, x_{l}, x_{s}$ and $x_{r_{1}}$. Therefore, by the similar method above, we will have too many dominant vertices, a contradiction. Thus, $x_{r_{1}} \in S_{1}$. But, now consider vertex $x_{r_{2}}$ adjacent to $H_{r_{2}}$ with $c_{r_{2}}=\{2,3\}$. This vertex cannot be in $S_{1} \cup S_{2} \cup S_{3}$. Therefore, $x_{r_{2}} \in S_{t}$, $t \geq 4$. Thus, we have three partitions holding these vertices so far. This implies that there will be too many dominant vertices, a contradiction. This completes the proof of the second statement.

Case 3. $\binom{n+k-1}{n}+1 \leq m \leq\binom{ n+k}{n}$, and $k \geq 3$.
Let $T=\{$ all n-combinations from $n+k$ distinct numbers $\}$.
Let $\Pi=\left\{S_{1}, S_{2}, \ldots, S_{n+k}\right\}$. Since all vertices of each H_{i} must be in n different partitions, each H_{i} can be associated with an n-combination in T. Then define Π as follows:
a. Assign H_{i}, for $i=1,2, \ldots, m$ to a member in T so that no two H_{i}, H_{j} have been assigned to the same member of T.
b. Put all vertices $x_{i}^{\prime} s$ is into S_{1}.

It is clear that Π is a resolving partition of G. Therefore, $p d(G) \leq n+k$ in this case.

References

[1] G. Chappell, J. Gimbel and C. Hartman, Bounds on the metric and partition dimension of a graph, Ars Combin. 88 (2008), 349-366.
[2] G. Chartrand, E. Salehi and P. Zhang, The partition dimension of a graph, Aequationes Math. 59 (2000), 45-54.
[3] G. Chartrand and P. Zhang, The theory and application of resolvability in graphs, Congr. Numer. 160 (2003), 47-68.
[4] G. Chartrand, P. Zhang and E. Salehi, On the partition dimension of a graph, Congr. Numer. 130 (1998), 157-168.
[5] Darmaji, S. Uttunggadewa, R. Simanjuntak and E. T. Baskoro, The partition dimension of complete multipartite graph, a special caterpillar and a windmill, J. Combin. Math. Combin. Comput. 71 (2009), 209-215.
[6] R. Frucht and F. Harary, On the coronas of two graphs, Aequationes Math. 4 (1970), 322-324.
[7] R. Marinescu-Ghemeci and I. Tomescu, On star partition dimension of generalized gear graph, Bull. Math. Soc. Sci. Math. Roumanie 53(101) (2010), 261-268.
[8] V. Ruxandra, Path partition dimension of a graph, preprint.
[9] V. Saenpholphat and P. Zhang, Connected partition dimensions of graphs, Discuss. Math. Graph Theory 22 (2002), 305-323.
[10] I. Tomescu, Discrepancies between metric dimension and partition dimension of a connected graph, Discrete Math. 308 (2008), 5026-5031.
[11] I. Tomescu, I. Javaid and Slamin, On the partition dimension and connected partition dimension of wheels, Ars Combin. 84 (2007), 311-317.

