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Abstract 

In this paper, by using Ahlfors’ theory of covering surface, the 
existence of Nevanlinna direction of meromorphic function dealing 
with multiple values is obtained. Results are obtained extending the 
previous results. 

1. Introduction and Main Results 

In this paper, meromorphic function always means a function 
meromorphic in the whole complex plane. Assume that the basic definitions, 
theorems and standard notations of the Nevanlinna theory for meromorphic 
function are known (see [2] or [12]). The singular direction of meromorphic 
function ( )zf  is one of main objects of value distribution theory. Since Julia 

introduced the concept of Julia direction and showed its existence for a 
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meromorphic function in 1919, several types of singular directions have been 
introduced and studied. In 1928, Valiron [9] introduced the concept of Borel 
direction and established its existence for meromorphic function. After that, 
there are many investigated results on the study of the singular direction of 
meromorphic function, we refer the reader to the book Chuang [1] and Yang 
[12]. In 1983, Lü and Zhang [4] introduced the concept of Nevanlinna 
direction. They firstly defined the deficiency and deficient value with respect 
to a direction and finally by a Nevanlinna direction meant a direction for 
which the total sum of deficiencies does not exceed 2. Later, Sun [5] and 
Zhang [14] gave some new definition of Nevanlinna direction and got some 
better results. However, it was not discussed whether there exists a 
Nevanlinna direction concerning multiple values. Recently, [11] considered 
the existence of Nevanlinna direction concerning multiple values with 
multiplicity no less than 3. In this paper, we continuously investigate this 
problem in general. Especially, we considered the existence of Nevanlinna 
direction concerning multiple values with multiplicity no less than ( ).1≥l  

Suppose that E is a subset of ,C  let 
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where ( )frT ,  is the Ahlfors-Shimizu’s characteristic function. Denote the 

following angular domain by 

( ) { }.arg,, ε<θ−∈=εθΩ zz C  

When E is a sector { } ( ),,, εθΩ<∈ ∩rzz C  we denote ( ) =fES ,  

( )( )frS ,,, εθΩ  and 
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For any ,∞∈ Ca  let ( )arn ,,, εθ  be the number of zeros, counted according 

to their multiplicities, of ( ) azf −  in the sector { } ( ),,, εθΩ<∈ ∩rzz C  

and ( )arnl ,,,) εθ  be the number of zeros with multiplicities ,l≤  of 

( ) azf −  in the sector { } ( ),,, εθΩ<∈ ∩rzz C  where l is any positive 

integer. Denote 
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In addition, we also need the notations (see [13]) 
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Follows Lü and Zhang’s definitions of Nevanlinna direction of ( ),zf  we 

give the following definitions. 

Definition 1. For any ,∞∈ Ca  set 
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We call ( ) ( ( ))θΘθΘ ,or, ) aa l  the deficiency (precise deficiency) of the 

value a with respect to direction .arg: θ=zL  We call the value a the 

deficient (precise deficient) value of ( )zf  with respect to direction zL arg:  

θ=  if ( ) 0, >θΘ a  ( ( ) ).0,or ) >θΘ al  
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Definition 2. We call θ=zL arg:  the Nevanlinna direction of ( )zf  if 

( )∑
∞∈

≤θΘ
Ca

a 2,  

holds for any finitely many deficient value a; and call θ=zL arg:  the 

Nevanlinna direction of ( )zf  dealing with multiple values if 

( )∑
∞∈

+≤θΘ
Ca

l l
la 22,)  

holds for any finitely many deficient value a. 

In [4], Lü and Zhang proved the following theorem for the existence of 
Nevanlinna direction of ( ).zf  

Theorem A. Let ( )zf  be a meromorphic function and satisfy 

 ( ) .
log

,suplim 2 ∞=
∞→ r

frT
r

 (1) 

Then ( )zf  must have a Nevanlinna direction. 

In this paper, we shall study the existence of Nevanlinna direction 
dealing with multiple values and prove the following theorem. 

Theorem 1. Let ( )zf  be a meromorphic function and satisfy (1). Then 

there at least exists a direction θ=zL arg:  which is a Nevanlinna direction 

of ( )zf  dealing with multiple values. 

2. Some Lemmas 

In order to prove Theorem 1, we need the following lemmas. 

Lemma 1 [10]. Let ( )zf  be meromorphic in the complex plane. If { }va  
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for any ,0, δ<ϕ<ϕ  where H is a constant depending only on ,va  =v  
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Lemma 2 (Zhang [13]). Under the condition of Lemma 1, we have 
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Mingzhong Chen and Zhaojun Wu 194 

or 

( ) ( )( ) ( )( )frTfrTHr ,,,log,,,2,, δθΩδθΩδπ≤δ+θδ−θχ  (4) 

with at most one exceptional set δE  of r, where δE  consists of a series of 

intervals and satisfies 
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Lemma 3 (Li and Gu [3]). Suppose that ( )rΨ  is a nonnegative 

increasing function in ( )∞,1  and satisfies 
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We are now in the position to prove Theorem 1. 

To prove of Theorem 1 suppose that ( ),2,0 π∈δ  using Lemma 3 and 

the same argument as Li and Gu [3], there exists a sequence of { }nr  and 

some θ such that for any ,0 δ<ϕ<  we have 
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We are now in the position to prove that θ=zL arg:  is the Nevanlinna 

direction in Theorem 1. 
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Otherwise, for an arbitrary sufficiently small ,0>ε  there exists 
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then there exists some ( ),,0: δ∈ϕ′ϕ′  such that for any ( ),,0 ϕ′∈ϕ  the 

following inequality holds: 
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For any ( ),,0 ϕ′∈ϕ  we define an increasing function as following: 
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From (6) we deduce ( ) ( ].1,0∈ϕT  By the increasing of ( )ϕT  in interval 

[ ]ϕ′,0  and the continuous theorem for monotonous function, we see that all 

discontinuous points of ( )ϕT  constitute a countable set at most (see [11]). 

Thus, by Lemmas 1 and 2, we have 
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holds for any .0 δ<ϕ′<δ′<ϕ<  It follows from (5), (7), (8) and the 

definition of ( )ϕT  that 

 ( ) ( ).12222 δ′⎟
⎠
⎞⎜

⎝
⎛ ε+−+−≤ϕ⎟

⎠
⎞⎜

⎝
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Note that ( ) ( )δ′→ϕ TT  as .δ′→ϕ  Combining this result and (9), we have 

( ) .0=δ′T  This contradicts with ( ) ( ].1,0∈δ′T  Theorem 1 follows. 
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