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Abstract 

In this paper, we study the stability analysis of discrete-time two 
species competing model. Forward Euler method is applied to the 
continuous model to obtain the discrete-time model. All the critical 
points of the continuous model have been identified and the stability 
criterion of the discrete-model at critical points has been discussed. 

1. Introduction 

Mathematical modelling of ecosystem can be broadly classified as prey-
predation, competition, mutualism, and commensalisms, etc. The dynamic 
relationship between competing species will continue to be one of the 
dominating themes in both ecology and mathematical biology due to its 
universal existence and importance. Many mathematicians and ecologists 
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have studied and contributed to the growth of continuous mathematical 
models of competing species. Danca et al. [3] and Leach and Miritzis [6] 
studied a model of competition between populations of two species and 
discussed the stability at various equilibrium points. Mimura et al. [8] have 
studied the pattern formation of the competing system and shown that 
coexistence is possible by the effect of cross-population where the inter-
specific competition is stronger than the intra-specific. Reddy et al. [9] have 
analyzed a model of two mutually interacting species with limited resources 
of one species and unlimited resources of other species and identified two 
equilibrium points and described their stability criteria. Tsokos and Hinkley 
[10] formulated a general stochastic bivariate model without specifying the 
nature of the relationship between two species. The studies so far reported 
are suitable for large size population. Many authors [1, 2, 4, 7] have also 
suggested that the discrete-time models are more appropriate and provide 
efficient results as compared to the continuous models when the size of the 
population is small. 

In this paper, we have analyzed the stability criteria of discrete-time two 
species competing model at all the critical points. At the first stage, the 
rescaling of the population parameters and reproduction rate parameters of 
both the species were carried out in the classical model of two competing 
species and forward Euler method is applied to the system to obtain the 
discrete-time model. At the second stage, all the critical points of the 
continuous model have been identified. The Jacobian matrices of the discrete 
model at all the critical points have been determined and the stability 
criterion at each critical point has been discussed. 

2. Mathematical Model 

The simplest form of two species competing model is given by 
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where ( ),, 21 NN  ( )21 , KK  and ( )21 , rr  represent the population, carrying 

capacity and the rates of reproduction of first and second species, 
respectively, and 12b  and 21b  give the measure of effects of competition 

between two species. The system (1) has been analyzed by Hsu et al. [5] by 
means of rescaling the parameters as: 
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and it yielded the following system of equations: 
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By applying the forward Euler method to system (2), we obtain the discrete-
time two species competing model as follows: 
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where δ is the step size and all the parameters βα,  and ρ are positive. 

3. Existence and Stability of Critical Points 

Critical points of the system of equations (2) are ( ),0,01E  ( ),1,02E  

( )0,13E  and ( ),,4
∗∗ yxE  where ,1

1
αβ−
αρ−=∗x  ( )αβ−ρ

β−ρ=∗
1y  and ∗x  is 

positive when 

 β and ρ both are less than 
α
1  (4) 

or 

 β and ρ both are greater than .1
α

 (5) 
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Lemma 3.1. Let ( ) .2 CBF +λ−λ=λ  Suppose that ( ) ,01 >F  1λ  and 

2λ  are roots of ( ) .0=λF  Then 

 (i) 11 <λ  and 12 <λ  if and only if ( ) 01 >−F  and ;1<C  

 (ii) 11 <λ  and 12 >λ  (or 11 >λ  and )12 <λ  if and only if 

( ) ;01 <−F  

 (iii) 11 >λ  and 12 >λ  if and only if ( ) 01 >−F  and ;1>C  

 (iv) 11 −=λ  and 12 ≠λ  if and only if ( ) 01 =−F  and ;2,0≠B  

 (v) 1λ  and 2λ  are complex and 121 =λ=λ  if and only if −2B  

04 <AC  and .1=C  

Let 1λ  and 2λ  be eigen values of Jacobian matrix at the critical point 

( )., yxE  Then ( )yxE ,  is called a sink if 11 <λ  and .12 <λ  A sink is 

locally asymptotically stable. ( )yxE ,  is called a saddle if 11 >λ  and 

12 <λ  (or 11 <λ  and ).12 >λ  ( )yxE ,  is called a source if 11 >λ  

and .12 >λ  A source is locally unstable. ( )yxE ,  is called non-hyperbolic 

if either 11 =λ  or .12 =λ  

Proposition 3.2(a). The critical point ( )0,01E  is a source. 

The Jacobian matrix of (3) at ( )0,01E  is given by 

.
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δρ+

δ+
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The eigen values of Jacobian matrix 1J  are δ+=λ 11  and .12 δρ+=λ  

Here 11 >λ  and ,12 >λ  therefore ( )0,01E  is a source. 

Proposition 3.2(b). The critical point ( )1,02E  is sink when ρ<
α
1  and 

is saddle when .1 ρ>
α
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The Jacobian matrix of (3) at ( )1,02E  is given by 

( )
.

1

011
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The eigen values of Jacobian matrix 2J  are ( )αρ−δ+=λ 111  and 

.12 δρ−=λ  Here 

 (i) 11 <λ  and ,12 <λ  when .1 ρ<
α

 Therefore ( )1,02E  is sink 

when .1 ρ<
α

 

(ii) 11 >λ  and ,12 <λ  when .1 ρ>
α

 Therefore ( )1,02E  is saddle 

when .1 ρ>
α

 

Proposition 3.2(c). The critical point ( )0,13E  is sink when β<ρ  and 

is saddle when .β>ρ  

The Jacobian matrix of (3) at ( )0,13E  is given by 
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The eigen values of Jacobian matrix 3J  are δ−=λ 11  and +=λ 12  

( ).β−ρδ  Here 

 (i) 11 <λ  and ,12 <λ  when .β<ρ  Therefore ( )0,13E  is sink 
when .β<ρ  

(ii) 11 <λ  and ,12 >λ  when .β>ρ  Therefore ( )0,13E  is saddle 
when .β>ρ  

Proposition 3.2(d). The critical point ( )∗∗ yxE ,4  is a sink when β>ρ  
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The Jacobian matrix of (3) at ( )∗∗ yxE ,4  is given by 
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The corresponding characteristic equation can be written as 

 ( ) ,0det 44
2 =+λ−λ JtrJ  (6) 

where 
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Let 

 ( ) ( ) .det 44
2 JtrJF +λ−λ=λ  (9) 

From (9), we have 

 ( ) ( ) .det11 44 JtrJF +−=  (10) 

Using (7), (8) in (10) and solving (10), we get ( ) ( ) .1 2 ∗β−ρδ= xF  

 Now 

 ( )1F  is positive when .β>ρ  (11) 

Combining (4), (5) and (11), we observe that 

( )1F  is positive when 
α

<ρ<β 1  or .1 ρ<β<
α

 

From (9), we have 

 ( ) ( ) .det11 44 JtrJF ++=−  (12) 
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Using (7), (8) in (12) and solving (12), we get 
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It is easy to see from (13) and (14) that critical point ( )∗∗ yxE ,4  is a sink 
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From (11) and (15), we observe that critical point ( )∗∗ yxE ,4  is a saddle 

when 
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4. Numerical Simulations 

In this section, we presented the variation of x and y versus time t in the 
interval [ ]10,0  taking initial values of x and y as 5 and 3, respectively, and 

for various values of parameters α, β and ρ as given in Table 1. 
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Table 1 

S. No. α β ρ Figure No. showing variation of 
x and y versus time t 

1 0.3 0.1 0.5 4.1 

2 0.2 0.2 0.5 4.2 

3 0.1 0.3 0.5 4.3 

4 0.3 0.1 1 4.4 

5 0.2 0.2 1 4.5 

6 0.1 0.3 1 4.6 

7 0.3 0.1 2 4.7 

8 0.2 0.2 2 4.8 

9 0.1 0.3 2 4.9 

In case 1, y dominates x within the time interval 445.01 =∗t  to 947.52 =∗t  

and y recedes x up to a time 445.01 =∗t  and after a time 947.52 =∗t  as seen 

in Figure 4.1. In case 2, y recedes x and becomes equal once at a time 

208.1=∗t  as seen in Figure 4.2. In case 3, y recedes x and continuous to do 
so as seen in Figure 4.3. Therefore it is clear that of x dominates y after a 
certain time in all the three cases when rate of reproduction of first species is 
greater than that of second species. 

When rates of reproduction of both the species are equal, we see that in 

case 4, y recedes x up to a time 699.0=∗t  and then after x recedes y as 

illustrated in Figure 4.4. In case 5, y recedes x up to a time 721.3=∗t  and 
after that y and x become equal as seen in Figure 4.5. In case 6, y recedes x 
always as seen in Figure 4.6. 

In case 7, y recedes x up to a time 858.0=∗t  and after that x recedes y 
and continuous to do so as seen in Figure 4.7. In case 8, y recedes x up to 
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time 526.1=∗t  and after that x recedes y as seen in Figure 4.8. In case 9, y 

recedes x up to a time 371.3=∗t  and after that x recedes y as seen in Figure 

4.9. Therefore, it is clear that x recedes y after a certain time ∗t  in all the 
three cases when rate of reproduction of second species is greater than that of 
first species. 

 

 

Figure 4.1 
 

Figure 4.2 

Figure 4.3 
 

Figure 4.4 

Figure 4.5 
 

Figure 4.6 
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Figure 4.7 

 
Figure 4.8 

Figure 4.9 

 

Conclusions 

We have obtained the stability criteria of the discrete-time two species 
competing model at critical points of the continuous model. We observed 
that the critical point: 

(1) ( )0,01E  is a source. 

(2) ( )1,02E  is sink when ρ<
α
1  and is saddle when .1 ρ>

α
 

(3) ( )0,13E  is sink when β<ρ  and is saddle when .β>ρ  
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