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Abstract

We revisit the notion of reduced spectra spz(¢) for bounded

measurable functions ¢ e L*(J, X), F < Loc(J, X). In Section 2,

we give two examples which seem to be of independent interest for
spectral theory. In Section 3, we prove a spectral inclusion result
for bounded mild solutions of evolution equation
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where A is a closed linear operator on X, ¢ e L*(J, X) and

telde{R,, R}

In this paper, we give two Examples 2.1 and 2.2 showing that the
following criterion:

“sp4(¢) = < implies ¢ € A if $ € BUC(J, X) [2, Theorem 4.2.1]"

becomes false if ¢ is only bounded continuous. Moreover, Example 2.1
shows that there is ¢ € BC(RR, X) which is S'-almost periodic, Bochner-
almost automorphic but ¢ is not almost periodic and Example 2.2 shows that
there is an almost periodic function y with derivative ' continuous and
bounded but ' is not even recurrent or Poisson stable (see definitions (2.1)

and (2.2) in Section 2). These examples are instructive for various conclusions
concerning many classes of generalized almost periodic functions. They
demonstrate that the assumption of uniform continuity introduced in [13] is
essential for [12]. In Section 3, we prove a spectral inclusion (ispy(u)

< ((o(A)NIR) U ispr(¢))) for the bounded mild solutions of
WO _ put) + ), e, *)

where A is a closed linear operator on X and instead ¢ uniformly continuous
bounded only ¢ € L*(J, X) is needed, J € {R,, R}.

This seems new even for uniformly continuous u (special cases are [3,
Theorem 3.3, Corollary 3.4 (i)], [12, Lemma 4.2 for uniformly continuous u,
¢] (see [13]); in [12] besides our (1.2), (1.3) additionally the restrictive (iv) of
Definition 2.3 of [12] was needed). The criterion is particularly useful in the
case when ¢ is not uniformly continuous (see Example 3.3 and [7, Theorem
4.2)).

1. Notation, Definitions and Preliminaries

In the following J € {R,, R}, where R, =0, »), Ny = NU{0}, X
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is a complex Banach space, L(X) is the Banach space of linear bounded

operators B: X — X; the elements of all the other spaces (< X7)
considered are functions ¢:J — X (not equivalence classes), the =,
+, scalar multiplication are pointwise on J (not a.e.), correspondingly,
L*(J, X) has the norm |¢], :=sup{| f(t)|:te I} (not essentially
supremum), BC(J, X), BUC(J, X), Cy =Co(J, X), AP = AP(J, X),
BAA = BAA(R, X), respectively, VAA = VAA(R, X) denote the Banach
space of f :J — X which are bounded continuous, bounded uniformly

continuous, continuous vanishing at infinity, almost periodic [1, pp. 289,
305], Bochner almost periodic [9, Definition 2], respectively, Veech almost
periodic [16, Definition 1.2.1], all with sup-norm ||-|| . The Schwartz

space of rapidly decreasing C” functions on R will be denoted by S(R).
The Fourier transform of f e LX(R, C) will be denoted by f(1)=

I:; e £ (t)dt, v, respectively, g will denote the functions 7, (t) = ™!,

L2
respectively, g(t)=e"", t, A eR. The translate f, of f:J — X is
defined by f,(t)= f(t+a) forallaeR, t+aed, |f|(t)=]f@)[. If

de L}OC(J, X), then P¢, respectively, Mo will denote the indefinite
integral, respectively, Friedrich’s mollifier defined by P¢(t) = Igd)(s)ds,
respectively, M d(t) = (1/h)j;¢(t+s)ds for teJ, h>0. The set of
absolutely regular functions AR := AR(J, X) is defined by

AR = { € Loc(d, X): ¢/wy e L1(J, X) for some k e Ng}.
Here w, (t) = (1+t?)~.

For the convenience of the reader, we collect some further definitions,

assumptions and relevant earlier results for 7 < X 7.
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Invariant: ¢, € F if ¢ F, a,a+ted with translate ¢,(t) =

ot + a).

BUC-invariant: ¢ € BUC(R, X) and ¢|J € F imply ¢,|J € F for
all a e R.

Uniformly closed: ¢, € 7, n e N, and ¢,, — ¢ uniformly on J implies
be F.

(1.1)
MF@I, X)={y e (I3, X): Mpy € F, h > 0}.
(1.2)
F linear c L}OC(J, X), F uniformly closed,
F BUC-invariant ([6, (3.1)]).
(1.3)
() 120 € F for each v, (t) = €™, ¢ € F (3, (1), p. 60)),
(i) F contains all constant functions ([3, (I3), p. 60]),
(iii) Bo ¢ € F foreach B e L(X), ¢ € F([3, (I5), p. 60]).

The spectrum of a ¢ e L™(J, X) with respect to a class F <

L}OC(J, X) is defined by ([2, Definition 4.1.2, p. 20], [4, p. 118],
[6, Definition 3.1], [10, Definition 3]):

spr(9) = spr(P), (1.4)
spr(@)={LeR: fe LR, C), @ * f|J e F implies f(x) = 0}.
Here ® = ¢ on J and, if J = R, ®|(-x, 0) = 0. (1.5)

sp~(¢) is always closed in R. The spx(¢) of (1.4) coincides with the
definitions in [2, 4, 6, 10] by (1.6) (see [4, Lemma 1.1 (C)]):
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If F < L,.(J, X) satisfies (1.2) and ¢ € L°(J, X), then
spr(¢) = spr(y) forany y e L*(R, X) with y = ¢ on J. (1.6)
(1L.7) Iif F < (3, X) satisfies (1.2), ¢ € L°(J, X), f e LR, C)
and @ is as in (1.5), then spr(® * f) = spr(¢) N supp f ([4, Corollary 2.3
©D.

(1.8) If F < BUC(J, X) satisfies (1.2) or F e {AP, VAA, Cp}, then
F satisfies F < MF ([5, Proposition 3.5 (ii), p. 431]).

Proposition 1.1. For any F c X7, ¢ e L°(J, X), if ¢ € MF, then
sp(9) = 2.

Proof. For any A € R, define h = n/|A| if A = 0, else h =1; then the
step function f = (1/h)y_n,0) € LY(R, R) and with @ =0 outside J, ® = ¢
on J, one has f *®|J =M, e F, with f(A) =0, so &g spr(®). It
follows sp-(®) = & and so sp-(¢) = & by (1.4). O

Corollary 1.2.If $ € F =« MF and ¢ € L”(J, X), then spr(¢) = &.

This is false without 7 < MF by Example 3.3 (i).

In the following, we identify Ll(l, C), respectively, F < L*(I, X)
with the sub-space {f e L}(R, C): f(t) =0, t € R\I}, respectively,

{0eL”(R, X): ¢/l e F,p=0,teR\}.
Here | € {R,, R_}, R_ = (-0, 0].
We study the following conditions:
(1.9
@ F c MF, (b) F*L(R_, C)JcF,

) F = YR, C)|J = F.
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Proposition 1.3. Let F be a linear uniformly closed subset of L™(J, X).
Then

(i) The conditions (a), (b) of (1.9) are equivalent.
(ii) If F satisfies (1.2), then (a), (c) of (1.9) are equivalent.

(i) (F*E)|J c F for some dense subset E — L}(R, C) implies
F N BUC(J, X) is BUC-invariant.
Proof. (i) (a) = (b) With ¢ € L*(J, X) and @ as in (1.5), we have
M6 = (® *s,)|J, where s, :=1/h on (-h, 0)
and s, |R\(-h, 0) = 0. (1.10)
As Mpd = (@ *sy)|J e F,de F, h>0, itfollows @ *&|J e F for

all step functions & on R_; since these are dense in Ll(R_, C) and F is
uniformly closed, (b) follows.

(b) = (a) Follows by (1.10) and s, € L}(R_, C) foreach h > 0.
See [8, Proposition 3.2] for the proofs of parts (ii) and (iii). O
Example 1.4. F :={$ € Co(R, R): ¢ =0 on R, } is linear, uniformly

closed, « BUC(R, R), ¢,|J € F if b€ F, a>0, with F < MF, but
F is not invariant.

2. Two Examples

For the benefit of the reader, we give the relevant definitions.
(2.1) By a recurrent function ¢, we mean
¢ € REC(R, X) = {0 € C(R, X): E(¢,1/n, n)
relatively dense in R for each n e N}, with

E(p, e, n)={teR:|o(t+1)—dt)| <eforall|t]|<n}
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E(¢, 1/n, n) is relatively dense means there is a compact set K = R
such that K + E(¢, 1/n, n) = R (see [15, Definition 2, p. 80], [5, p. 427]).

(2.2) A ¢ € C(R, X) is Poisson stable if it has at least one sequence
(ty) = R with t, — oo such that ¢, — ¢ locally uniformly in R (see

[15, Definition 1, p. 80]).
Example 2.1. The function ¢ = sin% e BC(R, R) with p(t)=2+

cost + cos+/2t is Stepanoff almost periodic S'-AP = MAP and spap(d)
=& but ¢ ¢ BUC(R, C) and so ¢ ¢ AP = AP(R, C). This ¢ is also
Bochner almost automorphic (B-aa) [9] and so Veech almost automorphic
(V-aa) [16] and L-ap [5, p. 430, (3.3)] (see [4, p. 119, (1.3), p. 118 above
(1.2), (3.5), (3.8)] and the references therein).

Proof. First, we show that ¢ sl AP. Set

1

dp(t) = sin I :
2+ max{cost, 1+ ﬁ} + cos /2t

Then ¢, € AP for each ne N and ¢,(t) = ¢(t) if max{cost, —1+%}

= cost. It follows J'02n| On(t +5)— o(t +5)|ds < 2u(E}), where p is the

Lebesgue measure on R and

E ={r € [t,t+2n]:max{cosn —1+%} =—1+%}, r>1

Then w(E!) = w(EY) = u(rn -3,, m+38,]) with cosd, =1-1/n, teR,

with 8, —» 0 as n — oo. It follows

1
My s | [0n(t+5) = (t+5)[ds = 0
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uniformly in t € R and implies ¢ € S*-AP (see [4, p. 132]). So Mpo(-) =
(1/h)j;¢(~ + s)ds € AP for each h > 0 by [4, (3.8)]. By Proposition 1.1,
one gets sppp(d) = <.

Now, we show that ¢ is not uniformly continuous.

Indeed, for each n e F, by Kronecker’s approximation theorem [11,

p. 436, (d)] and continuity, there is t, > 0 such that p(t,) = n—ln and thus

@.

We have |t, —tg | < u[EE” 1) ]—>0 as n — oo. Since | ¢(t) — d(t,)| =1,
s

range R(p) = (0, 4]. Choose t;, nearest point to t, with p(t,)=

=3

we get ¢ is not uniformly continuous. It follows ¢ ¢ AP.

Finally, we show that ¢ is B-aa. Indeed, since (cost, cos~/2t) is almost
periodic, for any (t,) = R there are o, B € R and a subsequence (t,,) such

that
cos(t +t,) = cos(t + o), cos(v2(t +t,)) = cos(v2(t + B)),
p(t +t,) = (2 + cos(t + a) + cos(v2(t + B))) = q(t),

uniformly in t € R. (2.3)

Since g is entire # 0, C = {s € R : q(s) = 0} is at most countable. So, there
is a (diagonal) subsequence (s,) and y:R — [-1 1] with ¢t +s,) =
sin 1

p(t +sp)
q(t —sy) = p(t), p(t+sy—5,) —qt—sy) and then p(t+ sy —Spy)

— y(t) pointwise for each t € R. Now, (2.3) implies that
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— p(t) as (n, m) »> o for each t € R. This yields ¢(t + s, —S,) = o(t)
as (n, m) - oo pointwise in t € R; m — oo and the definition of y gives

therefore y(t —s,,) — ¢(t). By Definition 2 of [9], ¢ is B-aa. O
(See also [14, pp. 212, 213] for another proof that ¢ < SL-AP but
¢ ¢ AP; and [5, Example 3.3] that ¢ is B-aa).

Example 2.2. There is v € BC(R, R) which is not ap or B-aa or V-aa
or recurrent or uniformly continuous (not even Poisson stable (see (2.1),
(2.2), respectively, Example 2.1), also Ajy(-) := w(- + 1) — y(-) and so y are

not Stepanoff S*-almost periodic, but Py(t) = j; y(s)ds is almost periodic

and so spap(y) = spgaa(v) = <.

Proof. Take vy = Z:Zl h,, h, periodic with period 2"

hy(1) =0, te[-2",2" 1], h,(t)=sin(2"at), te[2" -1, 2"]=I,.
One has supph, =1, + 217 and for each n = m, supp h, M supp hy,
= (J; the right endpoints of the translations of [, are all even, so if
n=m+k, keNg, with (I, + 2" )N (I, + 2™v) = @, then 2" + 2"y
= 2M 4+ 2™ y: this implies 24(1+2u) = (1+ 2v) and then k =0, u =v.

It follows y € BC(R, R) and with | = [-2, 0] foreach t>2,reN,

Suptell \V(t + T) - \V(t)| = SUptell \V(t + T)l 2 SUptell hr(t + T) | (2-4)
since [, hy(t)dt = 0, Phy is periodic with period 2" and | Ph, [, < 27"
n

It follows that Py € AP(R, R). This implies that M,y € AP for h > 0,

and so spgaa(w) < spap(w) = G by Proposition 1.1.
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With 8 = 27", one has

[ Ay(t +8) = A0t
n

2]|wa+&—wﬁﬂm—jlMﬁ+1+&—wﬁ+DMt

:]|ma+a—mﬁnm

“In

—Il |w(t+1+38)|dt>2/m—2" >0.1forall neN.
n

It follows A,y and so  are not uniformly continuous even in the S*-norm

(see [4, p. 132] for the definition). Hence v, Ajy are not s-almost periodic.

Since to each even n € N, there exist unique m € N, k € Ny such that

n=(1+2k)2", we get

n=2m4k2m (2.5)

We show that for each © > 2, there is r e N with supic| hy(t + )|
=1. Indeed, let t € 2N +y for some y [0, 2]. Then, by (2.5), since
2n+y=2n+1)+y with y'=y -2,

1=2"+k2™ +y forunique me N, k e Ngand y e [0, g} or
t=2" + k2™ 4y forunique m e N, k' e Ny and y' e [—% 0}.

With t = —y — 27™ respectively, t = —y' =1+ 2™ 1 we get

supte| hn(t + 2™ + k2™ 4 y) | =1 foreach y e [O, %}

SUPte| hyy(t + k2L 2™y | =1 foreach y' e [—% 0}.
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By (2.4), it follows supici|w(t +1)—w(t)|=1 for all ©> 2. Since

B-aa and V-aa functions are always recurrent (see [5, (3.3)]), we conclude
is not B-aa or V-aa or recurrent or Poisson stable by definitions (2.1) and

2.2). O

3. Reduced Spectrum of Solutions of Evolution Equations

In this section, we study the reduced spectrum with respect to a class

F < Loe(J, X) of bounded solutions of evolution equations
B _ put) + 60), u©) =xeX, ted (3.1)

where A is a closed linear operator on X and ¢ € L™(J, X).

The half-line (Laplace) spectrum denoted by sp, (y) for v € L*(R,, X)
is introduced in [1, p. 275]. If F < L,(R,, (X)) satisfies (1.2), then

spr(v) < spw(w) = sp(w), by [6, (3.12), (3.14)]. Here sp,(v) is the
weak half-line (Laplace) spectrum [1, Definition 4.9.1, p. 324]. The reduced
spectrum and the half-line spectrum of solutions of (3.1) when u, ¢

BUC(J, X) have been investigated by many authors, see for example, [3],

[1, Proposition 5.6.7, Theorem 5.6.8] and lists of references therein. In this
section, we prove inclusions (3.2), (3.3) for (3.1) which are known for the
half-line spectrum of solutions of (3.1) in the case u, ¢ € BUC(R,, X), see

[1, Proposition 5.6.7 (b), pp. 380-381].

Definition 3.1. A function u € C(J, X) is called a mild solution of (3.1)
.t t t
if fou(s)ds e D(A), x e X and u(t)—x = Afou(s)ds +_[0¢(s)ds, tel
(see [1, pp. 120, 121, 380 for J = R, ]).

Theorem 3.2. Let F < Lj,.(J, X) satisfy (1.2), (1.3) and let ¢ e
L*(J, X), J e {R,, R}. If u e BC(J, X) is amild solution of (3.1), then
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isp(u) = ((o(A) NR) Uispz(9)). (3.2)
If moreover ¢ € MF, then
ispr(u) < o(A)NIR. (3.3
Proof. First, we prove the case ¢ € BUC(J, X) and u € BUC(J, X)

N cl(J3, X) with u(0), u'(0) e D(A), u classical solution of (3.1) on J ([1,
p. 120] for R, ). Denote by U : R — X the function defined by

U=uonJand, if J =R,,U(t) =u(0)cost +u'(0)sint when t <0
(see [3, Lemma 3.2]). Then U e BUC(R, X)N CYR, X), U(R) c D(A)
and U is a classical solution of the equation V'(t) — Av(t) = F(t), where
F(t)=U'(t)- AU(t), t e R.

Note that F = ¢ on J and so spr(u) = spz(¢) by (1.6). Let p(A) be
the resolvent set of A and let iAg € O = (p(A) N iR) N (iR\isp £ (¢)). Since
O is an open set, there is 1>8 >0 and ¢ € S(R) such that i(Aqg — 9,
Ao +8)c= O with ¢(hy)=1 and supp® < (hg—38, Ag +3). By [3,
Proposition 2.5 (d) for 7 N BUC(J, X)], spx = sprnsuc. SPx(F * )
spr(F)Nsuppp < spr ()N O = . Since F *p e BUC(R, X), F*¢|J
e FNBUC(J, X), by [2, Theorem 4.2.1]. By [3, Corollary 3.4], isp = (U *¢)
co(A)NIR,ispr(U *0)ci(hg—38, Ao +8)= O by [3, Proposition 2.5(d)].
As ON(c(A)NIR)=g, we get ispr(U=*¢9)=@. Since U=xgpe
BUC(R, X), we conclude that U *¢|J € F by [2, Theorem 4.2.1] or
[4, Corollary 2.3 (A)], and so Ay & spz(U) = spr(u) by (1.6). This proves
(3.2). If $ € MF, then spr(d) = & by Proposition 1.1. This and (3.2) give
(3.3).

The case ¢ € L°(J, X) and u e BC(J, X). Let u e BC(J, X) be a
mild solution of equation (3.1) and let k, h > 0. With Definition 3.1 and an
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extension of [1, Proposition 3.1.15, p. 120] for M,u and M, Myu, one can

show that vy , = MMpu is a classical solution of
dv(t
O pv(t) + yinl®). W0) =i p(0), e (3.4
with
Vk,h(0), Vi, n(0) € D(A), Wi n = MMpo. (3.5)

Moreover, Vy p, Wi € BUC(J, X)N Cl(J, X). Applying the above,

we get
isp () < ((o(A) N R) Uisp - (v p)) (3.6)
With [6, Lemma 4.2, (3.11)] (or [8, Proposition 3.4(ii)]), (1.4), (1.5) and
(1.6), one gets, for w e L*(J, X) and F with (1.2),
sp (W) = Upsospr(Mpw). 3.7)
This gives

ispz (U) = Uk, h>0iSP£ (Vk, h) < Uks0,h>0((6(A) NIR) U ispr(wh k)
= (o(A) NR) U Uk, h>0(ispz (MyMy9)))

= (o(A) NIR) U isp £ ().
This proves (3.2). If ¢ € MF, then sp-(¢) = & and so (3.3) follows from
(3.2). O

In the following example, we consider the case X = C and A: C - C
defined by Ac = ic. We have o(A) = {i}. Examples 3.3 (i), (ii) show that
the condition ¢ € MF in Proposition 1.1 and (3.3) cannot be replaced by
¢ € F. Also, it supports the suspicion that (3.2) might be trivial without the
condition F < MJF. Examples 3.3 (iii), (iv) show that (3.2) and (3.3) can
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be valid though conditions (1.3) (i), (ii) are not satisfied. One can optimize
conditions (1.3) (i), (ii) using [6, Theorem 4.3].

Example 3.3. All complex valued solutions of the equation y'(t) =

iy(t) + g(t), t € J, are bounded uniformly continuous and given by
it t s :
40 = o+ [ e ats)ds | = 10 + 0)

where ¢ e C and g(t) = e,

(i) If 71 =g- AP(R, C), then spz (g) = R, s0(3.2) holds trivially.

(i) If 75 = g- AP(R, C) ® AP(R, C), then g € F,, F, satisfies (1.2)
and (1.3) but 7, & MF,. Here, spg,(g) = spg,(y) =R and o(A)NIR
= {i}. So, (3.3) is not satisfied.

(i) If F3 =(g- AP(R,, C))® (Co(R,, C)® (y1 - C)), then F3c
MF3, spr,(g) =2 and spr(y) =D, ceC

(iv) If 74 =(g- AP(R, C)) @ (y1- C(R, C)), then spz,(g) = spz,(Y)
=, ceC. Here,

C(R, C) = {¢p € BUC(R, C): lim;_, . ¢(t), lim;_, . d(t) exist}.
Proof. (i) We have g € F; = g- AP but spfl(g) = spflﬂBUC(RlC)(g)
= 5pjoj)(6) = Supp § = R, since §(s) = (w76 e/ (see [4, (LI)], 6
(3.3)], [8, Example 4.5]).
(i) F, satisfies (1.2) and (1.3), but we omit the proof that F, is

uniformly closed. We have g e F, but spgr,(g) = spr,nBuc(r,c)(8) =
spap(g) =R, since g f € AP(R, C) implies g* f € AP(R, C)NCy(R, C)

= {0}, f  L'(R, ©), and sp, (a) = spyojr}(a) =R
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As

Sp]-'z(y) = SPF,NBUC(R, c)(¥) = spap(y),

spap(11Y1) < spap(Y) U spap(—cy1)

and spap(—cy1) =spap(y1) =9 ([2, Theorem4.1.4,(4.1.7), Theorem 4.2.1]),
one gets

spap(v1Y1) =1+ spap(¥1), spap(u’) = spap(u) (u € BUC, u" e BC),

and spap(yi) =-1+spap(g), spap(g) =R shown already, it follows
spr,(y) =R

(i) We have y, g|R, e F3 and Fj satisfies 73 < MF3. So, spr,(g)

= spf3(y) = & by Corollary 1.2.

(iv) We have g, ye F, and F, ¢ MF,. The result follows by

Corollary 1.2.
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