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Abstract

In this paper, we study values at algebraic points of Lauricella
hypergeometric functions in n complex variables, n > 1. We are mostly
interested in criteria for the transcendence of these values. The
combined results of [P. Cohen and G. Wistholz, Application of the
André-Oort conjecture to some questions in transcendence, A panorama
of number theory or the view from Baker’s garden (Ziirich, 1999), pp. 89-
106, Cambridge Univ. Press, Cambridge, 2002], [Invent. Math. 92
(1988), 187-216] determine necessary and sufficient conditions on the
parameters a, b, ¢ for finiteness of the exceptional set of the classical

hypergeometric function of one complex variable (n =1): £ = {x e Q :

F(a; b; ¢; x) € Q). These results rely on Wiistholz’s analytic subgroup

theorem [G. Wdstholz, Algebraic groups, Hodge theory and
transcendence, Proc. of the Intern. Congress of Math., Berkeley,
California, U.S.A., 1986], [Ann. Math. 129 (1989), 501-517] and on a
known particular case, proved in [Ann. Math. 157 (2003), 621-645], of
the André-Oort conjecture on the distribution of complex multiplication
points on curves in Shimura varieties. The results of [P. Cohen and G.
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Wiistholz, Application of the André-Oort conjecture to some questions in
transcendence, A panorama of number theory or the view from Baker’s
garden (Zirich, 1999), pp. 89-106, Cambridge Univ. Press, Cambridge,
2002] were generalized to the two (n=2) wvariable Appell

hypergeometric function by the author [Ramanujan J. 8(3) (2004), 331-
355], subject this time to the André-Oort conjecture for surfaces in
Shimura varieties. In the present paper, we treat the case of several

(n > 8) complex variables. The main contribution of the present paper is

the construction for the Lauricella function of the appropriate
exceptional set that allows for the application of the André-Oort
conjecture for n-dimensional subvarieties of Shimura varieties. Some
additional results on transcendence of values of Lauricella functions are
given, as well as a new counterexample to a conjecture of Coleman.

0. Introduction

Wolfart [27] studied values of the classical (Gauss) hypergeometric
function of a single complex variable at algebraic points. In particular,
using Wistholz’s analytic subgroup theorem [30], he investigated
conditions on the parameters a, b, ¢ that ensure infiniteness of the
exceptional set: £ ={xe Q : F(a; b; c; x)e Q"}. Wolfart also correctly
predicted conditions on the parameters that ensure finiteness, although,
as first noticed by Walter Gubler, his proof of this prediction contains a
serious error. Cohen and Wistholz [11] corrected this error and
completely solved the problem of criteria for the finiteness of &, subject
to a weak form of the André-Oort conjecture for curves in Shimura
varieties. This particular case of the André-Oort conjecture was proved
by Edixhoven and Yafaev in [15]. For a statement of the André-Oort
conjecture see [1], [2], [19], [20]. The results of [11] were generalized to
the two variable Appell hypergeometric function by the author [14],
subject this time to the as yet unproved André-Oort conjecture for
surfaces in Shimura varieties. In this paper, we study the transcendence
of values at algebraic points of Lauricella hypergeometric functions in n
complex variables, n >1. We again apply the analytic subgroup
theorem, and our results are again subject to the André-Oort conjecture,
this time for n-dimensional subvarieties of Shimura varieties. In order to
link the analytic subgroup theorem to the André-Oort conjecture, we rely

as in [11], [14] on the construction of certain analytic families of abelian
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varieties appearing in [27], [9] (for n = 1), in [10] (for n = 2) and in [5]
(for all n >1). The main new contribution is the construction of the

appropriate exceptional set for Lauricella functions that allows one to
apply the André-Oort conjecture. As first observed in [14], the passage to
several variables requires that we utilize a proper subset of the set of
algebraic points at which the function takes algebraic values. The
definition of this smaller exceptional set requires quite subtle conditions.
We also give a new counterexample to a conjecture of Coleman, thereby
extending the list of examples in [16], [11], [14]. Our last result shows
how algebraic values of Lauricella functions, at algebraic points, imply

the transcendence of the values of other such functions at related points.

The plan of this article is as follows. In Section 1, we recall some
classical properties of the Lauricella hypergeometric functions: more
details can be found in [3], [12] and [32]. In Section 2 and in the first part
of Section 3, we summarize results needed for the sequel that appear in
[5], [9], [10], [24]: namely, the construction of an analytic family of
“hypergeometric” abelian varieties associated to the Lauricella
hypergeometric functions and the identification of the associated
Shimura variety V. This determines a morphism from the space Q of

regular points of the Lauricella hypergeometric functions to the complex

points V(C) of the Shimura variety. As we discuss in the remainder of

Section 3, this morphism extends to the space of semi-stable points
described in [12]. In Section 4, we state our main new result as Theorem
1. This theorem shows how the exceptional set for the Lauricella
hypergeometric function must be constructed in order for its elements to
correspond to hypergeometric abelian varieties of CM type. The exact
definition of the exceptional set is given at the end of Section 4: the
conditions defining this exceptional set are quite involved. Our definition
reduces to the one of [14] in the case n = 2 and to the one of [27] in the
case n =1. We state in Section 5 a weak form of the André-Oort
conjecture for n-dimensional subvarieties in Shimura varieties sufficient
for our purposes. This result is still only known for the case n =1, see

[15]. As in [11] (n =1) and [14] (n = 2), this allows us to make a link

between the Zariski density of the points of the exceptional set and the
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nature of the image of @ in the Shimura variety V: the points of the
exceptional set will be Zariski-dense if and only if the Zariski closure of
the image of Q is of Hodge type. This leads us to the result of Theorem 2,
which states a criterion for the arithmeticity of the monodromy group of
the Lauricella hypergeometric function which generalizes to all n > 1
that of [11], [27] (n =1) and [14] (n = 2). We also show that known
results in the spirit of the André-Oort conjecture give a counterexample
of Coleman’s conjecture. Other counterexamples obtained in a similar
way were given in [16], [14]. In Section 6, we state a new result as
Theorem 3. This result shows how algebraic values of Lauricella
functions, at algebraic points, imply the transcendence of the values of

other such functions at related points.

1. Lauricella Hypergeometric Functions

The Lauricella hypergeometric function is a generalization to n
complex variables of the classical (Gauss) hypergeometric function to the
case of the one complex variable, see [3, Chapter VII]. It is a solution of a

system of linear partial differential equations E,(a; by; ...; b,,,1; ¢) which
has an (n + 1)-dimensional solution space. The regular singularities are
located along the hyperplanes x; = 0; 1; «o; x; for i; j € {2; ...; n+1} and
J # 1. These hyperplanes are often referred to as characteristic surfaces.

Denote the space of regular points by,

Q= {(xg; ...; Xp11) € P1(C)" 1 ; 20,1, 00, x;, forall i, je{2;..;n+1},i# j}.

For all (x9;..;x,,1)€Q, a basis of solutions of the equations
E, (a; by; ...; b,,1; ¢), can be represented by Euler integrals, as follows:
ZTHlb'*C n+1 5
==z (u - 1)C_a_1H(u —x;) du = J (%95 -+ Xp41)s
Ygh i=9 Ygh

where the y,, are Pochhammer cycles around g, h € {0;1; xg; ...; X,.1; 0},

g # h. Under certain natural conditions (see Section 2), in particular
when the parameters are rational numbers, these integrals are equal, up
to multiplication by a non-zero algebraic number, to the Euler line

integrals:
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h
J. (X9} e Xpi1)-
g

It is convenient at this stage to introduce another system of parameters.
Let

n+l
Ho =€~ Zbi
i=2

p1=a+1—c

p =b,fori =2, .;n+1

Hpsg =1 -a.
We then have

n+l

(D(xQ; e xn+1) =u 0 (u - 1)_H1H(u - X; )_Hi du.
=2

The Lauricella hypergeometric function is the unique solution of the
system of linear partial differential equations which extends to a

holomorphic solution equalling 1 at the point (0; ...; 0). For (xg; ...; x,,41)

€ Q, its expression is the following,
N
F(a; by; ...; byi1; ¢ %95 .o; %,41) = Bla; ¢ — a) L o(Xg; -3 Xpi1)s
where B(, -) is the Béta function.

2. Hypergeometric Abelian Varieties

To ensure that the hypergeometric function is a transcendental
function and that the Euler line integrals of Section 1 correspond to
periods of differentials of the first kind on algebraic curves, we assume

from now on the following conditions on the parameters:

n+1
a;b,ceQ i=2,..,n+1; O0<a<c¢ O<c<] O<Zb,-<c.
i=2
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Alternatively,
weQNJO1[ i=2..,n+1 P+, > 1
Note that the condition Z?:()zpi =2 always holds. Let N be the least
common denominator of the p;. Under these conditions, the Euler line

. h . .
integrals fg o(xg; ...; X,41) of Section 1 are, up to a non-zero algebraic

scalar, periods of the first kind on abelian varieties in an analytic family:
these families were constructed in [27], [9] (r = 1), in [10] (n = 2), and

in [24], [5] (n >1). We briefly recall this construction for use in later

sections. Consider the family of algebraic curves:

n+l
N N N N
Xn(xg; o Xppp) s w = w0 (w - 1M H(u — ;) 1, (295 o5 Xpy41) € Q.
=2
Next, we consider a subvariety T(xo; ...; x,,1) of the Jacobian of each

such curve, the so-called “new part of the Jacobian”. It is defined as

follows: for each proper divisor f of N, let

n+1

N N N
X (%95 s Xpyq) : w’ = "N (y — 1) H (w — o)
=2

The morphism defined by
XN (%95 oo Xpin) = Xp(ag; o5 Xp41)

N
W w) e (ww!)

induces a morphism of Jacobians my from dJacX y(xg; ...; X,.1) to
JacX (xg; ...; Xp41). Then T(xg; ...; x,41) is given by Ny Ker myg, the

connected component of the identity of the intersection of the kernels of

these morphisms.

Remark. We have the following decomposition, up to isogeny:

JacX n(xg; oo Xy41) 2T (%95 ..; %,,1) @ ZJach(xQ; sl Xyl
fIN



... LAURICELLA HYPERGEOMETRIC FUNCTIONS 435

In [9], [10], [24], [5] the authors show that T(xs; ...; x,,.1) satisfies the

following properties:
(@) It 1s a principal polarized abelian variety of dimension

(n+ 1)@ (where ¢ is the Euler’s function).

(b) It is of type IV (in the sense of Shimura-Taniyama [25]), with
generalized complex multiplication by the cyclotomic field Q((p ), where

{y 1is a certain primitive root of unity. Therefore Q({p) can be
embedded in the endomorphism algebra of T'(xg; ...; x,.1), denoted by
Endy(T(xg; ...; x,,41)), and given by End(T(xg; ...; x,.1)) ®7 Q. This

embedding is unitary.

(¢) The cyclotomic field Q({ ) acts on the vector space H(T(xy; ...;

Xp41); Q) of differential forms of the first kind. This action is induced by

the automorphism of Xy (xg; ...; 4,,,1) sending (u; w) to (w; CpF - w).

The action in (c) induces a decomposition of H 0(T(ycz; oy Xpp1); Q)

into eigenspaces V, associated to the eigenvalues (%, s e (Z/NZ).
Namely, let (t) be the fractional part of the real number ¢ ((¢) = ¢ — E(2),
for E(t) the integer part of t). The following differential form has
eigenvalue (i :

n+l

0g(xX9; .ij Xpp1) = w0 (y — 1)’<SH1>H(u - x; ) gy,
=2

The field Q({) acts on V via multiplication by o4(Q(y)), where o is
the embedding of Q({y) in C sending {y to (}. The eigensubspace

related to this eigenvalue (% is of dimension:

n+2

dimVy =ry = -1+ Z(sui>
1=0

and for all s € (Z/NZ)",
s +r.g =n+1.
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Let M, be the number of eigensubspaces of dimension %, and denote

these subspaces by V.ﬁ}(ek); e ka) . Notice that il(l) =1 since Z::’OQH =2,
My,

There are also M, eigensubspaces (for the conjugate eigenvalues) of

dimension n + 1 — k, which we denote by V”.z'kl)_k; s V".Z'kl)_k. Then,
- _le

HO(T(xg; o Xpa1); Q)

_ yn+l n+l 1 1 n
=V @@V @V @V eV,
1 Mp1 M 1

The CM type of T'(xg; ...; x,.1) is given by:

D = Z Tg * Og.

se(Z/NZ)*

Shimura [25] has shown that the complex isomorphism classes of
principally polarized abelian varieties of dimension (n + 1)(IN)/2, of type
IV, with complex multiplication by the cyclotomic field Q({ ) of type @

(n+1)

and lattice isomorphic to Z[{y] are parameterized by the complex

points of a quasi-projective variety V, defined over Q, which is the

quotient by a certain arithmetic group I' acting discontinuously on the

following product of spaces:

H = H (Hi t )Mr >

r+t=n+1,r,t>0



... LAURICELLA HYPERGEOMETRIC FUNCTIONS 437

where for r=0 or t=0 the corresponding factor is trivial and for
r,t>1,

H‘E;t .= {Z : Z complex matrix with r rows and

t columns such that 1 — Z'Z is positive hermitian}.

Remarks. (i) If for all s € (Z/NZ)*, we have r, € {0; 1; n; n +1},

then H = B,lel, where B, is the unit ball of dimension n. The space H is

then of dimension

nM; = Z g - Teg.

se(Z/NLY [{£1}
(i1) The condition in (i) is always true for n =1 or 2.

(1) The T(xg; ...; x,.1) for (xg;..; x,.1) € Q form a subfamily of

dimension n of this space.
3. Maps between Moduli Spaces

In the one and two variable case, previous authors (in [9], [10], [11]
and [14]) have studied the relation of the Shimura variety V to the

discontinuous monodromy groups A(y;) of the respective systems
E;(a; b; ¢), acting on H = H (the upper half plane), and Ey(a; b; b'; ¢),
acting on H = By (the unit ball). When the action of these groups is

discontinuous, these authors construct a modular embedding which is in
general non-trivial because the groups considered are not necessary
arithmetic. This embedding is a holomorphic map from the covering
spaces H of these groups to the covering space of the Shimura variety
parametrizing the analytic family of polarized abelian varieties to which

the “new part” T'(x) or T'(x; y) belong. The map satisfies an equivariance
property with respect to A(n;) which allows one to pass to the quotient to
obtain a morphism from H/A(y;) to the Shimura variety. Moreover, in

these papers the authors obtained transcendence results on the covering
radius of the quotient spaces H/A(y;) and By /A(y;).
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For one variable, there is an infinity of such discontinuous groups.
However, for two variables, there are only 58 cases. When the number of
variables is between 3 and 12, there are 32 cases of such groups and only
1 is non-arithmetic. There are no such groups if the number of variables
is at least 13 (see [12], [18] and [22]).

From now on, we assume that
s e (Z/NZ), 1, €{0;1;n;n+1}

so that the modular space is H = B,]lwl, according to the remarks in
Section 2. Recall from Section 1 that Q denotes the space of regular
points of E,(a; by; ...; b,,1; ¢) and that V is the Shimura variety of

Section 2.

Theorem [24]. There exists a birational morphism of quasi-projective

varieties defined over Q:
Q - V(C)
(O3
(g5 xp1) > J([T(ogs s xp41)])s
where J([T(xg; ...; x,.1)]) is the point of V(C) that corresponds to the
isomorphism class of the abelian variety T(xo; ...; x,,,1). This map is
induced by the composition of a map
v:0 > B,

and a map

B, N BM
F:

Wlxg; s Xp01) > Z([T(xg5 o5 2p41))),s
followed by passage to the quotient by a certain arithmetic group I' acting

on B,]lwl, with V(C) isomorphic to B,]lwl/l“.

The orbit of Z(T(xg; ...; X,.1)]) under T corresponds to the point
J(T(xg; ..i; %p41))) of V(C).
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It is sometimes useful to consider the n + 3-tuple (xg; x;; X9; ...; X49)
in the space P;(C)"*® modulo the action of PSLy(C) on P;(C)"*?, instead

of (0;1; x9; ...; X,,1; ©) in P;(C)". Then, the differential form ® can be

written as

n+2

O(XQ; -} Xpig) = H(u - x;) Mdu.
1=0

Fix an n + 3-tuple u = (Wg; -5 Upea)-

Definition. A point (xq; ...; X,.9) in P;(C)"*? is called:

u-stable when for all subsets 7' c {0; ...; n + 2}, Z u < 1.
Xt =xt/,t,t'eT
u-semistable when for all subsets 7 < {0; ...; n + 2}, Z p <1
Xt :xt’,t,tVET

Here, when x; # x, for all ¢,t' € T, there is no condition.

Let M be the set of the stable points, M,; be the set of the
semistable points and M., = M \My. Each element of Mg, is
determined by a partition {I,J} of {0;..;n+2} with Zie[ W =
Z:jeJ u; =1, with the x; equal for i € I, and the x; equal for j e J,
but with x; # x;.

The group Aut(P;(C)) = PGLy(C) acts freely on P;(C) and
consequently on IPH((C)”Jr3 by the diagonal action. Using [12, Paragraph
4.1], we can define on M, an equivalence relation R as follows: we
have x = x'(R) either when x, x' € M and there is a y € PGLy(C)
such that x’ = yx, or when x, x" € M.y, and x, x" are defined by the

same partition T UJ ={0; ..; n+2}, INJ = Q.

Now, consider the quotient spaces:

Qgst = Msst/R Qg = Mst/R and chsp = cusp/R-
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The space Qg 1s Hausdorff and compact and can be given the structure
of an algebraic variety [12, Paragraph 4]. The space Q can be realized as
a subset of Q; using the diagonal action of PGLy(C), and Qg is in
fact a compactification of Q.

We can now study the action of the morphism @ on the stable points

located on the boundary of Q. Using [26], we see that @ can be extended
to a birational map from Q, into V(C). Indeed, in [26, Theorem 1,

Section 1], it 1s shown that along the characteristic surfaces
Sg(ij) : x; = xj, p; +uj <1, there are n+1 solutions (n holomorphic
and one of the form (x; — x; YHi™Hj x a holomorphic function) of a linear
system of differential equations of the type (E,) with the same

monodromy as (E,(a; by; ...; b,,1; ¢)). This enables us to extend the

application y : Q@ — B, to Qg of the above theorem. Now consider also
the application F: B, — BM1 of the above theorem. For I ¢ {0;...; n+2},

denote by E; the subspace of P ((C)n+2 given by the equations:

Xy = X n, 1€l
E;: : : where I = I, U---U I}.
xik :xjk, lk,]k GIk
Each stable subspace is of this type.
Consider F o y(Ej). Recall that s € R; when r, =1 and that M; =
Card R;.

Two kinds of images are possible, depending on the value of s € R;.

Case (1) for which

D (o) < 1.

el

Then, there exist elements 99), . Og") e Q such that the s-th projection

of the image of E; by F oy is given by
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(0] ot 100 wig: | oia)e

n

where

Os) = O(s)(%i 5 s Xy s Xj, J € )

k
=Y T e - iy e ] - ey
=1

jed
This differential is of the first kind by our assumptions.

Case (11) for which
PRCTHESS
el
Then, using a blow-up o (see [23, Chapter VI.2]) one has to consider the

subvariety E(JS) given by the equations:

X; =X

e il’ jl € J1

il
(s) .
EY .

xik ijk, ik,jkEJl

where J =J; U---UdJ;, {I, J} partition of {0; ...; n + 2}

which is stable because of the hypothesis s € Ry, i.e., Z?;02<S“i> =2

But, along these subvarieties (modified by a blow-up ) one has
E’C(]s) = G(Egs)). Terada [26] shows, in the demonstration of his

Proposition 3, Section 3, that one can also find n+1 linearly
independent solutions of a Lauricella hypergeometric system of

differential equations E,. More precisely, there exist elements

6(31), - eg’l) e Q such that the s-th projection of the image of E; by
F oy is given by

(GS)IH o) Gﬁn)IY ofs) : LO @E’s)] < B,

n
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where
o) = 0(5) (%5 5 Xj X iel)
p
= H(u - xj, )_zjer <S“j>1_[(u - x; )_<s“i>du.
=1 el

These are differential forms of the first kind by our assumptions.

We give here a geometric meaning to the image of the stable points
by @®. Each stable element E; is an intersection of hypersurfaces,
denoted Sy (ij): x; = x;, where p; +p; <1, i#jel Consider a
“coherent” system of hypersurfaces characterizing E;. That means:

make (between the Cfa,.d, -choices) the right choice of hypersurfaces

whose intersection is E; (there can be several possible choices).

This decomposition is useful, because by [10, Paragraph 5], along
S, (7), the abelian variety T(xs; ...; x,,7) can be decomposed, up to

IS()geny, as
T(.’XZ veey X )/\— A T
2 4 n+1 124 N 4

where A;; is an abelian variety of dimension (N )/2 with CM by a
subfield of Q({p) of type

O = 3" (swy) + (s1;) = (slby; + 1))

se(Z/NZY*

This abelian variety is characterized by the period

n+2

B —1 —H;j D
xi(u—xi) (w—2x;)" (u-xp) b0 Tt i du.

B(p;; u,-)=J.

The abelian variety 7T is of dimension ne(N)/2, of type IV with CM by
the cyclotomic field Q({ ), of type

n+2 n+2

o) - Z Z (sug) — (s Z HE ) O

se(Z/NzZY \k=0, k=1, j k=0, k#i, j
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This abelian variety is characterized by the periods

n+2

h
J. (w—ox;)MiHi I I (w—xp) M du, g, h € {xg; ..; X9 \lxj}, g # A
g ..
k=0, k=i, j

Corollary. Each stable point corresponds to an abelian variety with

CM.
A stable point P, is the intersection of n hypersurfaces S (ij) of

P, (C)" = {(xg; ...; x,41)/x; € P;(C)}. Along each hypersurface S (ij), we
extract from 7T(xg; ...; X,41) an abelian subvariety, denoted by A;;, of
dimension ¢(N)/2 with CM by a subfield of Q({p ). Thus, at the point

P,,, the decomposition of T'(xy; ...; x,,41) 1s, up to isogeny, the following:

T(x9; oy Xpi1) 2 A; ;0 XX A

LWL insJn

x A.

We can deduce that A has CM with dimension equal to ¢(NN)/2, and we

can moreover deduce its CM type.
4. Construction of the Exceptional Set

We now construct the appropriate generalization of the exceptional
set, considered in [27] in the 1-variable case and in [14] in the 2-variable

case. We will fix an abelian variety 7, and then determine conditions
that imply that an abelian variety T(xg; ...; x,.1) is of the same isogeny
class. The abelian variety 7, used here is the one corresponding to the
stable point P,(0; ...; 0). To ensure stability we make the hypothesis
Ui + Upeo > 1. This turns out not to be a strong restriction as can be

seen by the discussion of the counterexamples of the next paragraph,
where other hypotheses are used. Corollary in Section 3 proves that the

point P, (0; ...; 0) corresponds to an abelian variety with complex

multiplication having, up to isogeny, the following decomposition:

n+1

A nig X HAo,k = To.
k=2
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Here Aj ,,o (resp. Ag ) denotes the abelian variety of dimension
¢(N)/2, with complex multiplication (by a subfield of Q(y)), extracted

from the Jacobian of the Fermat curve and characterized by the period of

the first kind Bl -p;;1-p,.9)= Blc-a;a) (resp. B(ug; np) =

1

B[c - Z?:Zlb, bk] J, for more details see [17]. The following theorem

relates the arithmetic and geometric aspects of the problem. In order to
use the analytic subgroup theorem, which is the Haupsatz in [30], we
must avoid the loci of zeros of the hypergeometric functions that
intervene in our arguments. Let Z be the zero set of the hypergeometric

functions appearing in the statement of the hypotheses of Theorem 1.

Theorem 1. For (xy; ...; x,,.1) € QN Q", and not in Z, the abelian
variety T(xg; ...; x,41) 1S isogenous to Ty if and only if the following

hypotheses are true:
Hypothesis (h):
F(a; by; ...; byi1; € Xg; o Xp01) € QF,

and for all | € {0; ...; n — 2}, there exists a k € {2; ...; n + 1}, such that:

Hypothesis (hl(k)):

Flb,;1-by;..5¢—a; .51 =b,.1;

n+l x X X
s
| X — X9 Xp — Xk~ Xn41
1=2, i#k

Here the k-th parameter is given by ¢ —a and the (k —1)-th variable is

Xk

given by .
Xp — 1

This theorem 1is a generalization of Theorem 2.3 in [14] (the
2-dimensional case). To prove this theorem, one needs some other results,

including the following proposition that is proved later:
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Proposition 1. For all (xq; ..; x,.1) € Q" NQ, and not in Z, the
hypothesis (h) of Theorem 1:

F(a; by; ...; byiq; € X5 ooy Xpi1) € Q7
implies that T(xg; ..; x,,1) admits the subvariety Af .o in its

decomposition up to isogeny. Moreover, if | is an integer between 0 and

n—1, forall k € {2; ...; n + 1}, the hypothesis (hl(k)) in Theorem 1:

Flb,;1-by;..5¢—a; .51 =b,.1;

n+l x x X
Ak
c+1- E b;; k H kl;...; k e Q,
- Xp — X9 Xp — Xk~ Xn41
=2, ik

where the k-th parameter is given by ¢ —a and the (k —1)-th variable is

Xk
Xp —

given by T implies that T(xg; ...; x,.1) admits the subvariety Ay
in its decomposition up to isogeny.

We have the following result.

Lemma 1. In a neighborhood of the point x9 =--- = x,.1 = 0 there
exist (n +1) solutions of E,(a; by; ...; b,,1; ¢) given by integrals of Euler
type and with power series developments in c - Q[[x9; ...; x,,.1]l-

For the first solution
¢c=B1-p;1-p,0)
and for the n other solutions
c=Bl-pp;1-pp), k=2 .;n+1.
As opposed to the one variable case (where the dimension of T'(x) is
¢(N)), a problem arises here due to the dimension of 7T'(xg; ...; X,,.1),

which equals to (n +1)p(N)/2. Namely, to deduce that T(xy; ...; x,,,1) is

of CM type, is not enough to assume that the value
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F(a; by; o5 bpi1; € X935 o Xpy1)

is algebraic, for a fixed (x9;..;%,,1)€ Q"NQ with algebraic

coordinates, which is the natural condition generalizing Wolfart’s
condition. Even though this assumption enables us to extract a CM

subvariety in the decomposition of T(xg; ...; x,,,1), we do not have

enough information on the remaining factor, which is of dimension

ne(N)/2. Recall that we want a condition ensuring that T'(xy; ...; x,,,1)

is of CM type and in a given isogeny class.

In a neighborhood of (xy; ...; x,,1) = (0; ...; 0), the n+1 solutions

considered in Lemma 1 are the following:
¢ = L o(Xg; i Xp11)

=Bl -py; 1 —p,.9)F(a; by; ...; byi1; € %95 oo Xpi1)-

For k=2;..;n+1,

XL
o = JO o(Xg5 o Xpi1)

n+l
1—un— _ —LL:
= Bl —pgs 1—pg) - x5 "0k (w, — )M I |(xk —x;) M

1=2, i#k
n+1
xF|1—-by; bg; ..;a+1—¢;...5b,,1; 2 - Z b —¢
1=2, izk
Xp—xg U xp =177 xp =Xy

where the k-th parameter is given by a+1-c¢ and the (k-1)-th

Xk

variable is given by .
Xp — 1

The hypothesis ¢ < 1, that is, u; + p,,9 > 1, implies that the period
B(1-p;1-p,,9) (appearing in the first solution ;) is of the first
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kind; while the periods B(1-pg;1-pz) (appearing in the other

n+2
solutions ¢z) are of the second kind, since 2 u; = 2. Therefore we
1=0
cannot directly use algebraic values of the Lauricella functions appearing
in the other solutions in the definition of a useful exceptional set.

The functions appearing in the statement of our Theorem 1, have
their origin in the following result due to P. B. Cohen, H. Shiga and J.
Wolfart:

Recall that dimV, + dimV_; =1+ n. Let vy, ..., v,, be generators of
Hy(T(xg; ..; %41 )5 Z)-

Lemma 2 [24, Corollary 6]. For all
(225 5 %p41) € Q"N Q,
the abelian variety T(xo; ...; x,,,1) has CM if and only if there exists a

basis 00(2); o oD oper Q of the space of differential forms in V_y such

that, for all j =1; ...; n+1, the periods

J m(f),J' w(j),-_-,j o)
70 11 Tn

generate a Q -vector space of dimension 1. Here, we suppose o = o,

The differential forms used correspond to the eigenvalue é;jvl. They

have been computed explicitly in Section 6 of [5]. We recall this
construction in the next lemma.

Lemma 3 (see [5, Section 6]). Let

n+l
On_1(Xg5 .o} Xpyp) = 10 (- 1)“1‘1H(u —a i
=2
Then
-1
{(DN—].(XZ; ey xn+1); u - (,()N_]_(xZ; coey xn+1); ol u” . O)N_l(xz; o xn+1)}

is a basis of V_;.
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The calculations justifying Lemma 3 are a direct application of

Section 6 in [5]: we now summarize them. Denote o A the greatest

common divisor of o and B. In order to use regularity conditions in [5] for

differential forms of the algebraic curve X y(x9; ...; x,,,1), we let
®_1 (%95 -3 Xpi1) = ON 1 (X955 Xpi1)
1
a (1T T (4 = )%
w1 T - )

= du with a; € Z.
wN—l l

We study necessary conditions on the a; to have differential forms
of the first kind on the algebraic curve X py(xg;...; x,41). Denote
A =Nyy; B=Ny, C,=Ny; for i=2;..;n+1, D= Ny,,9. At the
points (u; w) € {(0; 0); (1; 0); (x;; 0); (o0 )}, i =2;..; n+1, regularity
conditions  of the differential form  opy_;(xg;...; X,,1) on

X N(xg; ...; x,,1) are given in Section 6 of [5] by

CIN-DA+NAA

(1) GO 2 N 1
(N-)B+NAB _

2 o 2 N 1

(3;) a; > (N_I)C§V+NACi -1, fori=2;..;n+1

(4) ag + -+ Gy

n+l
X Ci+D_Nj
-1

1
(N>1{A+B+§:frg+D)<NA(A+B+
< 1=2 1=2

- N

Consider the differential form obtained by using the minimal values

(a; )min for the q;, i = 0; ...; n + 2. For instance, in condition (1) we have

(N-DA+NAA

NAA-A
N —_—.

N

1=(A-1)+

Thus, when A|N, we have NAA- A =0 and (ag) = A -1. When

A N,wehave NAA—-A <0 and

min
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(N-1)A+ N A A NAA-A
(ao)min=E( N “1]+1=(A-D+ B[ A5+
Moreover, since — 1 < W < 0, we have E(—N /\]é _A) -1 and

(@0)pmin = A —1. Reasoning in a similar way with conditions (2) and (3;),

we obtain the following differential form constructed using the (q;)

A-1 B-1 n+l Ci-1
WA =P T )

(’)N—l(xZ; e xn+1) = w1 sau

min *

T S TR I LARTONT
=u (w-1) Hi=2(u x; - du

It remains to verify the regularity condition (4). This condition is

equivalent to

n+l
A+B+ 'zci+D_4
1=

n+1
<A+ B+ .2Ci+D—1
1=
n+1 n+1
A+B+ Y Ci+D+NA(A+B+Z, Ci+D—Nj
2 =2

1=
N ’

which is in turn equivalent to

n+l n+l
A+ B+ .2Ci+D+N/\(A+B+ .2C-+D—N)
1= 1= <3

N <

Note that

n+ n+

1 1
A+B+ .2Ci+D+N/\(A+B+ _2CL-+D—Nj
1= 1=
N

n+l1

2(A+B+ ) CL-+D)—N
< 1=2
B N




450 PIERRE-ANTOINE DESROUSSEAUX
The hypothesis p,,9 > 0 is equivalent to 3 — 2u,,,9 < 3. This is in turn

2(A+B+ THIC' +D)-N
equivalent to Z(Z?:in)—1 < 3, that is, ( ZEVZ L ) <

Thus, the hypothesis p,,9 > 0 implies condition (4). All the regularity

3.

conditions are true for the differential form op_;(x9; ...; x,.1) so that it

is of the first kind on the algebraic curve X(xg; ...; x,,1). Clearly,

n+1 L
L(,A_l . (u _ 1)371 . H‘72 (u —x; )CL 1
oN_1(%g; 3 Xpy1) = N1 = ~du

is an eigen-differential form for the eigenvalue C%_l = C]_Vl Therefore, it

is an element of V_;. The same method of proof can be applied to the

ul - opn_1(x9; s Xp4q), I =1; ..; n—1. Moreover, the differential forms

Omin = ON_1(x9; --; x,41) we have constructed using the (q;), . form a

min
basis of V_;. For more details on all of the above arguments for Lemma

3, see [5].

Let a and B be two non-zero complex numbers. From now on, we
write o ~ B when there exists a non-zero algebraic number & such that
o = 8B. For two abelian varieties, we write A £ B when A is isogenous
to B. In order to prove Proposition 1 stated above, we need the following
consequence of the analytic subgroup theorem of Wiistholz [30] (see also
[11] and [24]):

Lemma 4. Let A and B be abelian varieties defined over Q. Denote

by V4 the ‘Q -vector space generated by the numbers,

{Lw o e HY(A; Qg v € Hy(4; Z)}

and the same for B. Then V4 (Vg = {0} if and only if there exist a non-

trivial simple subvariety A' of A, and a non-trivial simple subvariety B’
of B such that A' £ B'.
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When (x9; ...; X,,1) € Q" N Q, not in Z, we have F(a; by; ...; b,.1; C;

X9; ...} Xp41) € Q7 if and only if we have the relation between non-zero

numbers,

[, oerss i ) ~ B~ s 1= o),
Therefore,
VT(xZ;‘..;x,Hl) N VAi;,HQ 2 {B(1 - py; 1 - ppee)) # {0}

Using Lemma 4, the abelian varieties T'(xg; ...; x,,1) and Ajf., ., admit,

up to isogeny, a common subvariety, noted E, and related to the period
B(1 - 331 -py49). The abelian variety Aj.,.o is stable under the

cyclotomic field Q({). Using an argument of Bertrand (see [6]), there

can therefore be two possibilities:

- either Aj., 9 is simple and then E £ Aj. .,

- or A2 2 F° where ecN, £€>1, and F is a subvariety of
dimension @(N)/2¢, with CM by a subfield & of Q) such that
[Q¢y): k] = &. Thus T(xg; ...; X,,1) 2 F* x G. But the same argument
implies that: either T'(xs; ...; x,,,;) admits no proper subvariety stable
under Q({y) and then T(xg; ...; x,,1) & F+e. oy T(x9; ...; Xp41) can
be decomposed by proper subvarieties stable under Q({p) and then
A =2peg, pe N

In both cases, the variety T(xg; ...; X,,1) contains the factor Aj., o

in its decomposition up to isogeny. This proves the first part of
Proposition 1. Let I = 0; ...; n—1 and k€ {2; ...; n + 1}. We use the same

proof, applied to the following formula, for the second part of Proposition
1:

Xk l
[ o sz i )
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n+l1

(o — 2, 7 Blugs wo + 1)

- xzo+uk+l—1(xk _ 1)#1—11_[

i=2,i#k

X F(bk; 1-bg;..;c—a;...; 1 =b,.1;

n+l x X X
c+l—z. b k__. .. LI k
i=2,i=k * Xp — X9 xp -1 Xp = Xpi1
n+1
~ Blup; po)Flby; 1 —bg; .5 c—a; .5 1=byq; c+1— Z . b
1=2,i2k
xp—xg T xp =17 Xy =X )

where, in the Lauricella functions, the k-th parameter is given by ¢ — a

and the (k-1)-th variable is given by Yk T It follows that for
Xp —

(x9; .. X,41) € Q" N Q, not in Z, the condition

F(bk; 1-by;..;¢c—a;..;1-b,,1;

n+l X X X ok
C+Z—Z. . by k I kl;...; k je@,
1=2,1#k Xp — X9 Xp — Xp — Xp41

with notation as in the statement of Theorem 1, is equivalent to
[ wlon1(eai i w00) ~ Blotos we)

and the second part of Proposition 1 follows.

Proposition 1 explains hypotheses of Theorem 1. Indeed, when the n

conditions are true, this implies that T(xg; ...; X,41) = Af 40 X Ap.g

x---x Ag. 41 Which is exactly the abelian variety 7. Conversely, assume

that (xg; ...; X,,1) € Q" N Q, not in Z, and that,
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T(x9; s Xpy1) 2 Al yyo X Ag.g X+ X Ag. i1 = T,

that is,

T(x9; ..; Xpy1) 2 BxCy x--xCpq,
where B 2 A{.,,o and C £ Ay.j, ke {2;..;n+1}. This is equivalent
to
End(B)=Endg(Af; 512)
For all k € {2; ...; n + 1}, End((C,) = End(Ag. 1)

Let Ap be the lattice of periods of the abelian variety F. This is

equivalent to
AB ®Z Q = AAi; n+2 ®Z Q

For all k € {2 .; n+1}, Ac, ®; Q = Apy, ®z Q

Since the lattice of periods of an abelian variety is stable under its type

@, this is in turn equivalent to
D(Ap ®7 Q) = Ay, ®z Q
For all k € {2; ..; n+1}, ®(A¢c, ®z Q) = Ay, , ®z Q

The type @ of the abelian variety T(xo; ...; x,,,1) can be decomposed

using the action of the cyclotomic field Q({p) on the vector space

H(T(xg; ...; x,1); Q) of differential forms of the first kind as noted
before. Thus, for all a € Q(¢y) < Endy(T(x; y)),

(DB(G) 0

D, (a)
®(a) = § ,

0 q)CrH—l (a)
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where
Gél)(a) 0
g ()
®p(a) = oy @
[2(2)
0 S/ (n a
()
(#(3))

and where, for & € {2; ...; n + 1},
6741)(0) | 0

D, (a) =
Cy, ( ) G,igb) (a)
1

0

We do not make explicit the coefficients on the diagonal of @, (a)

because we do not need them and the corresponding notation is

cumbersome.

We have o(0; ...; 0) = u™°(u - 1)°"*'du. Changing the Pochhammer

cycles to line integrals, one shows that
0
I o(0; ...; 0) ~ L @(0; ...; 0) = Bl = puy5 1 = pp9)-
70
Moreover, for [ = 0; ...; n — 1, we have

oy (05 .. 0) = w7 w -1)""du,

and therefore, for k € {1; ...; n}, we have

Xk+1
J. uloy_1(0; ...; 0) ~ -[0 won 1(0; ...; 0) ~ Blug; 1p)
Yk

because B(p; q) ~ B(p; q +1), for p, g ¢ -N.
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We see that the condition (*) is equivalent to

Vi e {0;..; n}, Ja € Q(¢y), Pgla) j ng(xg; ..; xp1) ~ | np(0;...; 0),
Yi Yi
Vk e {2 ...; n+1},

Vi €{0; ..; n}, 3a € QN ), ¢, (a)- J.y. n(cl.])e (95 oy Xpap) ~ Iy' n(cl,ll (0; ...; 0),
j j

),
(#(3))

9 seey

1 1
where np(xg; ...; X,41) = (w51); ol oagw)l; ol

Moreover, for k € {2; ...; n + 1}, we have

D (. . bl o] )
nck(xQ, o X)) = (U w—i]fl)’ U w_i%, ).

As i{l) =1, this implies for i = 0 that

J- O(X9; o Xpi1) ~ I o(0; ...; 0),
Y0 Y0

that is,

[, orss i ) ~ B~ pii 1= )
which is the hypothesis (k). For j = £ -1,

j on_1(xe; oy Xpiq) ~ J. on_1(0; ...; 0),
Yk-1 Yk-1

that is,

Xk
J.o on_1(%g5 -5 Xpa1) ~ Bluos kp),

which is the hypothesis (hl(k)). This ends the proof of Theorem 1.

Remark. We can change the hypothesis (h) and n integers [ for
which the condition (hl(k)) is true, by (h) and n -1 integers [ for which

the condition (hl(k)) is true; because the remaining subvariety F in the

decomposition, up to isogeny, T(xg; ...; x,,.1) £ F x A, is determined by
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comparison of dimension, type and stability under Q({p) of these

varieties.
In the light of Theorem 1, we make the following definition.

Definition. The exceptional set related to the Lauricella

hypergeometric function is defined as
E, = {(xz; i Xp1)€QN QT

(R) : F(a; by; ...; byiq; € Xg; o} Xpy1) € Q
Vie{0;.;n-2}, 3k el . ;n+1} (hl(k)) is true|

where (hl(k)) is the hypothesis

F[bk; 1-bg;..;c—a;..;1=b,.1;

n+1l X X X
c+1l- E b;; k D) k N k eQ
| = Xp — Xo xp —1 Xp = Xpi1
i=2,i#k

with the k-th parameter given by ¢ — a and the (k —1)-th variable given

by p Yk T By Theorem 1, it is a Zariski-dense subset of
b —

& = Alxgs s %p41) € QN Q" 1 Twgs o5 xpiq) 2 To )

The above definition generalizes the definition of the exceptional set for
the Gauss hypergeometric function by Wolfart in [27] and for the Appell
hypergeometric function by the author in [14].

5. Application of a Weak Version of the André-Oort Conjecture

This paragraph deals with the Zariski density of complex
multiplication points. The exceptional set creates a link between complex
multiplication points and the assuming of algebraic values by certain
Lauricella hypergeometric functions at algebraic points. In [8], Paula B.
Cohen shows how the following weak version of the André-Oort
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conjecture can be used for several transcendence results, see also [11].
The present paper gives an application of this conjecture for
transcendence results on the Lauricella hypergeometric functions (see
[14] for the case of Appell hypergeometric functions).

Weak version of the André-Oort conjecture [8]. Let Z be an

algebraic irreducible subvariety of V(C). If there exists a Zariski dense
subset of points of Z, whose corresponding abelian varieties are of
complex multiplication type and are in the same isogeny class, then Z is
of Hodge type.

Remarks.

- The converse of this conjecture is known.

- In the case of dimension 1, this conjecture has been proven by
Edixhoven and Yafaev, see [15].

- Recall that a subvariety of a Shimura variety is a union of varieties
of Hodge type when it is a Shimura subvariety or the image, under a

Hecke correspondence of a Shimura subvariety, see [8].

The following results show how this geometric conjecture can be used
for transcendence results.

Corollary. Assume the conditions on the p; given in Section 2 and
the weak André-Oort conjecture. Let Z(C) be the Zariski closure in V(C)
of the image ®(Q) of the map of the Theorem in Section 3. Then Z(C) is
of Hodge type if and only if the image ®(E,) of the exceptional set is
Zariski dense in Z(C).

This corollary relies on the geometric description of the exceptional
set as a set of abelian varieties in the same isogeny class as an abelian

variety T, with complex multiplication.

Theorem 2. Assume the conditions on the n; given in Section 2 and

the weak André-Oort conjecture. Assume further that the monodromy

group A(u) acts discontinuously on B,,. Then, the image of £, is Zariski
dense in Z(C) if and only if A(n) is arithmetic.
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Indeed, when the monodromy group A(n) acts discontinuously on
B,,, one knows, using [12, Proposition 12.7], that A(n) is arithmetic if
and only if M; =1. Then, as it is a Shimura variety, B,/A(u) is of

Hodge type. Using the converse (and known) sense of the preceding
conjecture, this variety therefore contains a Zariski dense subset of CM
points corresponding to the isogeny class of any fixed CM abelian variety.

Therefore the image of the exceptional set &,, is Zariski dense in Z(C).

Conversely, let us assume that the image of the exceptional set &,, is
Zariski dense in Z(C). Then, using the conjecture, we deduce that Z(C)
is of Hodge type. As a modular group, A(u) preserves a lattice, and thus
1s an arithmetic group.

Recalling the remarks at the beginning in Section 3, this theorem
deals with a special kind (and a finite list for n > 2) of monodromy

groups. Nonetheless, this leads to a list of counterexamples of a
conjecture of Coleman. This conjecture predicts the finiteness of the
number of isomorphism classes of algebraic curves, with genus greater
than or equal to 4, for which Jacobian has CM.

Counterexamples 1 and 2. By a result of [16], which was revisited
in [11] with techniques in the spirit of the present paper, there are
infinitely many x € Q for which the following algebraic curves, with
genus 4, correspond to a Jacobian with CM by the cyclotomic field Q(5),
or a subfield of Q(C5),

Vs(x): v® = w(u -1)(u - x).

Moreover, there are infinitely many x € Q for which the following

algebraic curves, with genus 6, correspond to a Jacobian with CM by the
cyclotomic field Q(¢;) or a subfield of Q(¢7),

Vo(x): 0" = w(u —1)(u - x).

Counterexample 3 [14]. There are infinitely many (x; y) € @2 for

which the following algebraic curves, with genus 4, correspond to a
Jacobian with CM by the cyclotomic field Q((5) or a subfield of Q((5),
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V(x):v® = w(w -1)(w—x)(u-y).

Counterexample 4. This example is new, but uses the same type of
reasoning as in [14]. There are infinitely many (x; y; z2) € @3 for which

the following algebraic curves, with genus 6, correspond to a Jacobian
with CM by the cyclotomic field Q(C3) or a subfield of Q(L3),
Va(x): v® = w(w 1) (- x)@w-y)(u - 2).

In cases of 3 and 4, the main part of the proof is based on the method
of [11]. Nonetheless, the proof has to be modified because, unlike in the
dimension 1 case, the construction of the exceptional set of Section 4
cannot be used directly. As counterexample 3 was treated in [14], we

focus on the counterexample 4:

Consider the family of algebraic curves )s(x; y; z), parameterized by
(% 3:2) € Q
Va(; 33 2) 07 = u(w = 1) (u - x) (u - y)(u-2).
Each of them is birationally isomorphic to the algebraic curve

Xa(x; 35 2) w0’ = ulw = 1) (w = %) (u - ») (u - 2)F.

This isomorphism is given by (&; v) — (u; w = v?) with inverse (u; w) >

(10 - #0002 2))

w2

We then have to use the exceptional set, but in this case the condition
By + H,ue9 <1 is not true. This means that the point P(0; 0; 0) is not a
stable point and we cannot use the abelian variety T = T'(0; 0; 0) to

describe the exceptional set. We can adapt the previous construction as
follows. Consider the stable point Py (1; 0; 0), intersection of the stable

surfaces Sg(12):x =1 (g +pg <1), Sg(03): y =0 (ug + g <1) and
Sg(04) : 2 =0 (ug + g <1). Applying the Corollary, this point

corresponds to an abelian variety with complex multiplication, described

as follows:
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Té = T(l, 0, O) 2 A073 X AO,4 X AI,Z X A,,

where A' is an algebraic curve with complex multiplication by the field

Q(¢3) and characterised by the period B(%; %) Indeed, around the

1
point (1; 0; 0) there are 4 solutions: Io o, Jlx o, Ig)m and Jozco of the

differential system E4(g' 1.1.1. é) which can be written as series in

¢ Q[[x - 1; y; z]]. For the first solution

1 1
¢c=B1-(no+rg)1- (1o +ng)) = B(g; 5),
for the second
1_uN-nl2.2
¢ = BL-wi1-w) - B(%: 3,

and for the others

c:B(l—uO;l—uk):B(%;%), k=3 or4.
(See [10, Paragraph 6, Theorem 3] or [14, pp. 52-54] for more details.)
Thus we can construct, in a similar way, an exceptional set related to the

base point P, (1; 0; 0), for which the geometric description is

&y =1 y;2) e Q2NQ : Tlx; y; 2) & T}

This enables us to finish the proof: the monodromy group of the system of
differential equations E’4(g; l; l; l; ij is AE%

arithmetic group, as we can check using Proposition 12.7 in [12]. We can

I l) This i1s an
3

therefore use the known part of Theorem 2, that is the known sense

direction of the weak André-Oort Conjecture. The image of &5 is Zariski
dense in Z(C), so card €5 =. As N =3 is a prime number, the

Jacobian decomposes as follows (see the remark in Section 2):

JacXs(x; y; 2) 2 T(x; y; 2)

and the genus is g = dim JacX3(x; y; z) = dim T'(x; y; 2) = 5
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There are infinitely many values (x;y;2)e @3 for which
JacX;3(x; y; 2) 2 Ty, and therefore for which JacXs(x; y; z) has complex
multiplication by the cyclotomic field Q({3) or by a subfield of Q(&(3)).
This ends the proof.

6. A Transcendence Result

In the following results, each hypergeometric function is written as a
non-zero quotient of periods of the first or of the second kind on the same

abelian variety. Essential to our arguments is a result about linear
independence over Q of values of the Beta function. This result is due to

Wolfart and Wiistholz (see [28, Satz 4]), and 1is a corollary of the analytic
subgroup theorem (the Haupsatz of [30]).

Theorem 3. For all n-tuples (xs; ...; x,,,1) in the exceptional set &,,

the following 2n numbers are zero or transcendental:
Fn-1l-a;1-by;.;1-by, ;n+1-1-¢; x9; ..; Xp41), L=0,..,n—1,

and

Fl1-by;by;..5a+1—c;...; by,1s

e x x X
2+ E b; —¢c; k N kl;...; k ,k=2,...,n+1,
= Xp — X2 Xk — Xk~ Xn+1
1=2,1#k

where the k-th parameter is given by a +1 - ¢ and the (k —1)-th variable

Xk
Xp —1'

R

is given by

This is proven using the same tools as in the preceding parts of this

paper, in particular we work with the differential forms

-1
O(x9; -} Xpi1); ON_1(X9; vy Xpi1 ) ooy W' ON_1 (X9} o Xppi1)

which form a basis of V] U V_;; and with their corresponding periods.



462 PIERRE-ANTOINE DESROUSSEAUX

Denote

5/5 _ B(Hl; Hn+2) k=2

= , =2;.;n+1.
B(ug; o)

We can translate Lemma 2 into the following statement about Lauricella
hypergeometric functions. Let Z' be the zero set of the functions

appearing in Lemma 5.

Lemma 5. For all (xq; ..; X,,1) € Q" NQ, not in Z', the abelian
variety T(xy; ...; x,,41) has CM if and only if for all k € {2; ...; n + 1}, we

have

F(a; by; ...; b1 € %95 o3 X541) ~ 8EM

x F|1—-by; by; ..; a+1—c; .. b,415

& x x x
2+ E b - ¢ k D) k S k ,
| = Xp, — Xg xp —1 X = Xpi1
1=2,i2k

where the k-th parameter is given by a +1 — ¢ and the (k —1)-th variable

X
xk—l’

is given by and we also have for all 1 € {0; ...; n — 1},
Fn-1l-a;1-bg;..;1=by;n+1-1-¢; x9; ...; Xp41) ~ BéM

xFlbp; 1=bg; ..5c—a; .5 1=by,,1;

n+l

x x x

c+1- E b;; k e kl;...; k ,
| - Xp — X2 Xp — Xk~ Xn41
1=2,1#k

where the k-th parameter is given by ¢ —a and the (k —1)-th variable is

Xk
Xp -1

given by
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Changing integration around Pochhammer cycles to line integration,

. . h
we write the periods as f g (xg9; ...; x,41) and express these as
g

hypergeometric Lauricella functions multiplied by a B(p; q).

For instance, when T'(xg; ...; ,,,1) has CM (x9; ...; x,,.1) € Q" NQ,

not in Z', we have

J. O(X9; oy Xppyp) ~ o0 ~ I (X9 o5 Xpi1)-
Y0 Tn
This implies
0 Xn+1
L O(X9; oy Xppyp) ~ 0 ~ Jo (X9 s Xpi1)-
On the other hand,

o0
L o(%g; s Xpa1) = BL—py3 1= ppy0) F(a5 bys o5 bpins € K95 oo Xpi1)),

and for all k € {2; ...; n + 1},
X
_[0 o223« Xpy1) ~ B = pgs 1 po)

x F(l —bp; by; s a+1—c¢; o5 byiqs

n+1 X X X
2+ o b —-¢ k D k D k ,
i=2,i#k Xp — X9 xp —1 Xp — X4l

where the k-th parameter is given by a+1-c¢ and the (k-1)-th

variable is given by

Xk . Now, it is well known that
Xp — 1

Bl-p;1-q)~ 5 )forp,qu

B(p; q

which proves the first part of Lemma 5. For the remainder of that lemma,
we use the following expressions. For (x9; ...; x,,,1) € Q"NQ, notin Z',

we have
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L ulﬁ)N—l(xfz; i Xpi1)

=B, o +tn—-1-Lw)F(n-1-a;1-by;..;1=-by;n+1-1-c; x9; ...; Xpp31)
~ B(u; ppao)F(n—1-a;1-bg; .5 1=b, ;5 n+1-1—0¢; X9 .. Xppy1)

and

[ o sz i )

1-1 -1 n+1 1
= g0 g - L G ) T B o + )

)

X F[bk; 1-bg;..;c—a;..;1—=b,.1;

n+l x x X
C+Z—Z. b k e k I k
i=2,i=k * Xp — X9 xp —1 Xp — Xpi1

~ B(uo; uk)F(bk; 1-bg;..5¢c—a;...;1-b,,1;

n+l xp, xp, Xy,
c+1- 2,72‘}’bi; NS - R — ,
1=2,1#kR Xp X9 Xp X Xn+1

where the k-th parameter is given by ¢ — a and the (k —1)-th variable is

. x
given by k

pa— This completes the proof of Lemma 5.
v -

R

Now, when hypotheses of Theorem 1 are true, T(xy; ...; x,.1) is CM,

because it is isogenous to the CM variety 7. Then, the condition

TNk . .
F(a; by; ...; byi1; ¢ x9; ..; X,41) € Q implies

F[l —bp; bg; s a+1—c; .5 b,0q;

n+l X X X
2+ .y kbi—c; _k H ’il;...; _k )
1=2,1# Xp — X9 Xk Xp — Xp+1

~ Bl t-pe) o Bl o) gk
B -3 1-ppe)  Blugs myyo)
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where the k-th parameter is given by a+1-c¢ and the (k-1)-th

.

variable is given by .
Xp — 1

A similar expression can be found for the 2n numbers studied in this

theorem. Finally, one proves that the numbers SIéM are transcendental.

The following lemma gives this proof.

Lemma 6 [29]. A non-zero period of the first kind and a non-zero

period of the second kind on the same abelian variety defined over Q are

Q linearly independent.

In the present case, the periods B(u;; p,.2) and B(ug; pg) are

respectively of the first and the second kind, because by hypothesis
1-c¢>0, that is, p; +1,,9 >1 and so pj +pg <1 for all ke {2;..;

n +1}. As they are non-zero periods of the same abelian variety T(xg;

.} X,41) defined on Q because (xg;..;%,.1)€ Q" NQ, they are

linearly independent on Q. Thus the S}EM are transcendental numbers.

Remark. In the case of one variable, applying this to the classical

Gauss hypergeometric function leads to the following result (see [13,
p- 29)):

For all a,b,cecQN]0;1[, a b<c For all xe Q, when
F(a; b; ¢; x) is an algebraic number, then F(b+1-c¢;a+1-¢; 2—¢; x)
is a transcendental number.

In particular, using the results of Beukers and Wolfart [7] and

Archinard [4], this gives explicit points at which the value of the Gauss

hypergeometric function is transcendental.
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