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Abstract 

We revisit the notion of reduced spectra ( )φFsp  for bounded 

measurable functions ( ),, XJL∞∈φ  ( ).,1 XJLloc⊂F  In Section 2, 

we give two examples which seem to be of independent interest for 
spectral theory. In Section 3, we prove a spectral inclusion result 
for bounded mild solutions of evolution equation 

 ( ) ( ) ( ),ttAudt
tdu φ+=  (*) 
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where A is a closed linear operator on X, ( )XJL ,∞∈φ  and 

{ }., RR+∈∈ Jt  

In this paper, we give two Examples 2.1 and 2.2 showing that the 
following criterion: 

( ) ∅=φAsp“  implies A∈φ  if ( )XJBUC ,∈φ  [2, Theorem 4.2.1]” 

becomes false if φ is only bounded continuous. Moreover, Example 2.1 

shows that there is ( )XBC ,R∈φ  which is 1S -almost periodic, Bochner-

almost automorphic but φ is not almost periodic and Example 2.2 shows that 
there is an almost periodic function ψ with derivative ψ′  continuous and 

bounded but ψ′  is not even recurrent or Poisson stable (see definitions (2.1) 

and (2.2) in Section 2). These examples are instructive for various conclusions 
concerning many classes of generalized almost periodic functions. They 
demonstrate that the assumption of uniform continuity introduced in [13] is 
essential for [12]. In Section 3, we prove a spectral inclusion ( ( )uispF  

( )( ) ( )( ))φσ⊂ FR ispiA ∪∩  for the bounded mild solutions of 

 ( ) ( ) ( ) ,, JtttAudt
tdu ∈φ+=  (*) 

where A is a closed linear operator on X and instead φ uniformly continuous 

bounded only ( )XJL ,∞∈φ  is needed, { }., RR+∈J  

This seems new even for uniformly continuous u (special cases are [3, 
Theorem 3.3, Corollary 3.4 (i)], [12, Lemma 4.2 for uniformly continuous u, 
φ] (see [13]); in [12] besides our (1.2), (1.3) additionally the restrictive (iv) of 
Definition 2.3 of [12] was needed). The criterion is particularly useful in the 
case when φ is not uniformly continuous (see Example 3.3 and [7, Theorem 
4.2]). 

1. Notation, Definitions and Preliminaries 

In the following { },, RR+∈J  where [ ),,0 ∞=+R  { },00 ∪NN =  X 
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is a complex Banach space, ( )XL  is the Banach space of linear bounded 

operators ;: XXB →  the elements of all the other spaces ( )JX⊂  

considered are functions XJ →φ :  (not equivalence classes), the =,          

+, scalar multiplication are pointwise on J (not a.e.), correspondingly, 

( )XJL ,∞  has the norm ( ){ }Jttf ∈=φ ∞ :sup:  (not essentially 

supremum), ( ),, XJBC  ( ),, XJBUC  ( ),,00 XJCC =  ( ),, XJAPAP =  

( ),, XBAABAA R=  respectively, ( )XVAAVAA ,R=  denote the Banach 

space of XJf →:  which are bounded continuous, bounded uniformly 

continuous, continuous vanishing at infinity, almost periodic [1, pp. 289, 
305], Bochner almost periodic [9, Definition 2], respectively, Veech almost 
periodic [16, Definition 1.2.1], all with sup-norm .∞⋅  The Schwartz      

space of rapidly decreasing ∞C  functions on R  will be denoted by ( ).RS          

The Fourier transform of ( )CR,1Lf ∈  will be denoted by ( ) =λf̂  

( ) ,,∫
∞

∞− λ
λ− γdttfe ti  respectively, g  will denote the functions ( ) ,tiet λ

λ =γ  

respectively, ( ) ,
2itet =g  ., R∈λt  The translate af  of XJf →:  is 

defined by ( ) ( )atftfa +=  for all ,R∈a  ,Jat ∈+  ( ) ( ) .: tftf =  If 

( ),,1 XJLloc∈φ  then ,φP  respectively, φhM  will denote the indefinite 

integral, respectively, Friedrich’s mollifier defined by ( ) ( )∫ φ=φ
t

dsstP
0

,  

respectively, ( ) ( ) ( )∫ +φ=φ
h

h dssthtM
0

1  for ,Jt ∈  .0>h  The set of 

absolutely regular functions ( )XJARAR ,:=  is defined by 

{ ( ) ( ) }.somefor,:, 0
11 N∈∈φ∈φ= kXJLwXJLAR kloc  

Here ( ) ( ) .1 2 k
k ttw +=  

For the convenience of the reader, we collect some further definitions, 

assumptions and relevant earlier results for .JX⊂F  
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Invariant: F∈φa  if ,F∈φ  Jtaa ∈+,  with translate ( ) =φ :ta  

( ).at +φ  

BUC-invariant: ( )XBUC ,R∈φ  and F∈|φ J  imply F∈|φ Ja  for 

all .R∈a  

Uniformly closed: ,, N∈∈φ nn F  and φ→φn  uniformly on J implies 
.F∈φ  

(1.1) 

( ) { ( ) }.0,:,, 1 >∈ψ∈ψ= hMXJLXJ hloc FMF  

(1.2) 

F  linear ( ) F,,1 XJLloc⊂  uniformly closed, 

F  BUC-invariant ([6, (3.1)]). 

(1.3) 

  (i) F∈φγλ  for each ( ) F∈φ=γ λ
λ ,tiet ( )[ ]( ),60.p,,3 2l  

 (ii) F  contains all constant functions ( )[ ]( ),60.p,,3 3l  

(iii) F∈φB  for each ( ) ( )[ ]( ).60.p,,3, 5lXLB F∈φ∈  

The spectrum of a ( )XJL ,∞∈φ  with respect to a class ⊂F  

( )XJLloc ,1  is defined by ([2, Definition 4.1.2, p. 20], [4, p. 118], 

[6, Definition 3.1], [10, Definition 3]): 

( ) ( ),: Φ=φ FF spsp  (1.4) 

( ) { ( ) ( ) }.0ˆ implies ,,:: 1 =λ∈|∗Φ∈∈λ=Φ fJfLfsp FF CRR  

Here φ=Φ  on J  and, if ( ) .00,, =∞−|Φ= +RJ  (1.5) 

( )φFsp  is always closed in .R  The ( )φFsp  of (1.4) coincides with the 

definitions in [2, 4, 6, 10] by (1.6) (see [4, Lemma 1.1 (C)]): 
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If ( )XJLloc ,1⊂F  satisfies (1.2) and ( ),, XJL∞∈φ  then 

( ) ( )ψ=φ FF spsp  for any ( )XL ,R∞∈ψ  with φ=ψ  on J. (1.6) 

(1.7) If ( )XJLloc ,1⊂F  satisfies (1.2), ( ),, XJL∞∈φ  ( )CR,1Lf ∈  

and Φ is as in (1.5), then ( ) ( ) fspfsp ˆsupp∩φ⊂∗Φ FF  ([4, Corollary 2.3 

(C)]). 

(1.8) If ( )XJBUC ,⊂F  satisfies (1.2) or { },,, 0CVAAAP∈F  then 

F  satisfies MFF ⊂  ([5, Proposition 3.5 (ii), p. 431]). 

Proposition 1.1. For any ,JX⊂F  ( ),, XJL∞∈φ  if ,MF∈φ  then 

( ) .∅=φFsp  

Proof. For any ,R∈λ  define λπ=h  if ,0≠λ  else ;1=h  then the 

step function ( ) ( ) ( )RR,1 1
0, Lhf h ∈χ= −  and with 0:=Φ  outside φ=Φ,J  

on J, one has ,F∈φ=|Φ∗ hMJf  with ( ) ,0ˆ ≠λf  so ( ).Φ∉λ Fsp  It 

follows ( ) ∅=ΦFsp  and so ( ) ∅=φFsp  by (1.4).  

Corollary 1.2. If MFF ⊂∈φ  and ( ),, XJL∞∈φ  then ( ) .∅=φFsp  

This is false without MFF ⊂  by Example 3.3 (i). 

In the following, we identify ( ),,1 CIL  respectively, ( )XIL ,∞⊂F  

with the sub-space { ( ) ( ) },\,0:,1 IttfLf RCR ∈=∈  respectively, 

{ ( ) }.\,0,:, ItIXL RR ∈=φ∈|φ∈φ ∞ F  

Here { } ( ].0,,, ∞−=∈ −−+ RRRI  

We study the following conditions: 

(1.9) 

(a) ,MFF ⊂    (b) ( ) ,,1 FF ⊂|∗ − JL CR  

(c) ( ) .,1 FF ⊂|∗ JL CR  
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Proposition 1.3. Let F  be a linear uniformly closed subset of ( )., XJL∞  

Then 

  (i) The conditions (a), (b) of (1.9) are equivalent. 

 (ii) If F  satisfies (1.2), then (a), (c) of (1.9) are equivalent. 

(iii) ( ) FF ⊂|∗ JE  for some dense subset ( )CR,1LE ⊂  implies 

( )XJBUC ,∩F  is BUC-invariant. 

Proof. (i) (a) ⇒ (b) With ( )XJL ,∞∈φ  and Φ  as in (1.5), we have 

( ) ,JsM hh |∗Φ=φ  where hsh 1:=  on ( )0,h−  

and ( ) .00,\ =−| hsh R  (1.10) 

As ( ) ,0,, >∈φ∈|∗Φ=φ hJsM hh FF  it follows F∈|ξ∗Φ J  for 

all step functions ξ on ;−R  since these are dense in ( )CR ,1
−L  and F  is 

uniformly closed, (b) follows. 

(b) ⇒ (a) Follows by (1.10) and ( )CR ,1
−∈ Lsh  for each .0>h  

See [8, Proposition 3.2] for the proofs of parts (ii) and (iii).  

Example 1.4. ( ){ }+=φ∈φ= RRR on0:,: 0CF  is linear, uniformly 

closed, ( ),, RRBUC⊂  F∈|φ Ja  if ,F∈φ  ,0>a  with ,MFF ⊂  but 

F  is not invariant. 

2. Two Examples 

For the benefit of the reader, we give the relevant definitions. 

(2.1) By a recurrent function φ, we mean 

( ) ( ) ( ){ nnEXCXREC ,1,:,:, φ∈φ=∈φ RR  

relatively dense in R  for each },N∈n  with 

( ) ( ) ( ){ }.allfor::,, ntttnE ≤ε≤φ−τ+φ∈τ=εφ R  
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( )nnE ,1,φ  is relatively dense means there is a compact set R⊂K  

such that ( ) R=φ+ nnEK ,1,  (see [15, Definition 2, p. 80], [5, p. 427]). 

(2.2) A ( )XC ,R∈φ  is Poisson stable if it has at least one sequence 

( ) R⊂mt  with ∞→mt  such that φ→φ
mt  locally uniformly in R  (see 

[15, Definition 1, p. 80]). 

Example 2.1. The function ( )RR,1sin BCp ∈=φ  with ( ) += 2tp  

tt 2coscos +  is Stepanoff almost periodic APAPS M⊂-1  and ( )φAPsp  

∅=  but ( )CR,BUC∉φ  and so ( )., CRAPAP =∉φ  This φ is also 

Bochner almost automorphic (B-aa) [9] and so Veech almost automorphic 
(V-aa) [16] and L-ap [5, p. 430, (3.3)] (see [4, p. 119, (1.3), p. 118 above 
(1.2), (3.5), (3.8)] and the references therein). 

Proof. First, we show that .-1 APS∈φ  Set 

( ) .
2cos11,cosmax2

1sin:
tnt

tn
+

⎭⎬
⎫

⎩⎨
⎧ +−+

=φ  

Then APn ∈φ  for each N∈n  and ( ) ( )ttn φ=φ  if 
⎭⎬
⎫

⎩⎨
⎧ +− nt 11,cosmax  

.cos t=  It follows ( ) ( ) ( )∫
π

μ≤+φ−+φ
2
0

,2 t
nn Edsstst  where μ is the 

Lebesgue measure on R  and 

[ ] .1,1111,cosmax:2, ≥
⎭⎬
⎫

⎩⎨
⎧ +−=

⎭⎬
⎫

⎩⎨
⎧ +−τπ+∈τ= rrrttEt

r  

Then ( ) ( ) [ ]( )nnn
t
n EE δ+πδ−πμ=μ=μ ,0  with ,11cos nn −=δ  ,R∈t  

with 0→δn  as .∞→n  It follows 

( ) ( )∫ =+φ−+φ∞→
1

0
0lim dsststnn  
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uniformly in R∈t  and implies APS -1∈φ  (see [4, p. 132]). So ( ) =⋅φhM  

( ) ( )∫ ∈+⋅φ
h

APdssh
0

1  for each 0>h  by [4, (3.8)]. By Proposition 1.1, 

one gets ( ) .∅=φAPsp  

Now, we show that φ is not uniformly continuous. 

Indeed, for each ,F∈n  by Kronecker’s approximation theorem [11,    

p. 436, (d)] and continuity, there is 0>nt  such that ( )
π

= ntp n
1  and thus 

range ( ) ( ].4,0=pR  Choose nt′  nearest point to nt  with ( ) .

2
1

1

π⎟
⎠
⎞⎜

⎝
⎛ −

=′
n

tp n  

We have 0
2
1 →

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
μ≤′−

π⎟
⎠
⎞⎜

⎝
⎛ −
nt

n
nn Ett  as .∞→n  Since ( ) ( ) ,1=φ−′φ nn tt  

we get φ is not uniformly continuous. It follows .AP∉φ  

Finally, we show that φ is B-aa. Indeed, since ( )tt 2cos,cos  is almost 

periodic, for any ( ) R⊂′nt  there are R∈βα,  and a subsequence ( )nt  such 

that 

( ) ( ) ( ( )) ( ( )),2cos2cos,coscos β+→+α+→+ tttttt nn  

( ) ( ( ) ( ( ))) ( ),:2coscos2 tqttttp n =β++α++→+  

uniformly in .R∈t  (2.3) 

Since q is entire ( ){ }0::,0 =∈=≡/ sqsC R  is at most countable. So, there 

is a (diagonal) subsequence ( )ns  and [ ]1,1: −→ψ R  with ( ) =+φ nst  

( ) ( )tstp n
ψ→

+
1sin  pointwise for each .R∈t  Now, (2.3) implies that 

( ) ( ),tpstq n →−  ( ) ( )nnm stqsstp −→−+  and then ( )nm sstp −+  
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( )tp→  as ( ) ∞→mn,  for each .R∈t  This yields ( ) ( )tsst nm φ→−+φ  

as ( ) ∞→mn,  pointwise in ∞→∈ mt ;R  and the definition of ψ gives 

therefore ( ) ( ).tst n φ→−ψ  By Definition 2 of [9], φ is B-aa.  

(See also [14, pp. 212, 213] for another proof that APS -1∈φ  but 

;AP∉φ  and [5, Example 3.3] that φ is B-aa). 

Example 2.2. There is ( )RR,BC∈ψ  which is not ap or B-aa or V-aa 

or recurrent or uniformly continuous (not even Poisson stable (see (2.1), 

(2.2), respectively, Example 2.1), also ( ) ( ) ( )⋅ψ−+⋅ψ=⋅ψΔ 1:1  and so ψ are 

not Stepanoff 1S -almost periodic, but ( ) ( )∫ ψ=ψ
t

dsstP
0

:  is almost periodic 

and so ( ) ( ) .∅=ψ=ψ BAAAP spsp  

Proof. Take ∑∞
==ψ 1 ,n nh nh  periodic with period ,2 1+n  

( ) [ ] ( ) ( ) [ ] .:2,12,2sin,12,2,0 n
nnn

n
nn

n Ittthtth =−∈π=−−∈=  

One has Z12supp ++= n
nn Ih  and for each ,mn ≠  mn hh suppsupp ∩  

;∅=  the right endpoints of the translations of nI  are all even, so if 

,kmn +=  ,0N∈k  with ( ) ( ) ,22 11 ∅≠++ ++ vIuI m
m

n
n ∩  then unn 122 ++  

;22 1vmm ++=  this implies ( ) ( )vuk 21212 +=+  and then ,0=k  .vu =  

It follows ( )RR,BC∈ψ  and with [ ]0,2−=I  for each ,,2 N∈≥τ r  

( ) ( ) ( ) ( ) .supsupsup τ+≥τ+ψ=ψ−τ+ψ ∈∈∈ thttt rItItIt  (2.4) 

Since ( )∫ =
nI n dtth ,0  nPh  is periodic with period 12 +n  and ∞nPh .2 n−≤  

It follows that ( )., RRAPP ∈ψ  This implies that APMh ∈ψ  for ,0>h  

and so ( ) ( ) ∅=ψ⊂ψ APBAA spsp  by Proposition 1.1. 
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With ,2 n−=δ  one has 

( ) ( )∫ ψΔ−δ+ψΔ
nI

dttt 11  

( ) ( ) ( ) ( )∫∫ +ψ−δ++ψ−ψ−δ+ψ≥
nn II

dtttdttt 11  

( ) ( )∫ −δ+=
nI nn dtthth  

( )∫ >−π≥δ++ψ− −

nI
ndtt 1.0221  for all .N∈n  

It follows ψΔ1  and so ψ are not uniformly continuous even in the 1S -norm 

(see [4, p. 132] for the definition). Hence ψΔψ 1,  are not 1S -almost periodic. 

Since to each even ,N∈n  there exist unique 0, NN ∈∈ km  such that 

( ) ,221 mkn +=  we get 

 .22 1++= mm kn  (2.5) 

We show that for each ,2≥τ  there is N∈r  with ( )τ+∈ thrItsup  

.1=  Indeed, let y+∈τ N2  for some [ ].2,0∈y  Then, by (2.5), since 

( ) ynyn ′++=+ 122  with ,2−=′ yy  

yk mm ++=τ +122  for unique 0, NN ∈∈ km  and ,2
3,0 ⎥⎦
⎤

⎢⎣
⎡∈y  or 

yk mm ′+′+=τ +′′ 122  for unique 0, NN ∈′∈′ km  and .0,2
1

⎥⎦
⎤

⎢⎣
⎡−∈′y  

With ,2 1−−−−= myt  respectively, ,21 1−′−+−′−= myt  we get 

( ) 122sup 1 =+++ +
∈ ykth mm

mIt  for each ,2
3,0 ⎥⎦
⎤

⎢⎣
⎡∈y  

( ) 122sup 1 =′++′+ ′+′
′∈ ykth mm

mIt  for each .0,2
1

⎥⎦
⎤

⎢⎣
⎡−∈′y  
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By (2.4), it follows ( ) ( ) 1sup ≥ψ−τ+ψ∈ ttIt  for all .2≥τ  Since      

B-aa and V-aa functions are always recurrent (see [5, (3.3)]), we conclude ψ 
is not B-aa or V-aa or recurrent or Poisson stable by definitions (2.1) and 
(2.2).  

3. Reduced Spectrum of Solutions of Evolution Equations 

In this section, we study the reduced spectrum with respect to a class 

( )XJLloc ,1⊂F  of bounded solutions of evolution equations 

 ( ) ( ) ( ) ( ) ,,0, JtXxuttAudt
tdu ∈∈=φ+=  (3.1) 

where A is a closed linear operator on X and ( )., XJL∞∈φ  

The half-line (Laplace) spectrum denoted by ( )ψLsp  for ( )XL ,+
∞∈ψ R  

is introduced in [1, p. 275]. If ( )( )XLloc ,1
+⊂ RF  satisfies (1.2), then 

( ) ( ) ( ),ψ⊂ψ⊂ψ Lw spspspF  by [6, (3.12), (3.14)]. Here ( )ψwsp  is the 

weak half-line (Laplace) spectrum [1, Definition 4.9.1, p. 324]. The reduced 
spectrum and the half-line spectrum of solutions of (3.1) when ∈φ,u  

( )XJBUC ,  have been investigated by many authors, see for example, [3], 

[1, Proposition 5.6.7, Theorem 5.6.8] and lists of references therein. In this 
section, we prove inclusions (3.2), (3.3) for (3.1) which are known for the 
half-line spectrum of solutions of (3.1) in the case ( ),,, XBUCu +∈φ R  see 

[1, Proposition 5.6.7 (b), pp. 380-381]. 

Definition 3.1. A function ( )XJCu ,∈  is called a mild solution of (3.1) 

if ( ) ( )∫ ∈∈
t

XxADdssu
0

,  and ( ) ( ) ( )∫ ∫ φ+=−
t t

dssdssuAxtu
0 0

,  Jt ∈  

(see [1, pp. 120, 121, 380 for .])+= RJ  

Theorem 3.2. Let ( )XJLloc ,1⊂F  satisfy (1.2), (1.3) and let ∈φ  

( ),, XJL∞  { }., RR+∈J  If ( )XJBCu ,∈  is a mild solution of (3.1), then 
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 ( ) ( )( ) ( )( ).φσ⊂ FF ispiAuisp ∪∩ R  (3.2) 

If moreover ,MF∈φ  then 

 ( ) ( ) .RiAuisp ∩σ⊂F  (3.3) 

Proof. First, we prove the case ( )XJBUC ,∈φ  and ( )XJBUCu ,∈  

( )XJC ,1∩  with ( ) ( ) ( ),0,0 ADuu ∈′  u classical solution of (3.1) on J ([1, 

p. 120] for ).+R  Denote by XR →:U  the function defined by 

uU =  on J and, if ( ) ( ) ( ) tututUJ sin0cos0, ′+== +R  when 0≤t  

(see [3, Lemma 3.2]). Then ( ) ( ),,, 1 XCXBUCU RR ∩∈  ( ) ( )ADU ⊂R  

and U is a classical solution of the equation ( ) ( ) ( ),tFtAvtv =−′  where 

( ) ( ) ( ) ., R∈−′= ttAUtUtF  

Note that φ=F  on J and so ( ) ( )φ= FF spusp  by (1.6). Let ( )Aρ  be 

the resolvent set of A and let ( )( ) ( )( ).\0 φρ=∈λ FispiiAOi RR ∩∩  Since 

O is an open set, there is 01 >δ>  and ( )RS∈ϕ  such that ( ,0 δ−λi  

) O⊂δ+λ0  with ( ) 1ˆ 0 =λϕ  and ( ).,ˆsupp 00 δ+λδ−λ⊂ϕ  By [3, 

Proposition 2.5 (d) for ( )],, XJBUC∩F  ( ) ⊂ϕ∗= Fspspsp BUC FFF ,∩  

( ) ( ) .ˆsupp ∅=φ⊂ϕ OspFsp ∩∩ FF  Since ( ),, XBUCF R∈ϕ∗  JF |ϕ∗  

( ),, XJBUC∩F∈  by [2, Theorem 4.2.1]. By [3, Corollary 3.4], ( )ϕ∗UispF  

( ) ( ) ( ) OiUispiA ⊂δ+λδ−λ⊂ϕ∗σ⊂ 00 ,, FR∩  by [3, Proposition 2.5(d)]. 

As ( )( ) ,∅=σ RiAO ∩∩  we get ( ) .∅=ϕ∗UispF  Since ∈ϕ∗U  

( ),, XBUC R  we conclude that F∈|ϕ∗ JU  by [2, Theorem 4.2.1] or     

[4, Corollary 2.3 (A)], and so ( ) ( )uspUsp FF =∉λ0  by (1.6). This proves 

(3.2). If ,MF∈φ  then ( ) ∅=φFsp  by Proposition 1.1. This and (3.2) give 

(3.3). 

The case ( )XJL ,∞∈φ  and ( )., XJBCu ∈  Let ( )XJBCu ,∈  be a 

mild solution of equation (3.1) and let .0, >hk  With Definition 3.1 and an 
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extension of [1, Proposition 3.1.15, p. 120] for uM h  and ,uMM hk  one can 

show that uMMv hkhk =,  is a classical solution of 

 ( ) ( ) ( ) ( ) ( ) JtvvttAvdt
tdv

hkhk ∈=ψ+= ,00, ,,  (3.4) 

with 

 ( ) ( ) ( ) .,0,0 ,,, φ=ψ∈′ hkhkhkhk MMADvv  (3.5) 

Moreover, ( ) ( ).,,, 1
,, XJCXJBUCv hkhk ∩∈ψ  Applying the above, 

we get 

 ( ) ( ( )( ) ( )).,, hkhk ispiAvisp ψσ⊂ FF ∪∩ R  (3.6) 

With [6, Lemma 4.2, (3.11)] (or [8, Proposition 3.4(ii)]), (1.4), (1.5) and 

(1.6), one gets, for ( )XJLw ,∞∈  and F  with (1.2), 

 ( ) ( ).0 wMspwsp hh FF >= ∪  (3.7) 

This gives 

( ) ( ) ( ( )( ) ( ))khhkhkhk ispiAvispuisp ,0,0,0,0 ψσ⊂= >>>> FFF ∪∩∪∪ R  

( )( ) ( ( )( ))φσ= >> khhk MMispiA F0,0∪∪∩ R  

( )( ) ( ).φσ= FispiA ∪∩ R  

This proves (3.2). If ,MF∈φ  then ( ) ∅=φFsp  and so (3.3) follows from 

(3.2).  

In the following example, we consider the case C=X  and CC →:A  
defined by .icAc =  We have ( ) { }.iA =σ  Examples 3.3 (i), (ii) show that 

the condition MF∈φ  in Proposition 1.1 and (3.3) cannot be replaced by 

.F∈φ  Also, it supports the suspicion that (3.2) might be trivial without the 

condition .MFF ⊂  Examples 3.3 (iii), (iv) show that (3.2) and (3.3) can 
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be valid though conditions (1.3) (i), (ii) are not satisfied. One can optimize 
conditions (1.3) (i), (ii) using [6, Theorem 4.3]. 

Example 3.3. All complex valued solutions of the equation ( ) =′ ty  

( ) ( ),ttiy g+  ,Jt ∈  are bounded uniformly continuous and given by 

( ) ( ) ( ) ( )( ),: 110
tyctdssecety

t isit +γ=⎟
⎠
⎞

⎜
⎝
⎛ += ∫ − g  

where C∈c  and ( ) .
2itet =g  

  (i) If ( ),,1 CRAP⋅= gF  then ( ) ,
1

R=gFsp  so (3.2) holds trivially. 

 (ii) If ( ) ( ),,,2 CRCR APAP ⊕⋅= gF  then 22, FF∈g  satisfies (1.2) 

and (1.3) but .22 MFF ⊂/  Here, ( ) ( ) R== yspsp
22 FF g  and ( ) RiA ∩σ  

{ }.i=  So, (3.3) is not satisfied. 

(iii) If ( )( ) ( ) ( )( ),,, 103 CCRCR ⋅γ⊕⊕⋅= ++ CAPgF  then ⊂3F  

,3MF  ( ) ∅=g3Fsp  and ( ) .,
3

C∈∅= cyspF  

(iv) If ( )( ) ( ( )),,, 14 CRCR CAP ⋅γ⊕⋅= gF  then ( ) ( )yspsp 44 FF =g  

,∅=  .C∈c  Here, 

( ) ( ) ( ) ( ){ }.existlim,lim:,, ttBUCC tt φφ∈φ= −∞→∞→CRCR  

Proof. (i) We have AP⋅=∈ gg 1F  but ( ) ( )( )gg CR,11 BUCspsp ∩FF =  

{ }( ) ,ˆsupp0 RR === | ggsp  since ( ) ( ) 4421 2
ˆ isi ees −ππ=g  (see [4, (1.3)], [6, 

(3.3)], [8, Example 4.5]). 

(ii) 2F  satisfies (1.2) and (1.3), but we omit the proof that 2F  is 

uniformly closed. We have 2F∈g  but ( ) ( )( ) == gg CR,22 BUCspsp ∩FF  

( ) ,R=gAPsp  since ( )CR,APf ∈∗g  implies ( ) ( )CRCR ,, 0CAPf ∩∈∗g  

{ },0= ( ),,1 CRLf ∈  and ( ) { }( ) .02 RR == | gg spspF  



Reduced Spectrum 287 

As 

( ) ( )( ) ( ),,22 yspyspysp APBUC == CR∩FF  

( ) ( ) ( )111 γ−⊂γ cspyspysp APAPAP ∪  

and ( ) ( ) ∅=γ=γ− 11 APAP spcsp  ([2, Theorem 4.1.4, (4.1.7), Theorem 4.2.1]), 

one gets 

( ) ( ),1 111 yspysp APAP +=γ  ( ) ( )uspusp APAP ⊂′ ( ),, BCuBUCu ∈′∈  

and ( ) ( ),11 gAPAP spysp +−=′  ( ) R=gAPsp  shown already, it follows 

( ) .2 R=yspF  

(iii) We have 3, F∈| +Rgy  and 3F  satisfies .33 MFF ⊂  So, ( )g3Fsp  

( ) ∅== ysp 3F  by Corollary 1.2. 

(iv) We have 4, F∈yg  and .44 MFF ⊂  The result follows by 

Corollary 1.2. � 
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