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Abstract

In this paper, we study values at algebraic points of Lauricella

hypergeometric functions in n complex variables, .1≥n  We are mostly

interested in criteria for the transcendence of these values. The

combined results of [P. Cohen and G. Wüstholz, Application of the

André-Oort conjecture to some questions in transcendence, A panorama

of number theory or the view from Baker’s garden (Zürich, 1999), pp. 89-

106, Cambridge Univ. Press, Cambridge, 2002], [Invent. Math. 92

(1988), 187-216] determine necessary and sufficient conditions on the

parameters a, b, c for finiteness of the exceptional set of the classical

hypergeometric function of one complex variable ( ):1=n  { :�Q∈= xE

( ) }.;;; ∗∈ QxcbaF  These results rely on Wüstholz’s analytic subgroup

theorem [G. Wüstholz, Algebraic groups, Hodge theory and

transcendence, Proc. of the Intern. Congress of Math., Berkeley,

California, U.S.A., 1986], [Ann. Math. 129 (1989), 501-517] and on a

known particular case, proved in [Ann. Math. 157 (2003), 621-645], of

the André-Oort conjecture on the distribution of complex multiplication

points on curves in Shimura varieties. The results of [P. Cohen and G.
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Wüstholz, Application of the André-Oort conjecture to some questions in

transcendence, A panorama of number theory or the view from Baker’s

garden (Zürich, 1999), pp. 89-106, Cambridge Univ. Press, Cambridge,

2002] were generalized to the two ( )2=n  variable Appell

hypergeometric function by the author [Ramanujan J. 8(3) (2004), 331-

355], subject this time to the André-Oort conjecture for surfaces in

Shimura varieties. In the present paper, we treat the case of several

( )3≥n  complex variables. The main contribution of the present paper is

the construction for the Lauricella function of the appropriate

exceptional set that allows for the application of the André-Oort

conjecture for n-dimensional subvarieties of Shimura varieties. Some

additional results on transcendence of values of Lauricella functions are

given, as well as a new counterexample to a conjecture of Coleman.

0. Introduction

Wolfart [27] studied values of the classical (Gauss) hypergeometric
function of a single complex variable at algebraic points. In particular,
using Wüstholz’s analytic subgroup theorem [30], he investigated

conditions on the parameters a, b, c that ensure infiniteness of the

exceptional set: { ( ) }.;;;: ∗∈∈= QQ xcbaFxE  Wolfart also correctly

predicted conditions on the parameters that ensure finiteness, although,
as first noticed by Walter Gubler, his proof of this prediction contains a
serious error. Cohen and Wüstholz [11] corrected this error and
completely solved the problem of criteria for the finiteness of ,E  subject

to a weak form of the André-Oort conjecture for curves in Shimura
varieties. This particular case of the André-Oort conjecture was proved
by Edixhoven and Yafaev in [15]. For a statement of the André-Oort
conjecture see [1], [2], [19], [20]. The results of [11] were generalized to
the two variable Appell hypergeometric function by the author [14],
subject this time to the as yet unproved André-Oort conjecture for
surfaces in Shimura varieties. In this paper, we study the transcendence

of values at algebraic points of Lauricella hypergeometric functions in n

complex variables, .1≥n  We again apply the analytic subgroup

theorem, and our results are again subject to the André-Oort conjecture,

this time for n-dimensional subvarieties of Shimura varieties. In order to

link the analytic subgroup theorem to the André-Oort conjecture, we rely
as in [11], [14] on the construction of certain analytic families of abelian
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varieties appearing in [27], [9] (for ),1=n  in [10] (for )2=n  and in [5]

(for all ).1≥n  The main new contribution is the construction of the

appropriate exceptional set for Lauricella functions that allows one to
apply the André-Oort conjecture. As first observed in [14], the passage to
several variables requires that we utilize a proper subset of the set of
algebraic points at which the function takes algebraic values. The
definition of this smaller exceptional set requires quite subtle conditions.
We also give a new counterexample to a conjecture of Coleman, thereby
extending the list of examples in [16], [11], [14]. Our last result shows
how algebraic values of Lauricella functions, at algebraic points, imply
the transcendence of the values of other such functions at related points.

The plan of this article is as follows. In Section 1, we recall some
classical properties of the Lauricella hypergeometric functions: more
details can be found in [3], [12] and [32]. In Section 2 and in the first part
of Section 3, we summarize results needed for the sequel that appear in
[5], [9], [10], [24]: namely, the construction of an analytic family of
“hypergeometric” abelian varieties associated to the Lauricella
hypergeometric functions and the identification of the associated

Shimura variety V. This determines a morphism from the space Q  of

regular points of the Lauricella hypergeometric functions to the complex

points ( )CV  of the Shimura variety. As we discuss in the remainder of

Section 3, this morphism extends to the space of semi-stable points
described in [12]. In Section 4, we state our main new result as Theorem
1. This theorem shows how the exceptional set for the Lauricella
hypergeometric function must be constructed in order for its elements to
correspond to hypergeometric abelian varieties of CM type. The exact
definition of the exceptional set is given at the end of Section 4: the
conditions defining this exceptional set are quite involved. Our definition
reduces to the one of [14] in the case 2=n  and to the one of [27] in the

case .1=n  We state in Section 5 a weak form of the André-Oort

conjecture for n-dimensional subvarieties in Shimura varieties sufficient

for our purposes. This result is still only known for the case ,1=n  see

[15]. As in [11] ( )1=n  and [14] ( ),2=n  this allows us to make a link

between the Zariski density of the points of the exceptional set and the
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nature of the image of Q  in the Shimura variety V: the points of the

exceptional set will be Zariski-dense if and only if the Zariski closure of
the image of Q  is of Hodge type. This leads us to the result of Theorem 2,

which states a criterion for the arithmeticity of the monodromy group of
the Lauricella hypergeometric function which generalizes to all 1≥n

that of [11], [27] ( )1=n  and [14] ( ).2=n  We also show that known

results in the spirit of the André-Oort conjecture give a counterexample
of Coleman’s conjecture. Other counterexamples obtained in a similar
way were given in [16], [14]. In Section 6, we state a new result as
Theorem 3. This result shows how algebraic values of Lauricella
functions, at algebraic points, imply the transcendence of the values of
other such functions at related points.

1. Lauricella Hypergeometric Functions

The Lauricella hypergeometric function is a generalization to n

complex variables of the classical (Gauss) hypergeometric function to the
case of the one complex variable, see [3, Chapter VII]. It is a solution of a

system of linear partial differential equations ( )cbbaE nn ;...;;; 12 +  which

has an ( )1+n -dimensional solution space. The regular singularities are

located along the hyperplanes ji xx ;;1;0 ∞=  for { }1...;;2; +∈ nji  and

.ij ≠  These hyperplanes are often referred to as characteristic surfaces.

Denote the space of regular points by,

{( ) ( ) ,,,1,0:...;;: 112 ji
n

n xxxx ∞≠∈= + CPQ  for all { } }.,1...;;2, jinji ≠+∈

For all ( ) ,...;; 12 Q∈+nxx  a basis of solutions of the equations

( ),;...;;; 12 cbbaE nn +  can be represented by Euler integrals, as follows:

( ) ( ) ( )∫ ∏ ∫γ

+

=
γ

+
−−−−

ω=−−∑ +
=

gh gh

i
n
i i

n

i
n

b
i

accb
xxduxuuu

1

2
12

1 ,...;;1
1
2

where the ghγ  are Pochhammer cycles around { },;...;;;1;0, 12 ∞∈ +nxxhg

.hg ≠  Under certain natural conditions (see Section 2), in particular

when the parameters are rational numbers, these integrals are equal, up
to multiplication by a non-zero algebraic number, to the Euler line
integrals:
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( )∫ +ω
h

g
nxx ....;; 12

It is convenient at this stage to introduce another system of parameters.

Let

















−=µ

+==µ

−+=µ

−=µ

+

+

=
∑

.1

1...;;2for,

1

2

1

1

2
0

a

nib

ca

bc

n

ii

n

i
i

We then have

( ) ( ) ( )∏
+

=

µ−µ−µ−
+ −−=ω

1

2
12 .1...;; 10

n

i
in duxuuuxx i

The Lauricella hypergeometric function is the unique solution of the

system of linear partial differential equations which extends to a

holomorphic solution equalling 1 at the point ( ).0...;;0  For ( )12 ...;; +nxx

,Q∈  its expression is the following,

( ) ( ) ( )∫
∞

+
−

++ ω−=
1

12
1

1212 ,...;;;...;;;;...;;; nnn xxacaBxxcbbaF

where ( )⋅⋅,B  is the Bêta function.

2. Hypergeometric Abelian Varieties

To ensure that the hypergeometric function is a transcendental

function and that the Euler line integrals of Section 1 correspond to

periods of differentials of the first kind on algebraic curves, we assume

from now on the following conditions on the parameters:

∑
+

=

<<<<<<+=∈
1

2

.0;10;0;1...,,2,,;
n

i
ii cbccanicba Q
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Alternatively,

] [ .1;1...,,2,1;0 21 >µ+µ+=∈µ +ni niIQ

Note that the condition ∑ +
=

=µ2
0

2
n
i i  always holds. Let N be the least

common denominator of the .iµ  Under these conditions, the Euler line

integrals ( )∫ +ω
h

g nxx 12 ...;;  of Section 1 are, up to a non-zero algebraic

scalar, periods of the first kind on abelian varieties in an analytic family:

these families were constructed in [27], [9] ( ),1=n  in [10] ( ),2=n  and

in [24], [5] ( ).1≥n  We briefly recall this construction for use in later

sections. Consider the family of algebraic curves:

( ) ( ) ( ) ( )∏
+

=
+

µµµ
+ ∈−−=

1

2
1212 ....;;,1:...;; 10

n

i
n

N
i

NNN
nN xxxuuuwxx i QX

Next, we consider a subvariety ( )12 ...;; +nxxT  of the Jacobian of each

such curve, the so-called “new part of the Jacobian”. It is defined as

follows: for each proper divisor f of N, let

( ) ( ) ( )∏
+

=

µµµ
+ −−=

1

2
12 .1:...;; 10

n

i

N
i

NNf
nf

ixuuuwxxX

The morphism defined by

( ) ( )1212 ...;;...;; ++ → nfnN xxxx XX

( ) ( )f
N

wuwu ;; a

induces a morphism of Jacobians fm  from ( )12 ...;;Jac +nN xxX  to

( )....;;Jac 12 +nf xxX  Then ( )12 ...;; +nxxT  is given by ,fNf mKer|I  the

connected component of the identity of the intersection of the kernels of
these morphisms.

Remark. We have the following decomposition, up to isogeny:

( ) ( ) ( )....;;Jac...;;...;;Jac 121212 ∑
|

+++ ⊕∧=
Nf

nfnnN xxxxTxx XX
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In [9], [10], [24], [5] the authors show that ( )12 ...;; +nxxT  satisfies the

following properties:

(a) It is a principal polarized abelian variety of dimension

( ) ( )
2

1 Nn ϕ+  (where ϕ is the Euler’s function).

(b) It is of type IV (in the sense of Shimura-Taniyama [25]), with

generalized complex multiplication by the cyclotomic field ( ),NζQ  where

Nζ  is a certain primitive root of unity. Therefore ( )NζQ  can be

embedded in the endomorphism algebra of ( ),...;; 12 +nxxT  denoted by

( ( )),...;;End 120 +nxxT  and given by ( )( ) .xxT n QZ⊗+12 ...;;End  This

embedding is unitary.

(c) The cyclotomic field ( )NζQ  acts on the vector space ( ( ...;;2
0 xTH

) )Ω+ ;1nx  of differential forms of the first kind. This action is induced by

the automorphism of ( )12 ...;; +nN xxX  sending ( )wu;  to ( ).; 1 wu N ⋅ζ−

The action in (c) induces a decomposition of ( )( )Ω+ ;...;; 12
0

nxxTH

into eigenspaces sV  associated to the eigenvalues ,s
Nζ  ( ) .×∈ ZZ Ns

Namely, let t  be the fractional part of the real number t ( )( ,tEtt −=

for ( )tE  the integer part of ).t  The following differential form has

eigenvalue :s
Nζ

( ) ( ) ( )∏
+

=

µ−µ−µ−
+ −−=ω

1

2
12 .1...;; 10

n

i

s
i

ss
ns duxuuuxx i

The field ( )NζQ  acts on sV  via multiplication by ( )( ),Ns ζσ Q  where sσ  is

the embedding of ( )NζQ  in C  sending Nζ  to .s
Nζ  The eigensubspace

related to this eigenvalue s
Nζ  is of dimension:

∑
+

=

µ+−==
2

0

1dim
n

i
iss srV

and for all ( ) ,×∈ ZZ Ns

.1+=+ − nrr ss
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Let kM  be the number of eigensubspaces of dimension k, and denote

these subspaces by ( ) ( ) ....;;
1

k
i

k
i k

kM
k VV  Notice that ( ) 11

1 =i  since ∑ +
=

=µ2
0

.2
n
i i

There are also kM  eigensubspaces (for the conjugate eigenvalues) of

dimension ,1 kn −+  which we denote by ( ) ( ) ....;; 11

1

kn

i

kn

i k
kM

k VV −+
−

−+
−

 Then,

( )( )Ω+ ;...;; 12
0

nxxTH

( ) ( ) ( ) ( ) ( )
n

iii

n

i

n

i
VVVVV

MnM
1

1
1

1
1

1
0

1
0

1

1111
−

+
−

+
−

⊕⊕⊕⊕⊕⊕=
+

LL

( )







− 




 







⊕⊕⊕⊕ 2

2
1

1
1

nE

i

n
i nEM

VV LL

.2
1

2
1

2

2

2

2
1

2

2






−+

−






−+

−













 



















 











 












 







⊕⊕⊕⊕⊕
nEn

i

nEn

i

nE

i

nE

nE
M

nEnE

nE
M

VVV LL

The CM type of ( )12 ...;; +nxxT  is given by:

( )
∑

×∈

σ⋅=Φ

ZZ Ns

ssr .

Shimura [25] has shown that the complex isomorphism classes of

principally polarized abelian varieties of dimension ( ) ( ) ,21 Nn ϕ+  of type

IV, with complex multiplication by the cyclotomic field ( )NζQ  of type Φ

and lattice isomorphic to [ ]( )1+ζ n
NZ  are parameterized by the complex

points of a quasi-projective variety V, defined over ,Q  which is the

quotient by a certain arithmetic group Γ acting discontinuously on the

following product of spaces:

( )∏







≥+=+

=
2

0,,1

3
; ,:

nE

trntr

M
tr

rH H
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where for 0=r  or 0=t  the corresponding factor is trivial and for
,1, ≥tr

{ ZZtr ::3
; =H  complex matrix with r rows and

                             t columns such that ZZt−1  is positive }.hermitian

Remarks. (i) If for all ( ) ,×∈ ZZ Ns  we have { },1;;1;0 +∈ nnrs

then ,1M
nBH =  where nB  is the unit ball of dimension n. The space H is

then of dimension

( ) { }

.

1

1 ∑
±∈

−
×

⋅=

ZZ Ns

ss rrnM

 (ii) The condition in (i) is always true for 1=n  or 2.

(iii) The ( )12 ...;; +nxxT  for ( ) Q∈+12 ...;; nxx  form a subfamily of

dimension n of this space.

3. Maps between Moduli Spaces

In the one and two variable case, previous authors (in [9], [10], [11]

and [14]) have studied the relation of the Shimura variety V to the

discontinuous monodromy groups ( )iµ∆  of the respective systems

( ),;;1 cbaE  acting on H=H  (the upper half plane), and ( ),;;;2 cbbaE ′

acting on 2BH =  (the unit ball). When the action of these groups is

discontinuous, these authors construct a modular embedding which is in

general non-trivial because the groups considered are not necessary

arithmetic. This embedding is a holomorphic map from the covering

spaces H of these groups to the covering space of the Shimura variety

parametrizing the analytic family of polarized abelian varieties to which

the “new part” ( )xT  or ( )yxT ;  belong. The map satisfies an equivariance

property with respect to ( )iµ∆  which allows one to pass to the quotient to

obtain a morphism from ( )iH µ∆  to the Shimura variety. Moreover, in

these papers the authors obtained transcendence results on the covering

radius of the quotient spaces ( )iµ∆H  and ( ).2 iB µ∆
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For one variable, there is an infinity of such discontinuous groups.
However, for two variables, there are only 58 cases. When the number of
variables is between 3 and 12, there are 32 cases of such groups and only
1 is non-arithmetic. There are no such groups if the number of variables
is at least 13 (see [12], [18] and [22]).

From now on, we assume that

( ) { }1;;1;0, +∈∈ × nnrNs sZZ

so that the modular space is ,1M
nBH =  according to the remarks in

Section 2. Recall from Section 1 that Q  denotes the space of regular

points of ( )cbbaE nn ;...;;; 12 +  and that V is the Shimura variety of

Section 2.

Theorem [24]. There exists a birational morphism of quasi-projective

varieties defined over :Q

( )

( ) ( )[ ]( ),...;;...;;
:

1212 ++

→
Φ

nn xxTJxx

V

a

CQ

where ( )[ ]( )12 ...;; +nxxTJ  is the point of ( )CV  that corresponds to the

isomorphism class of the abelian variety ( )....;; 12 +nxxT  This map is

induced by the composition of a map

nB→ψ Q:

and a map

( ) ( )[ ]( ),...;;...;;
:

1212

1

++ψ

→

nn

M
nn

xxTZxx

BB
F

a

followed by passage to the quotient by a certain arithmetic group Γ acting

on ,1M
nB  with ( )CV  isomorphic to .1 ΓM

nB

The orbit of ( )[ ]( )12 ...;; +nxxTZ  under Γ corresponds to the point

( )[ ]( )12 ...;; +nxxTJ  of ( ).CV
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It is sometimes useful to consider the 3+n -tuple ( )2210 ...;;;; +nxxxx

in the space ( ) 3
1

+nCP  modulo the action of ( )C2PSL  on ( ) ,3
1

+nCP  instead

of ( )∞+ ;...;;;1;0 12 nxx  in ( ) .1
nCP  Then, the differential form ω can be

written as

( ) ( ) ....;;
2

0
20 ∏

+

=

µ−
+ −=ω

n

i
in duxuxx i

Fix an +n 3-tuple ( )....;; 20 +µµ=µ n

Definition. A point ( )20 ...;; +nxx  in ( ) 3
1

+nCP  is called:

µ-stable when for all subsets { },2...;;0 +⊂ nT  ∑
∈′= ′

<µ
Tttxx

t
tt ,,

.1

µ-semistable when for all subsets { },2...;;0 +⊂ nT  ∑
∈′= ′

≤µ
Tttxx

t
tt ,,

.1

Here, when tt xx ′≠  for all ,, Ttt ∈′  there is no condition.

Let stM  be the set of the stable points, sstM  be the set of the

semistable points and .\ stsstcusp MMM =  Each element of cuspM  is

determined by a partition { }JI ,  of { }2...;;0 +n  with ∑∈
=µ

Ii i

,1=µ∑ ∈Jj j  with the ix  equal for ,Ii ∈  and the jx  equal for ,Jj ∈

but with .ji xx ≠

The group ( )( ) ( )CCP 21 PGLAut =  acts freely on ( )CP1  and

consequently on ( ) 3
1

+nCP  by the diagonal action. Using [12, Paragraph

4.1], we can define on sstM  an equivalence relation R  as follows: we

have ( )Rxx ′≡  either when stMxx ∈′,  and there is a ( )C2PGL∈γ

such that ,xx γ=′  or when cuspMxx ∈′,  and xx ′,  are defined by the

same partition { } .,2...;;0 ∅=+= JInJI IU

Now, consider the quotient spaces:

RQRQ ststsstsst MM ==     and    .RQ cuspcusp M=
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The space sstQ  is Hausdorff and compact and can be given the structure

of an algebraic variety [12, Paragraph 4]. The space Q  can be realized as

a subset of sstQ  using the diagonal action of ( ),PGL2 C  and sstQ  is in

fact a compactification of .Q

We can now study the action of the morphism Φ on the stable points

located on the boundary of .Q  Using [26], we see that Φ can be extended

to a birational map from stQ  into ( ).CV  Indeed, in [26, Theorem 1,

Section 1], it is shown that along the characteristic surfaces

( ) ,: jist xxijS =  ,1<µ+µ ji  there are 1+n  solutions (n holomorphic

and one of the form ( ) ×− µ−µ− ji
ji xx 1  a holomorphic function) of a linear

system of differential equations of the type ( )nE  with the same

monodromy as ( ( )).;...;;; 12 cbbaE nn +  This enables us to extend the

application nB→ψ Q:  to stQ  of the above theorem. Now consider also

the application 1: M
nn BBF →  of the above theorem. For { },2...;;0 +⊆/ nI

denote by IE  the subspace of ( ) 2
1

+nCP  given by the equations:

.where

,,

,,

: 1

11111










=

∈=

∈=

k

kkkji

ji

I III

Ijixx

Ijixx

E

kk

ULUMM

Each stable subspace is of this type.

Consider ( ).IEF ψo  Recall that 1Rs ∈  when 1=sr  and that =1M

.Card 1R

Two kinds of images are possible, depending on the value of .1Rs ∈

Case (i) for which

∑
∈

<µ
Ii

is .1

Then, there exist elements ( ) ( ) Q∈θθ n
ss ...,,1  such that the s-th projection

of the image of IE  by ψoF  is given by
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( )
( )

( )
( ) ( ) ,:::

1 0

1
nss

n
sss B

n

∈







ω′ω′θω′θ ∫ ∫ ∫γ γ γ

L

where

( ) ( )( )Jjxxx jiiss k
∈ω′=ω′ ,;...;;

1

( ) ( )∏ ∏
= ∈

µ−µ− −−= ∑ ∈

k

l Jj

s
j

s
i duxuxu jlIi i
l

1

.

This differential is of the first kind by our assumptions.

Case (ii) for which

∑
∈

>µ
Ii

is .1

Then, using a blow-up σ (see [23, Chapter VI.2]) one has to consider the

subvariety ( )s
JE  given by the equations:

( )










∈=

∈=

lkkji

ji

s
J

Jjixx

Jjixx

E

kk
,,

,,

:

11111

MM

where ,1 lJJJ ULU=  { }JI ,  partition of { }2...;;0 +n

which is stable because of the hypothesis ,1Rs ∈  i.e., ∑ +
=

=µ2
0

.2
n
i is

But, along these subvarieties (modified by a blow-up σ) one has
( ) ( ( ) ).s

I
s

J EE σ=  Terada [26] shows, in the demonstration of his

Proposition 3, Section 3, that one can also find 1+n  linearly

independent solutions of a Lauricella hypergeometric system of

differential equations .nE  More precisely, there exist elements

( ) ( ) Q∈θθ n
ss ...,,1  such that the s-th projection of the image of IE  by

ψoF  is given by

( )
( )

( )
( ) ( ) ,:::

1 0

1
nss

n
sss B

n

∈







ω ′′ω ′′θω ′′θ ∫ ∫ ∫γ γ γ

L
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where

( ) ( )( )Iixxx ijjss p
∈ω ′′=ω ′′ ,;...;;

1

( ) ( )∏ ∏
= ∈

µ−µ− −−= ∑ ∈

p

l Ii

s
i

s
j duxuxu ilJj j
l

1

.

These are differential forms of the first kind by our assumptions.

We give here a geometric meaning to the image of the stable points

by Φ. Each stable element IE  is an intersection of hypersurfaces,

denoted ( ) ,: jist xxijS =  where ,1<µ+µ ji  .Iji ∈≠  Consider a

“coherent” system of hypersurfaces characterizing .IE  That means:

make (between the 2
IcardC -choices) the right choice of hypersurfaces

whose intersection is IE  (there can be several possible choices).

This decomposition is useful, because by [10, Paragraph 5], along

( ),ijSst  the abelian variety ( )12 ...;; +nxxT  can be decomposed, up to

isogeny, as

( ) ,...;; 12 TAxxT ijn ×∧=+

where ijA  is an abelian variety of dimension ( ) 2Nϕ  with CM by a

subfield of ( )NζQ  of type

( ) ( ( ) )
( )
∑

×∈

σµ+µ−µ+µ=Φ

ZZ Ns

sjiji
ij sss .

This abelian variety is characterized by the period

( ) ( ) ( ) ( )∫ ∑
+

≠=
µ−µ−µ− −−−=µµ

j

i

n

jikk
kji

x

x
kjiji duxuxuxuB .;

2

,,0

The abelian variety T is of dimension ( ) ,2Nηϕ  of type IV with CM by

the cyclotomic field ( ),NζQ  of type

( )

( )
∑ ∑ ∑

×∈

+

≠=

+

≠=

σ













µ−µ=Φ

ZZ Ns

s

n

jikk

n

jikk
kk

T ss .
2

,,0

2

,,0
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This abelian variety is characterized by the periods

( ) ( ) { } { }∫ ∏
+

≠=
+

µ−µ−µ− ≠∈−−
h

g

n

jikk
jnki hgxxxhgduxuxu kji

2

,,0
20 .,\...;;,,

Corollary. Each stable point corresponds to an abelian variety with

CM.

A stable point stP  is the intersection of n hypersurfaces ( )jiSst  of

( ) ( ) ( ){ }....;; 1121 CPCP ∈= + in
n xxx  Along each hypersurface ( ),jiSst  we

extract from ( )12 ...;; +nxxT  an abelian subvariety, denoted by ,ijA  of

dimension ( ) 2Nϕ  with CM by a subfield of ( ).NζQ  Thus, at the point

,stP  the decomposition of ( )12 ...;; +nxxT  is, up to isogeny, the following:

( ) ....;; ,,12 11
AAAxxT

nn jijin ×××=∧+ L

We can deduce that A has CM with dimension equal to ( ) ,2Nϕ  and we

can moreover deduce its CM type.

4. Construction of the Exceptional Set

We now construct the appropriate generalization of the exceptional
set, considered in [27] in the 1-variable case and in [14] in the 2-variable

case. We will fix an abelian variety 0T  and then determine conditions

that imply that an abelian variety ( )12 ...;; +nxxT  is of the same isogeny

class. The abelian variety 0T  used here is the one corresponding to the

stable point ( ).0...;;0stP  To ensure stability we make the hypothesis

.121 >µ+µ +n  This turns out not to be a strong restriction as can be

seen by the discussion of the counterexamples of the next paragraph,
where other hypotheses are used. Corollary in Section 3 proves that the

point ( )0...;;0stP  corresponds to an abelian variety with complex

multiplication having, up to isogeny, the following decomposition:

.:
1

2
0,02,1 ∏

+

=
+ =×′

n

k
kn TAA
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Here 2,1 +′ nA  (resp. )kA ,0  denotes the abelian variety of dimension

( ) ,2Nϕ  with complex multiplication (by  a subfield of ( )),NζQ  extracted

from the Jacobian of the Fermat curve and characterized by the period of

the first kind ( ) ( )aacBB n ;1;1 21 −=µ−µ− +  ( )

 =µµ kB ;.resp 0

,;
1
2 












− ∑ +

=
n
i ki bbcB  for more details see [17]. The following theorem

relates the arithmetic and geometric aspects of the problem. In order to
use the analytic subgroup theorem, which is the Haupsatz in [30], we
must avoid the loci of zeros of the hypergeometric functions that

intervene in our arguments. Let Z be the zero set of the hypergeometric

functions appearing in the statement of the hypotheses of Theorem 1.

Theorem 1. For ( ) ,...;; 12
n

nxx QIQ∈+  and not in Z, the abelian

variety ( )12 ...;; +nxxT  is isogenous to 0T  if and only if the following

hypotheses are true:

Hypothesis (h):

( ) ,...;;;;...;;; 1212
∗

++ ∈ Qnn xxcbbaF

and for all { },2...;;0 −∈ nl  there exists a { },1...;;2 +∈ nk  such that:

Hypothesis ( ( ) ):k
lh







−−− + ;1...;;...;;1; 12 nk bacbbF

.;;
1

;;;
1

,2
12

∗
+

≠= +
∈








−−−
−+ ∑ Q

n

kii
nk

k

k

k

k

k
i xx

x
x

x
xx

x
blc LL

Here the k-th parameter is given by ac −  and the ( )1−k -th variable is

given by .
1−k

k
x

x

This theorem is a generalization of Theorem 2.3 in [14] (the
2-dimensional case). To prove this theorem, one needs some other results,
including the following proposition that is proved later:
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Proposition 1. For all ( ) ,...;; 12 QIn
nxx Q∈+  and not in Z, the

hypothesis (h) of Theorem 1:

( ) ∗
++ ∈ Q1212 ...;;;;...;;; nn xxcbbaF

implies that ( )12 ...;; +nxxT  admits the subvariety 2,1 +′ nA  in its

decomposition up to isogeny. Moreover, if l is an integer between 0 and

,1−n  for all { },1...;;2 +∈ nk  the hypothesis ( ( ) )k
lh  in Theorem 1:







−−− + ;1...;;...;;1; 12 nk bacbbF

,...;;
1

...;;;
1

,2
12

∗
+

≠= +
∈








−−−
−+ ∑ Q

n

kii
nk

k

k

k

k

k
i xx

x
x

x
xx

x
blc

where the k-th parameter is given by ac −  and the ( )1−k -th variable is

given by ,
1−k

k
x

x
 implies that ( )12 ...;; +nxxT  admits the subvariety kA ,0

in its decomposition up to isogeny.

We have the following result.

Lemma 1. In a neighborhood of the point 012 === +nxx L  there

exist ( )1+n  solutions of ( )cbbaE nn ;...;;; 12 +  given by integrals of Euler

type and with power series developments in [ ][ ]....;; 12 +⋅ nxxc Q

For the first solution

( )21 1;1 +µ−µ−= nBc

and for the n other solutions

( ) .1...;;2,1;1 0 +=µ−µ−= nkBc k

As opposed to the one variable case (where the dimension of ( )xT  is

( )),Nϕ  a problem arises here due to the dimension of ( ),...;; 12 +nxxT

which equals to ( ) ( ) .21 Nn ϕ+  Namely, to deduce that ( )12 ...;; +nxxT  is

of CM type, is not enough to assume that the value
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( )1212 ...;;;;...;;; ++ nn xxcbbaF

is algebraic, for a fixed ( ) QIn
nxx Q∈+12 ...;;  with algebraic

coordinates, which is the natural condition generalizing Wolfart’s
condition. Even though this assumption enables us to extract a CM

subvariety in the decomposition of ( ),...;; 12 +nxxT  we do not have

enough information on the remaining factor, which is of dimension

( ) .2Nηϕ  Recall that we want a condition ensuring that ( )12 ...;; +nxxT

is of CM type and in a given isogeny class.

In a neighborhood of ( ) ( ),0...;;0...;; 12 =+nxx  the 1+n  solutions

considered in Lemma 1 are the following:

( )∫
∞

+ω=ϕ
1

121 ...;;: nxx

( ) ( )....;;;;...;;;1;1 121221 +++µ−µ−= nnn xxcbbaFB

For ,1...;;2 += nk

( )∫ +ω=ϕ
kx

nk xx
0

12 ...;;:

( ) ( ) ( )∏
+

≠=

µ−µ−µ−µ− −−⋅µ−µ−=
1

,2

1
0

10 11;1
n

kii
ikkkk

ik xxxxB







−−−+−× ∑

+

≠=
+

1

,2
12 ;2;...;;1...;;;1

n

kii
ink cbbcabbF

,...;;
1

...;;
12 






−−− +nk

k

k

k

k

k
xx

x
x

x
xx

x

where the k-th parameter is given by ca −+ 1  and the ( )1−k -th

variable is given by .
1−k

k
x

x

The hypothesis ,1<c  that is, ,121 >µ+µ +n  implies that the period

( )21 1;1 +µ−µ− nB  (appearing in the first solution )1ϕ  is of the first
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kind; while the periods ( )kB µ−µ− 1;1 0  (appearing in the other

solutions )kϕ  are of the second kind, since ∑
+

=
=µ

2

0

.2
n

i
i  Therefore we

cannot directly use algebraic values of the Lauricella functions appearing
in the other solutions in the definition of a useful exceptional set.

The functions appearing in the statement of our Theorem 1, have
their origin in the following result due to P. B. Cohen, H. Shiga and J.
Wolfart:

Recall that .1dimdim nVV ss +=+ −  Let nγγ ...,,0  be generators of

( )( ).;...;; 121 Z+nxxTH

Lemma 2 [24, Corollary 6]. For all

( ) ,...;; 12 QIn
nxx Q∈+

the abelian variety ( )12 ...;; +nxxT  has CM if and only if there exists a

basis ( ) ( )12 ...;; +ωω n  over Q  of the space of differential forms in 1−V  such

that, for all ,1...;;1 += nj  the periods

( ) ( ) ( )∫ ∫ ∫γ γ γ
ωωω

0 1
...,,,

n

jjj

generate a Q -vector space of dimension 1. Here, we suppose ( ) .1 ω=ω

The differential forms used correspond to the eigenvalue .1−ζN  They

have been computed explicitly in Section 6 of [5]. We recall this
construction in the next lemma.

Lemma 3 (see [5, Section 6]). Let

( ) ( ) ( ) .1:...;;
1

2

111
121

10 ∏
+

=

−µ−µ−µ
+− −−=ω

n

i
inN

ixuuuxx

Then

{ ( ) ( ) ( )}121
1

121121 ...;;...;;...;;;...;; +−
−

+−+− ω⋅ω⋅ω nN
n

nNnN xxuxxuxx

is a basis of .1−V
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The calculations justifying Lemma 3 are a direct application of
Section 6 in [5]: we now summarize them. Denote β∧α  the greatest

common divisor of α and β. In order to use regularity conditions in [5] for

differential forms of the algebraic curve ( ),...;; 12 +nN xxX  we let

( ) ( )121121 ...;;...;; +−+− ω=ω nNn xxxx

( ) ( )
.with

1

1

1

2
10

Z∈
−−

=
−

+

=∏
iN

n

i
a

i
aa

adu
w

xuuu i

We study necessary conditions on the ia  to have differential forms

of the first kind on the algebraic curve ( )....;; 12 +nN xxX  Denote

;0µ= NA  ,1µ= NB  ii NC µ=  for ,1...;;2 += ni  .2+µ= nND  At the

points ( ) ( ) ( ) ( ) ( ){ },;;0;;0;1;0;0; ∞∞∈ ixwu  ,1...;;2 += ni  regularity

conditions of the differential form ( )121 ...;; +−ω nN xx  on

( )12 ...;; +nN xxX  are given in Section 6 of [5] by

(1) ( ) 11
0 −∧+−≥

N
ANANa

(2) ( ) 11
1 −∧+−≥

N
BNBN

a

( )i3  
( )

,1
1

−
∧+−

≥
N

CNCN
a ii

i  for 1...;;2 += ni

(4) 10 +++ naa L

( )
.1

1
1

2

1

2 −






 −+++∧−






 +++−

≤
∑∑ +

=

+

=

N

NDCBANDCBAN
n

i i
n

i i

Consider the differential form obtained by using the minimal values

( )minia  for the .2...;;0, += niai  For instance, in condition (1) we have

( ) ( ) .111
N

AANA
N

ANAN −∧+−=−∧+−

Thus, when ,NA |  we have 0=−∧ AAN  and ( ) .1min0 −= Aa  When

,| NA /  we have 0<−∧ AAN  and
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( ) ( ) ( ) .11111
min0 +





 −∧+−=+





 −∧+−=

N
AANEA

N
ANAN

Ea

Moreover, since ,01 <−∧<−
N

AAN  we have 1−=




 −∧

N
AANE  and

( ) .1min0 −= Aa  Reasoning in a similar way with conditions (2) and ( ),3i

we obtain the following differential form constructed using the ( ) :minia

( )
( ) ( )

du
w

xuuu
xx

N

n

i
C

i
BA

nN

i

⋅
−⋅−⋅

=ω
−

+

=
−−−

+−
∏

1

1

2
111

121

1
...;;

( ) ( ) .1
1

2
111 10 ∏ +

=
−µ−µ−µ ⋅−⋅−⋅=

n

i i duxuuu i

It remains to verify the regularity condition (4). This condition is

equivalent to

∑ +

=
−+++

1

2
4

n

i i DCBA

∑ +

=
−+++≤

1

2
1

n

i i DCBA

,

1

2

1

2

N

NDCBANDCBA
n

i

n

i ii∑ ∑+

=

+

=






 −+++∧++++

−

which is in turn equivalent to

.3

1

2

1

2 ≤






 −+++∧++++ ∑ ∑+

=

+

=

N

NDCBANDCBA
n

i

n

i ii

Note that

N

NDCBANDCBA
n

i

n

i ii∑ ∑+

=

+

=






 −+++∧++++

1

2

1

2

.
2

1

2

N

NDCBA
n

i i −





 +++

≤
∑ +

=
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The hypothesis 02 >µ +n  is equivalent to .323 2 ≤µ− +n  This is in turn

equivalent to ( ) ,312
1
0

≤−µ∑ +
=

n
i i  that is, 

( )
.3

2
1
2 <

−+++ ∑ +
=

N

NDCBA
n
i i

Thus, the hypothesis 02 >µ +n  implies condition (4). All the regularity

conditions are true for the differential form ( )121 ...;; +−ω nN xx  so that it

is of the first kind on the algebraic curve ( ).;; 12 +nxx KX  Clearly,

( )
( ) ( )

du
w

xuuu
xx

N

n

i
C

i
BA

nN

i

⋅
−⋅−⋅

=ω
−

+

=
−−−

+−
∏

1

1

2
111

121

1
...;;

is an eigen-differential form for the eigenvalue .11 −− ζ=ζ N
N
N  Therefore, it

is an element of .1−V  The same method of proof can be applied to the

( ) .1...;;1,...;; 121 −=ω⋅ +− nlxxu nN
l  Moreover, the differential forms

( )121min ...;; +−ω=ω nN xx  we have constructed using the ( )minia  form a

basis of .1−V  For more details on all of the above arguments for Lemma

3, see [5].

Let α and β be two non-zero complex numbers. From now on, we

write βα ~  when there exists a non-zero algebraic number δ such that

.δβ=α  For two abelian varieties, we write ^ BA =  when A is isogenous

to B. In order to prove Proposition 1 stated above, we need the following

consequence of the analytic subgroup theorem of Wüstholz [30] (see also

[11] and [24]):

Lemma 4. Let A and B be abelian varieties defined over .Q  Denote

by AV  the Q -vector space generated by the numbers,

( ) ( )






 ∈γΩ∈ωω∫γ ZQ ;;;: 1

0 AHAH

and the same for B. Then { }0≠BA VV I  if and only if there exist a non-

trivial simple subvariety A′  of A, and a non-trivial simple subvariety B′

of B such that ^ .BA ′=′
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When ( ) ,...;; 12 QIn
nxx Q∈+  not in Z, we have ( ;;...;;; 12 cbbaF n+

) ∗
+ ∈ Q12 ...;; nxx   if and only if we have the relation between non-zero

numbers,

( ) ( )∫
∞

++ µ−µ−ω
1

2112 .1;1~...;; nn Bxx

Therefore,

( ) ( ){ } { }.01;1 21...;; 2;112
≠µ−µ−⊇ +′ ++ nAxxT BVV

nn
I

Using Lemma 4, the abelian varieties ( )12 ...;; +nxxT  and 2;1 +′ nA  admit,

up to isogeny, a common subvariety, noted E, and related to the period

( ).1;1 21 +µ−µ− nB  The abelian variety 2;1 +′ nA  is stable under the

cyclotomic field ( ).NζQ  Using an argument of Bertrand (see [6]), there

can therefore be two possibilities:

- either 2;1 +′ nA  is simple and then ,^ 2;1 +′= nAE

- or ,^2;1
ε

+ =′ FA n  where ,N∈ε  ,1>ε  and F is a subvariety of

dimension ( ) ,2εϕ N  with CM by a subfield k of ( )NζQ  such that

( )[ ] .: ε=ζ kNQ  Thus ( ) ^ ....;; 12 GFxxT n ×= λ
+  But the same argument

implies that: either ( )12 ...;; +nxxT  admits no proper subvariety stable

under ( )NζQ  and then ( ) ( )^ ;...;; 1
12

ε+
+ = n

n FxxT  or ( )12 ...;; +nxxT  can

be decomposed by proper subvarieties stable under ( )NζQ  and then

,2 ε=λ p  .∗∈ Np

In both cases, the variety ( )12 ...;; +nxxT  contains the factor 2;1 +′ nA

in its decomposition up to isogeny. This proves the first part of

Proposition 1. Let 1...;;0 −= nl  and { }.1...;;2 +∈ nk  We use the same

proof, applied to the following formula, for the second part of Proposition
1:

( )∫ +−ω
kx

nN
l xxu

0
121 ...;;
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( ) ( ) ( )∏ +

≠=
−µ−µ−+µ+µ +µµ−−=

1

,2 0
111 ;1 10

n

kii kikk
l

k lBxxxx ik



 −−−× + ;1...;;...;;1; 12 nk bacbbF





−−−
−+ ∑ +

≠= +

1

,2 12
...;;

1
...;;;

n

kii nk

k

k

k

k

k
i xx

x
x

x
xx

x
blc

( ) 

 −+−−−µµ ∑ +

≠=+
1

,2120 ;;1...;;...;;1;;~
n

kii inkk blcbacbbFB

,...;;
1

...;;
12




−−− +nk

k

k

k

k

k
xx

x
x

x
xx

x

where, in the Lauricella functions, the k-th parameter is given by ac −

and the ( )1−k -th variable is given by .
1−k

k
x

x
 It follows that for

( ) ,...;; 12 QIn
nxx Q∈+  not in Z, the condition



 −−− + ;1...;;...;;1; 12 nk bacbbF

,...;;
1

...;;;
1

,2 12

∗+

≠= +
∈




−−−
−+ ∑ Qn

kii nk

k

k

k

k

k
i xx

x
x

x
xx

x
blc

with notation as in the statement of Theorem 1, is equivalent to

( ) ( )∫ µµω +−
kx

knN
l Bxxu

0
0121 ,;~...;;

and the second part of Proposition 1 follows.

Proposition 1 explains hypotheses of Theorem 1. Indeed, when the n

conditions are true, this implies that ( ) ^...;; 2;02;112 AAxxT nn ×′= ++

1;0 +×× nAL  which is exactly the abelian variety .0T  Conversely, assume

that ( ) ,...;; 12 QIn
nxx Q∈+  not in Z, and that,
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( ) ,:...;; ^ 01;02;02;112 TAAAxxT nnn =×××′= +++ L

that is,

( ) ,...;; ^ 1212 ++ ×××= nn CCBxxT L

where 2;1^ +′= nAB  and ,^ ;0 kk AC =  { }.1...;;2 +∈ nk  This is equivalent

to

( ) ( )

{ } ( ) ( )







−+∈

′− +

.EndEnd,1...;;2allFor

EndEnd

;00~0

2;10~0

kk

n

ACnk

AB

Let FΛ  be the lattice of periods of the abelian variety F. This is

equivalent to

{ }





⊗Λ=⊗Λ+∈

⊗Λ=⊗Λ
+′

.,1...;;2allFor
;0

2;1

QQ

QQ

ZZ

ZZ

kk

n

AC

AB

nk

Since the lattice of periods of an abelian variety is stable under its type

Φ, this is in turn equivalent to

( )
( )

{ } ( )





⊗Λ=⊗ΛΦ+∈

⊗Λ=⊗ΛΦ
∗

+′

.,1...;;2allFor
;0

2;1

QQ

QQ

ZZ

ZZ

kk

n

AC

AB

nk

The type Φ of the abelian variety ( )12 ...;; +nxxT  can be decomposed

using the action of the cyclotomic field ( )NζQ  on the vector space

( )( )Ω+ ;...;; 12
0

nxxTH  of differential forms of the first kind as noted

before. Thus, for all ( ) ( )( ),;End0 yxTa N ⊆ζ∈ Q

( )

( )

( )

( )

,

0

0

1

2



























Φ

Φ

Φ

=Φ

+
a

a

a

a

nC

C

B

O
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where

( )

( ) ( )

( ) ( )

( )

( )





































σ

σ

σ

σ

=Φ






 












 












 







a

a

a

a

a

nE

nE
M

nE

M

i

i

i

i

B

2

2

2
1

1
1

1
1

0

0

O

O

O

and where, for { },1...;;2 +∈ nk

( )

( ) ( )

( ) ( ) .

0

0

1
1

1
1





















σ

σ

=Φ
−

−

O

O

a

a

a

M

k
i

i

C

We do not make explicit the coefficients on the diagonal of ( )a
kCΦ

because we do not need them and the corresponding notation is
cumbersome.

We have ( ) ( ) .10...;;0 1duuu acc −−− −=ω  Changing the Pochhammer

cycles to line integrals, one shows that

( ) ( ) ( ).1;10...;;0~0...;;0
0 1

21∫ ∫γ

∞
+µ−µ−=ωω nB

Moreover, for ,1...;;0 −= nl  we have

( ) ( ) ,10...;;0 1
1 duuuu cancl

N
l −−−+

− −=ω

and therefore, for { },...;;1 nk ∈  we have

( ) ( ) ( )∫ ∫γ
−−

+
µµωω

k

kx

kN
l

N
l Buu

1

0
011 ;~0...;;0~0...;;0

because ( ) ( ),1;~; +qpBqpB  for ., N−∉qp
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We see that the condition (∗) is equivalent to

{ } ( ) ( ) ( ) ( )

{ }

{ } ( ) ( ) ( ) ( ) ( ) ( )













ηη⋅Φζ∈∃∈∀

+∈∀

ηη⋅Φζ∈∃∈∀

∫ ∫

∫ ∫

γ γ
+

γ γ
+

j j
kkk

i i

l
Cn

l
CCN

BnBBN

xxaanj

nk

xxaani

,0...;;0~...;;,,...;;0

,1...;;2

,0;...;0~...;;,,...;;0

12

12

Q

Q

where ( ) ( ( ) ( ) )....;;...;;...;;...;; 2211
12

2
111






 











 







+





 







ωωωω=η
nE

i

nE

iMi
t

nB nE
xx

Moreover, for { },1...;;2 +∈ nk  we have

( ) ( ) ( ( ) ( ) )....;...;;...;; 1
1

1
1

12
Mk i

l
i

lt
n

l
C uuxx

−−+ ωω=η

As ( ) ,11
1 =i  this implies for 0=i  that

( ) ( )∫ ∫γ γ
+ ωω

0 0
,0...;;0~...;; 12 nxx

that is,

( ) ( )∫
∞

++ µ−µ−ω
1

2112 1;1~...;; nn Bxx

which is the hypothesis (h). For ,1−= kj

( ) ( )∫ ∫
− −γ γ

−+− ωω
1 1

,0...;;0~...;; 1121
k k

NnN xx

that is,

( ) ( )∫ µµω +−
kx

knN Bxx
0

0121 ,;~...;;

which is the hypothesis ( ( ) ).k
lh  This ends the proof of Theorem 1.

Remark. We can change the hypothesis (h) and n integers l for

which the condition ( ( ) )k
lh  is true, by (h) and 1−n  integers l for which

the condition ( ( ) )k
lh  is true; because the remaining subvariety F in the

decomposition, up to isogeny, ( ) ^ ,...;; 12 AFxxT n ×=+  is determined by
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comparison of dimension, type and stability under ( )NζQ  of these

varieties.

In the light of Theorem 1, we make the following definition.

Definition. The exceptional set related to the Lauricella
hypergeometric function is defined as

( )




∈= + :...;; 12
n

nn xx QIQE

( ) ( )

{ } { } ( ( ) )
,

trueis,1...;;2,2...;;0

...;;;;...;;;: 1212













+∈∃−∈∀

∈++

k
l

nn

hnknl

xxcbbaFh Q

where ( ( ) )k
lh  is the hypothesis







−−− + ;1...;;...;;1; 12 nk bacbbF

Q∈







−−−
−+ ∑

+

≠= +

1

,2 12
...;;

1
...;;;

n

kii
nk

k

k

k

k

k
i xx

x
x

x
xx

x
blc

with the k-th parameter given by ac −  and the ( )1−k -th variable given

by .
1−k

k
x

x
 By Theorem 1, it is a Zariski-dense subset of

{( ) ( ) }^ ....;;:...;; 01212 TxxTxx n
n

nn =∈= ++ QIQE

The above definition generalizes the definition of the exceptional set for
the Gauss hypergeometric function by Wolfart in [27] and for the Appell
hypergeometric function by the author in [14].

5. Application of a Weak Version of the André-Oort Conjecture

This paragraph deals with the Zariski density of complex
multiplication points. The exceptional set creates a link between complex
multiplication points and the assuming of algebraic values by certain
Lauricella hypergeometric functions at algebraic points. In [8], Paula B.
Cohen shows how the following weak version of the André-Oort
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conjecture can be used for several transcendence results, see also [11].
The present paper gives an application of this conjecture for
transcendence results on the Lauricella hypergeometric functions (see
[14] for the case of Appell hypergeometric functions).

Weak version of the André-Oort conjecture [8]. Let Z be an

algebraic irreducible subvariety of ( ).CV  If there exists a Zariski dense

subset of points of Z, whose corresponding abelian varieties are of

complex multiplication type and are in the same isogeny class, then Z is

of Hodge type.

Remarks.

- The converse of this conjecture is known.

- In the case of dimension 1, this conjecture has been proven by
Edixhoven and Yafaev, see [15].

- Recall that a subvariety of a Shimura variety is a union of varieties
of Hodge type when it is a Shimura subvariety or the image, under a
Hecke correspondence of a Shimura subvariety, see [8].

The following results show how this geometric conjecture can be used
for transcendence results.

Corollary. Assume the conditions on the iµ  given in Section 2 and

the weak André-Oort conjecture. Let ( )CZ  be the Zariski closure in ( )CV

of the image ( )QΦ  of the map of the Theorem in Section 3. Then ( )CZ  is

of Hodge type if and only if the image ( )nEΦ  of the exceptional set is

Zariski dense in ( ).CZ

This corollary relies on the geometric description of the exceptional
set as a set of abelian varieties in the same isogeny class as an abelian

variety 0T  with complex multiplication.

Theorem 2. Assume the conditions on the iµ  given in Section 2 and

the weak André-Oort conjecture. Assume further that the monodromy

group ( )µ∆  acts discontinuously on .nB  Then, the image of nE  is Zariski

dense in ( )CZ  if and only if ( )µ∆  is arithmetic.
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Indeed, when the monodromy group ( )µ∆  acts discontinuously on

,nB  one knows, using [12, Proposition 12.7], that ( )µ∆  is arithmetic if

and only if .11 =M  Then, as it is a Shimura variety, ( )µ∆nB  is of

Hodge type. Using the converse (and known) sense of the preceding
conjecture, this variety therefore contains a Zariski dense subset of CM
points corresponding to the isogeny class of any fixed CM abelian variety.

Therefore the image of the exceptional set nE  is Zariski dense in ( ).CZ

Conversely, let us assume that the image of the exceptional set nE  is

Zariski dense in ( ).CZ  Then, using the conjecture, we deduce that ( )CZ

is of Hodge type. As a modular group, ( )µ∆  preserves a lattice, and thus

is an arithmetic group.

Recalling the remarks at the beginning in Section 3, this theorem

deals with a special kind (and a finite list for )2≥n  of monodromy

groups. Nonetheless, this leads to a list of counterexamples of a
conjecture of Coleman. This conjecture predicts the finiteness of the
number of isomorphism classes of algebraic curves, with genus greater
than or equal to 4, for which Jacobian has CM.

Counterexamples 1 and 2. By a result of [16], which was revisited
in [11] with techniques in the spirit of the present paper, there are

infinitely many Q∈x  for which the following algebraic curves, with

genus 4, correspond to a Jacobian with CM by the cyclotomic field ( ),5ζQ
or a subfield of ( ),5ζQ

( ) ( ) ( ).1: 5
5 xuuuvx −−=Y

Moreover, there are infinitely many Q∈x  for which the following

algebraic curves, with genus 6, correspond to a Jacobian with CM by the

cyclotomic field ( )7ζQ  or a subfield of ( ),7ζQ

( ) ( ) ( ).1: 7
7 xuuuvx −−=Y

Counterexample 3 [14]. There are infinitely many ( ) 2; Q∈yx  for

which the following algebraic curves, with genus 4, correspond to a

Jacobian with CM by the cyclotomic field ( )5ζQ  or a subfield of ( ),5ζQ
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( ) ( ) ( ) ( ).1: 5
5 yuxuuuvx −−−=Y

Counterexample 4. This example is new, but uses the same type of

reasoning as in [14]. There are infinitely many ( ) 3;; Q∈zyx  for which

the following algebraic curves, with genus 6, correspond to a Jacobian

with CM by the cyclotomic field ( )3ζQ  or a subfield of ( ),3ζQ

( ) ( ) ( ) ( ) ( ).1: 3
3 zuyuxuuuvx −−−−=Y

In cases of 3 and 4, the main part of the proof is based on the method
of [11]. Nonetheless, the proof has to be modified because, unlike in the
dimension 1 case, the construction of the exceptional set of Section 4
cannot be used directly. As counterexample 3 was treated in [14], we
focus on the counterexample 4:

Consider the family of algebraic curves ( ),;;3 zyxY  parameterized by

( ) Q∈zyx ;;

( ) ( ) ( ) ( ) ( ).1:;; 3
3 zuyuxuuuvzyx −−−−=Y

Each of them is birationally isomorphic to the algebraic curve

( ) ( ) ( ) ( ) ( )[ ] .1:;; 23
3 zuyuxuuuwzyx −−−−=X

This isomorphism is given by ( ) ( )2;; vwuvu =a  with inverse ( ) awu;

( ) ( ) ( ) ( ) .1;
2 






 −−−−=

w

zuyuxuuuvu

We then have to use the exceptional set, but in this case the condition

121 <µ+µ +n  is not true. This means that the point ( )0;0;0P  is not a

stable point and we cannot use the abelian variety ( )0;0;00 TT =  to

describe the exceptional set. We can adapt the previous construction as

follows. Consider the stable point ( ),0;0;1stP  intersection of the stable

surfaces ( ) ( ),11:12 21 <µ+µ=xSst  ( ) ( )10:03 30 <µ+µ=ySst  and

( ) ( ).10:04 40 <µ+µ=zSst  Applying the Corollary, this point

corresponds to an abelian variety with complex multiplication, described
as follows:
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( ) ^ ,0;0;1: 2,14,03,00 AAAATT ′×××==′

where A′  is an algebraic curve with complex multiplication by the field

( )3ζQ  and characterised by the period .
3
1;

3
1




B  Indeed, around the

point ( )0;0;1  there are 4 solutions: ∫ ω
1

0
,  ∫ ω

x

1
,  ∫ ω

y

0
 and ∫ ω

z

0
 of the

differential system 



3
4;

3
1;

3
1;

3
1;

3
2

4E  which can be written as series in

[ ][ ].;;1 zyxc −⋅ Q  For the first solution

( ) ( )( ) ,
3
1;

3
11;1 4030 





=µ+µ−µ+µ−= BBc

for the second

( ) ,
3
2;

3
21;1 21 





=µ−µ−= BBc

and for the others

( ) ,
3
2;

3
21;1 0 





=µ−µ−= BBc k  3=k  or 4.

(See [10, Paragraph 6, Theorem 3] or [14, pp. 52-54] for more details.)
Thus we can construct, in a similar way, an exceptional set related to the

base point ( ),0;0;1stP  for which the geometric description is

{( ) ( ) }^ .;;:;; 0
3

3 TzyxTzyx ′=′∈=′ QE IQ

This enables us to finish the proof: the monodromy group of the system of

differential equations 



3
4;

3
1;

3
1;

3
1;

3
2

4E  is .
3
1...;;

3
1




∆  This is an

arithmetic group, as we can check using Proposition 12.7 in [12]. We can
therefore use the known part of Theorem 2, that is the known sense

direction of the weak André-Oort Conjecture. The image of 3E ′  is Zariski

dense in ( ),CZ  so .3 ∞=′Ecard  As 3=N  is a prime number, the

Jacobian decomposes as follows (see the remark in Section 2):

( ) ( )^ ;;;;Jac 3 zyxTzyx =X

and the genus is ( ) ( ) ( ) .4
2

34;;dim;;Jacdim 3 =ϕ=== zyxTzyxg X
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There are infinitely many values ( ) 3;; Q∈zyx  for which

( ) ^ ,;;Jac 03 Tzyx ′=X  and therefore for which ( )zyx ;;Jac 3X  has complex

multiplication by the cyclotomic field ( )3ζQ  or by a subfield of ( )( ).3ζQ
This ends the proof.

6. A Transcendence Result

In the following results, each hypergeometric function is written as a
non-zero quotient of periods of the first or of the second kind on the same
abelian variety. Essential to our arguments is a result about linear

independence over Q  of values of the Beta function. This result is due to

Wolfart and Wüstholz (see [28, Satz 4]), and is a corollary of the analytic
subgroup theorem (the Haupsatz of [30]).

Theorem 3. For all n-tuples ( )12 ...;; +nxx  in the exceptional set ,nE

the following n2  numbers are zero or transcendental:

( ) ,1...,,0,...;;;1;1...;;1; 1212 −=−−+−−−− ++ nlxxclnbbalnF nn

and







−+− + ;...;;1...;;;1 12 nk bcabbF

,1...,,2,...;;
1

...;;;2
1

,2
12

+=







−−−
−+ ∑

+

≠= +
nk

xx
x

x
x

xx
x

cb
n

kii
nk

k

k

k

k

k
i

where the k-th parameter is given by ca −+ 1  and the ( )1−k -th variable

is given by .
1−k

k
x

x

This is proven using the same tools as in the preceding parts of this
paper, in particular we work with the differential forms

( ) ( ) ( )121
1

12112 ...;;...;;...;;;...;; +−
−

+−+ ωωω nN
n

nNn xxuxxxx

which form a basis of ;11 −VV U  and with their corresponding periods.
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Denote

( )
( ) .1...;;2,

;
;

0

21 +=
µµ

µµ
=δ + nk

B
B

k

nk
CM

We can translate Lemma 2 into the following statement about Lauricella

hypergeometric functions. Let Z ′  be the zero set of the functions
appearing in Lemma 5.

Lemma 5. For all ( ) ,...;; 12 QIn
nxx Q∈+  not in ,Z ′  the abelian

variety ( )12 ...;; +nxxT  has CM if and only if for all { },1...;;2 +∈ nk  we

have

( ) k
CMnn xxcbbaF δ++ ~...;;;;...;;; 1212







−+−× + ;...;;1...;;;1 12 nk bcabbF

,...;;
1

...;;;2
1

,2
12 






−−−
−+ ∑

+

≠= +

n

kii
nk

k

k

k

k

k
i xx

x
x

x
xx

x
cb

where the k-th parameter is given by ca −+ 1  and the ( )1−k -th variable

is given by ,
1−k

k
x

x
 and we also have for all { },1...;;0 −∈ nl

( ) k
CMnn xxclnbbalnF δ−−+−−−− ++ ~...;;;1;1...;;1; 1212







−−−× + ;1...;;...;;1; 12 nk bacbbF

,...;;
1

...;;;
1

,2
12 






−−−
−+ ∑

+

≠= +

n

kii
nk

k

k

k

k

k
i xx

x
x

x
xx

x
blc

where the k-th parameter is given by ac −  and the ( )1−k -th variable is

given by .
1−k

k
x

x
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Changing integration around Pochhammer cycles to line integration,

we write the periods as ( )∫ +ω
h

g ns xx 12 ...;;  and express these as

hypergeometric Lauricella functions multiplied by a ( ).; qpB

For instance, when ( )12 ...;; +nxxT  has CM ( ) ,...;; 12 QIn
nxx Q∈+

not in ,Z ′  we have

( ) ( )∫ ∫γ γ
++ ωω

0
....;;~~...;; 1212

n
nn xxxx L

This implies

( ) ( )....;;~~...;;
1 0

1212
1

∫ ∫
∞

++
+
ωω

nx

nn xxxx L

On the other hand,

( ) ( ) ( )∫
∞

++++ µ−µ−=ω
1

12122112 ,...;;;;...;;;1;1...;; nnnn xxcbbaFBxx

and for all { },1...;;2 +∈ nk

( ) ( )∫ µ−µ−ω +
kx

kn Bxx
0

012 1;1~...;;



 −+−× + ;...;;1...;;;1 12 nk bcabbF

,...;;
1

...;;;2
1

,2 12




−−−
−+ ∑ +

≠= +

n

kii nk

k

k

k

k

k
i xx

x
x

x
xx

x
cb

where the k-th parameter is given by ca −+ 1  and the ( )1−k -th

variable is given by .
1−k

k
x

x
 Now, it is well known that

( ) ( )qpB
qpB

;
~1;1 π−−  for Z∉qp,

which proves the first part of Lemma 5. For the remainder of that lemma,

we use the following expressions. For ( ) ,...;; 12 QIn
nxx Q∈+  not in ,Z ′

we have
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( )∫
∞

+−ω
1

121 ...;; nN
l xxu

( ) ( )121212 ...;;;1;1...;;1;;1 +++ −−+−−−−µ−−+µ= nnn xxclnbbalnFlnB

( ) ( )121221 ...;;;1;1...;;1;;~ +++ −−+−−−−µµ nnn xxclnbbalnFB

and

( )∫ +−ω
kx

nN
l xxu

0
121 ...;;

( ) ( ) ( )∏ +

≠=
−µ−µ−+µ+µ +µµ−−=

1

,2 0
111 ;1 10

n

kii kikk
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k lBxxxx ik




 −−−× + ;1...;;...;;1; 12 nk bacbbF





−−−
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...;;

1
...;;;

n

kii nk

k

k

k

k

k
i xx

x
x

x
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x
blc

( ) 


 −−−µµ + ;1...;;...;;1;;~ 120 nkk bacbbFB

,...;;
1

...;;;
1

,2 12




−−−
−+ ∑ +

≠= +

n

kii nk

k

k

k

k

k
i xx

x
x

x
xx

x
blc

where the k-th parameter is given by ac −  and the ( )1−k -th variable is

given by .
1−k

k
x

x
 This completes the proof of Lemma 5.

Now, when hypotheses of Theorem 1 are true, ( )12 ...;; +nxxT  is CM,

because it is isogenous to the CM variety .0T  Then, the condition

( ) ∗
++ ∈ Q1212 ...;;;;...;;; nn xxcbbaF  implies




 −+− + ;...;;1...;;;1 12 nk bcabbF





−−−
−+ ∑ +

≠= +

1

,2 12
...;;
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...;;;2

n

kii nk
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xx
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( )

( )
( ) ,

;
;

~
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1;1
~ 1

21

0
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0 −
++
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µµ
µµ

µ−µ−
µ−µ− k
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n
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B

B
B
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where the k-th parameter is given by ca −+ 1  and the ( )1−k -th

variable is given by .
1−k

k
x

x

A similar expression can be found for the 2n numbers studied in this

theorem. Finally, one proves that the numbers k
CMδ  are transcendental.

The following lemma gives this proof.

Lemma 6 [29]. A non-zero period of the first kind and a non-zero

period of the second kind on the same abelian variety defined over Q  are

Q  linearly independent.

In the present case, the periods ( )21; +µµ nB  and ( )0; µµkB  are

respectively of the first and the second kind, because by hypothesis

,01 >− c  that is, 121 >µ+µ +n  and so 10 <µ+µk  for all { ...;;2∈k

}.1+n  As they are non-zero periods of the same abelian variety ( ;2xT

)1...; +nx  defined on Q  because ( ) ,...;; 12 QIn
nxx Q∈+  they are

linearly independent on .Q  Thus the k
CMδ  are transcendental numbers.

Remark. In the case of one variable, applying this to the classical
Gauss hypergeometric function leads to the following result (see [13,
p. 29]):

For all ] [,1;0,, IQ∈cba  ., cba <  For all ,Q∈x  when

( )xcbaF ;;;  is an algebraic number, then ( )xccacbF ;2;1;1 −−+−+

is a transcendental number.

In particular, using the results of Beukers and Wolfart [7] and
Archinard [4], this gives explicit points at which the value of the Gauss
hypergeometric function is transcendental.
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