MODIFICATION OF CZ_{3}-FREE CONDITION TO HAVE A CYCLE CONTAINING SPECIFIED VERTICES

Takeshi Sugiyama

University of Tsukuba
Otsuka 3-29-1, Bunkyo-ku
Tokyo, 112-0012, Japan
e-mail: sugiyama@gssm.otsuka.tsukuba.ac.jp

Abstract

In [4], Faudree et al. showed that if a 2 -connected graph contains no $K_{1,3}$ and Z_{3} as an induced subgraph, then the graph is Hamiltonian (except for specified graphs). In this paper, we consider the extension of this result to cycles passing through specified vertices. We define the families of graphs which are extension of the forbidden pair $K_{1,3}$ and Z_{6}, and consider that the forbidden families imply the existence of cycles passing through specified vertices.

1. Introduction

In this paper, we only consider finite undirected graphs without loops or multiple edges. For standard graph-theoretic terminology not explained in this paper, we refer the reader to [3].

For a family $\mathcal{F}=\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ of graphs, a graph G is called an \mathcal{F}-free graph if G contains no induced subgraph isomorphic to any H_{i} with
$i=1,2, \ldots, k$. A path or a cycle that includes all vertices of the graph is called a hamiltonian path or a hamiltonian cycle, respectively. A hamiltonian graph is one that contains a hamiltonian cycle, and a traceable graph is one that contains a hamiltonian path.

There are a lot of results on the existence of a hamiltonian path or cycle in graphs. As the generalizations of such research, some studies on the existence of a path or a cycle passing through specified vertices have been done ([1], [2] and [5]). Though forbidden subgraphs are major tool to find a hamiltonian path or cycle, there are few results using the condition on forbidden subgraphs to find a cycle passing through specified vertices. (The result in [5] uses degree condition in addition to the condition on forbidden subgraphs.) Our main results shown later use only the condition on forbidden subgraphs.

Figure 1. H_{1} and H_{2}.

Figure 2. C and Z_{3}.

In 1995, Faudree et al. gave the following result. The graphs H_{1} and H_{2} are shown in Figure 1.

Theorem 1 (Faudree et al. [4]). Let G be a 2-connected graph. If G is a $C Z_{3}$-free graph, then G is either hamiltonian or isomorphic to H_{1} or H_{2}.

In this section, we consider the generalization of Theorem 1, for the existence of cycles passing through specified vertices. We propose the following problem.

Problem 2. Let G be a 2 -connected graph and $S \subseteq V(G)$. If G is a $C Z_{3}(S)$-free graph, then G contains a cycle D such that $S \subseteq V(D)$ (except for some graphs).

For the definition of $\mathrm{CZ}_{3}(S)$-free graphs, we define families of graphs. Let G be a graph and $S \subseteq V(G)$. In [6], $C(S)$ is defined.

$o \in S^{\prime}$
Figure 3. A graph G^{\prime} and S^{\prime}.
We define a family of graphs $Z_{3}(S)$ whose members are the graphs F^{\prime} satisfying the following properties:
(1) F^{\prime} contains a triangle T with $V(T)=\left\{x_{1}, x_{2}, x_{3}\right\}$ (we call x_{i} a root of F^{\prime}),
(2) there exists a path P^{1} such that x_{1} is an end vertex of $P^{1},\left|V\left(P^{1}\right)\right|$ ≥ 4 and $V\left(F^{\prime}\right)=V\left(P^{1}\right) \cup V(T)$,
(3) the end vertex of P^{1} which is not x_{1} is a vertex of S (we call such a vertex of P^{1} a leaf of F^{\prime}),
(4) internal vertices of P^{1} (except for x_{1}^{+}, x_{1}^{+2}) are contained in $V(G) \backslash S$ and
(5) $E\left(F^{\prime}\right)=E\left(P^{1}\right) \cup E(T)$.

If there exists no induced subgraph which is a member of $C(S)$ and $Z_{3}(S)$ in G, then we call G a $C Z_{3}(S)$-free graph. It is clear that a $C Z_{3}(V(G))$-free graph is a $C Z_{3}$-free graph, and a $C Z_{3}$-free graph is a $C Z_{3}(S)$-free graph for every subset S of $V(G)$.

Theorem 1 implies that there exists an exception of Problem 2 for the case $S=V(G)$. Now we consider the exceptions of Problem 2. By the definition of $\mathrm{CZ}_{3}(S)$-free, H_{1} and H_{2} are also exceptions of Problem 2 (if $S=V\left(H_{1}\right)$ or $V\left(H_{2}\right)$). But the graph G^{\prime} with $S^{\prime} \subseteq V\left(G^{\prime}\right)$ (see Figure 3) shows the existence of more exceptions.

We define several families of graphs which will be parts of the exceptions of Problem 2. First, we define a family \mathcal{A} to be the set of graphs A satisfying the following properties:
(1) A contains a triangle $T\left(V(T)=\left\{a_{1}, a_{2}, a_{3}\right\}\right)$,
(2) A does not contain triangles other than T, and
(3) A is 2-connected.

We define a family \mathcal{A}^{\prime} to be the set of graphs A^{\prime} satisfying the following properties:
(1) A^{\prime} contains a triangle $T\left(V(T)=\left\{a_{1}, a_{2}, a_{3}\right\}\right)$,
(2) for any triangle T^{\prime} in $A^{\prime},\left\{a_{1}, a_{2}\right\} \in V\left(T^{\prime}\right)$ (we call a_{1}, a_{2} bases of A^{\prime}), and
(3) A^{\prime} is 2-connected.

We define a family \mathcal{B} to be the set of graphs B satisfying the following properties:
(1) B contains a $K_{1,2} R\left(V(R)=\left\{b_{1}, b_{2}, b_{3}\right\}\right.$ and $\left.d_{R}\left(b_{1}\right)=d_{R}\left(b_{2}\right)=1\right)$,
(2) B does not contain triangles, and
(3) $B+b_{1} b_{2}$ is 2-connected.

We define a family \mathcal{B}^{\prime} to be the set of graphs B^{\prime} satisfying the following properties:
(1) B^{\prime} contains a $K_{1,2} R\left(V(R)=\left\{b_{1}, b_{2}, b_{3}\right\}\right.$ and $\left.d_{R}\left(b_{1}\right)=d_{R}\left(b_{2}\right)=1\right)$,
(2) B^{\prime} does not contain triangles,
(3) $B^{\prime}+b_{1} b_{2}$ is 2 -connected, and
(4) every induced $b_{1}-b_{2}$ path has length at most 2 .

We define a family \mathcal{C} to be the set of graphs D satisfying the following properties:
(1) D contains an edge $c_{1} c_{2}$ (we call c_{1}, c_{2} bases of D),
(2) D contains an independent set of vertices $M(|M| \geq 2)$,
(3) D contains a vertex c_{3} (we call c_{3} the root of D),
(4) for each $i \in\{1,2,3\}, c_{i}$ is adjacent to all vertices of M,
(5) $D \backslash M$ is disconnected,
(6) D is 2-connected, and
(7) every triangle of D contains both c_{1} and c_{2}.

Now we define six families of exceptions.
Let \mathcal{G}_{1} be a family of pairs of graphs and their subsets of vertices $\left(G, S_{1}\right)$ satisfying the following properties:
(1) G contains three subgraphs A_{1}, A_{2}, A_{3} such that for each $i \in\{1,2,3\}, \quad A_{i}$ is isomorphic to a member of \mathcal{A}^{\prime} containing a unique triangle T_{i} with $V\left(T_{i}\right)=\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\}$ (a_{1}^{i} and a_{2}^{i} are bases of A_{i}),
(2) G contains two subgraphs A_{4}, A_{5} such that for each $i \in\{4,5\}, A_{i}$ is isomorphic to a member of \mathcal{A} containing a unique triangle T_{i} with $V\left(T_{i}\right)=\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\}$,
(3) A_{1}, A_{2}, A_{3} are pairwise disjoint, and $A_{4} \cap A_{5}=\varnothing$,
(4) for each $j \in\{1,2,3\}, A_{j} \cap A_{4}=\left\{a_{1}^{j}\right\}=\left\{a_{j}^{4}\right\}, A_{j} \cap A_{5}=\left\{a_{2}^{j}\right\}=\left\{a_{j}^{5}\right\}$, and
(5) $S_{1} \subseteq V(G)$ satisfies $\left\{a_{3}^{1}, a_{3}^{2}, a_{3}^{3}\right\} \subseteq S_{1} \subseteq\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}, a_{1}^{2}, a_{2}^{2}, a_{3}^{2}\right.$, $\left.a_{1}^{3}, a_{2}^{3}, a_{3}^{3}\right\}$.

Figure 4. Example $D \in \mathcal{C}$.

Figure 5. A graph $G \in \mathcal{G}_{1}$.

Figure 6. A graph $G \in \mathcal{G}_{2}$.
Let \mathcal{G}_{2} be a family of pairs of graphs and their subsets of vertices $\left(G, S_{2}\right)$ satisfying the following properties:
(1) G consists of five subgraphs $A_{1}, A_{2}, A_{4}, A_{5}, B$ such that for each $i \in\{1,2\}, A_{i}$ is isomorphic to a member of \mathcal{A}^{\prime} containing a unique triangle T_{i} with $V\left(T_{i}\right)=\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\} \quad\left(a_{1}^{i}\right.$ and a_{2}^{i} are bases of $\left.A_{i}\right)$, for each $i \in\{4,5\}, A_{i}$ is isomorphic to a member of \mathcal{A} containing a unique triangle T_{i} with $V\left(T_{i}\right)=\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\}$ and B is isomorphic to a member of \mathcal{B} containing a unique path T_{3} with $V\left(T_{3}\right)=\left\{a_{1}^{3}, a_{2}^{3}\right.$, $\left.a_{3}^{3}\right\}, E\left(T_{j}\right)=\left\{a_{1}^{j} a_{3}^{j}, a_{2}^{j} a_{3}^{j}\right\}$,
(2) A_{1}, A_{2}, B are pairwise disjoint, and $A_{4} \cap A_{5}=\varnothing$,
(3) for each $j \in\{1,2\}, A_{j} \cap A_{4}=\left\{a_{1}^{j}\right\}=\left\{a_{j}^{4}\right\}, A_{j} \cap A_{5}=\left\{a_{2}^{j}\right\}=\left\{a_{j}^{5}\right\}$,
(4) $B \cap A_{4}=\left\{a_{1}^{3}\right\}=\left\{a_{3}^{4}\right\}, B \cap A_{5}=\left\{a_{2}^{3}\right\}=\left\{a_{3}^{5}\right\}$, and
(5) $S_{2} \subseteq V(G)$ satisfies $\left\{a_{3}^{1}, a_{3}^{2}, a_{3}^{3}\right\} \subseteq S_{2} \subseteq\left\{a_{3}^{1}, a_{2}^{1}, a_{3}^{1}, a_{1}^{2}, a_{2}^{2}, a_{3}^{2}, a_{3}^{3}\right\}$.

Let \mathcal{G}_{2}^{\prime} be a family of pairs of graphs and their subsets of vertices (G, S_{2}^{\prime}) satisfying the following properties:
(1) G consists of five subgraphs $A_{1}, A_{2}, A_{4}, A_{5}, B$ such that for each $i \in\{1,2\}, A_{i}$ is isomorphic to a member of \mathcal{A}^{\prime} containing a unique triangle T_{i} with $V\left(T_{i}\right)=\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\}\left(a_{1}^{i}\right.$ and a_{2}^{i} are bases of $\left.A_{i}\right)$, for each $i \in\{4,5\}, A_{i}$ is isomorphic to a member of \mathcal{A} containing a unique triangle T_{i} with $V\left(T_{i}\right)=\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\}$ and B^{\prime} is isomorphic to a member of \mathcal{B}^{\prime} containing a unique path T_{3} with $V\left(T_{3}\right)=\left\{a_{1}^{3}, a_{2}^{3}\right.$,

$$
\left.a_{3}^{3}\right\}, E\left(T_{j}\right)=\left\{a_{1}^{j} a_{3}^{j}, a_{2}^{j} a_{3}^{j}\right\}
$$

(2) A_{1}, A_{2}, B are pairwise disjoint, and $A_{4} \cap A_{5}=\varnothing$,
(3) for each $j \in\{1,2\}, A_{j} \cap A_{4}=\left\{a_{1}^{j}\right\}=\left\{a_{j}^{4}\right\}, A_{j} \cap A_{5}=\left\{a_{2}^{j}\right\}=\left\{a_{j}^{5}\right\}$,
(4) $B^{\prime} \cap A_{4}=\left\{a_{1}^{3}\right\}=\left\{a_{3}^{4}\right\}, B^{\prime} \cap A_{5}=\left\{a_{2}^{3}\right\}=\left\{a_{3}^{5}\right\}$, and
(5) $S_{2}^{\prime} \subseteq V(G)$ satisfies $\left\{a_{3}^{1}, a_{3}^{2}, a_{3}^{3}\right\} \subseteq S_{3}^{\prime} \subseteq\left\{a_{3}^{1}, a_{2}^{1}, a_{3}^{1}, a_{1}^{2}, a_{2}^{2}, a_{3}^{2}\right.$, $\left.a_{1}^{3}, a_{2}^{3}, a_{3}^{3}\right\}$.

Figure 7. A graph $G \in \mathcal{G}_{3}$.
Let \mathcal{G}_{3} be a family of pairs of graphs and their subsets of vertices $\left(G, S_{3}\right)$ satisfying the following properties:
(1) G consists of five subgraphs $A_{1}, A_{4}, A_{5}, B_{2}, B_{3}$ such that A_{1} is isomorphic to a member of \mathcal{A}^{\prime} containing a unique triangle T_{i} with $V\left(T_{i}\right)=\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}\right\}\left(a_{1}^{1}\right.$ and a_{2}^{1} are bases of $\left.A_{i}\right)$, for each $i \in$ $\{4,5\}, A_{i}$ is isomorphic to a member of \mathcal{A} containing a unique triangle T_{i} with $V\left(T_{i}\right)=\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\}$ and for each $j \in\{2,3\}, B_{j}$ is isomorphic to a member of \mathcal{B} containing a unique path T_{j} with $V\left(T_{j}\right)=\left\{a_{1}^{j}, a_{2}^{j}, a_{3}^{j}\right\}, E\left(T_{j}\right)=\left\{a_{1}^{j} a_{3}^{j}, a_{2}^{j} a_{3}^{j}\right\}$,
(2) A_{1}, B_{2}, B_{3} are pairwise disjoint, and $A_{4} \cap A_{5}=\varnothing$,
(3) $A_{1} \cap A_{4}=\left\{a_{1}^{1}\right\}=\left\{a_{1}^{4}\right\}, A_{1} \cap A_{5}=\left\{a_{2}^{1}\right\}=\left\{a_{1}^{5}\right\}$,
(4) for each $j \in\{2,3\}, B_{j} \cap A_{4}=\left\{a_{1}^{j}\right\}=\left\{a_{j}^{4}\right\}, B_{j} \cap A_{5}=\left\{a_{2}^{j}\right\}=\left\{a_{j}^{5}\right\}$, and
(5) $S_{3} \subseteq V(G)$ satisfies $\left\{a_{3}^{1}, a_{3}^{2}, a_{3}^{3}\right\} \subseteq S_{3} \subseteq\left\{a_{3}^{1}, a_{2}^{1}, a_{3}^{1}, a_{3}^{2}, a_{3}^{3}\right\}$.

Let \mathcal{G}_{4} be a family of pairs of graphs and their subsets of vertices $\left(G, S_{4}\right)$ satisfying the following properties:

Figure 8. A graph $G \in \mathcal{G}_{4}$.

Figure 9. A graph $G \in \mathcal{G}_{5}$.
(1) G consists of five subgraphs $B_{1}, B_{2}, B_{3}, A_{4}, A_{5}$ such that for each $i \in\{4,5\}, A_{i}$ is isomorphic to a member of \mathcal{A} containing a unique triangle T_{i} with $V\left(T_{i}\right)=\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\}$ and for each $j \in\{1,2,3\}, B_{j}$
is isomorphic to a member of \mathcal{B} containing a unique path T_{j} with $V\left(T_{j}\right)=\left\{a_{1}^{j}, a_{2}^{j}, a_{3}^{j}\right\}, E\left(T_{j}\right)=\left\{a_{1}^{j} a_{3}^{j}, a_{2}^{j} a_{3}^{j}\right\}$,
(2) B_{1}, B_{2}, B_{3} are pairwise disjoint, and $A_{4} \cap A_{5}=\varnothing$,
(3) for each $i \in\{1,2,3\}, B_{i} \cap A_{4}=\left\{a_{1}^{i}\right\}=\left\{a_{i}^{4}\right\}, B_{i} \cap A_{5}=\left\{a_{2}^{i}\right\}=\left\{a_{i}^{5}\right\}$, and
(4) $S_{4} \subseteq V(G)$ satisfies $S_{4}=\left\{a_{3}^{1}, a_{3}^{2}, a_{3}^{3}\right\}$.

Let \mathcal{G}_{5} be a family of pairs of graphs and their subsets of vertices $\left(G, S_{5}\right)$ satisfying the following properties:

Figure 10. (G, S).
(1) G consists of five subgraphs $B_{1}, B_{2}, A_{4}, A_{5}, D$ such that for each $i \in\{4,5\}, A_{i}$ is isomorphic to a member of \mathcal{A} containing a unique triangle T_{i} with $V\left(T_{i}\right)=\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\}$, for each $j \in\{1,2\}, B_{j}$ is isomorphic to a member of \mathcal{B} containing a unique path T_{j} with $V\left(T_{j}\right)=\left\{a_{1}^{j}, a_{2}^{j}, a_{3}^{j}\right\}, E\left(T_{j}\right)=\left\{a_{1}^{j} a_{3}^{j}, a_{2}^{j} a_{3}^{j}\right\}$, and D is isomorphic to a member of \mathcal{C} containing a graph $X\left(V(X)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right.\right.$, $\left.\left.x_{5}\right\}, E(X)=\left\{x_{1} x_{2}, x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{3}, x_{2} x_{4}, x_{3} x_{5}, x_{4} x_{5}\right\}\right)$,
(2) B_{1}, B_{2}, D are pairwise disjoint, and $A_{4} \cap A_{5}=\varnothing$,
(3) for each $i \in\{1,2\}, B_{i} \cap A_{4}=\left\{a_{1}^{i}\right\}=\left\{a_{i}^{4}\right\}, B_{i} \cap A_{5}=\left\{a_{2}^{i}\right\}=\left\{a_{i}^{5}\right\}$,
(4) $D \cap A_{4}=\left\{x_{1}\right\}=\left\{a_{3}^{4}\right\}, D \cap A_{5}=\left\{x_{2}\right\}=\left\{a_{3}^{5}\right\}$, and
(5) $S_{5} \subseteq V(G)$ satisfies $S_{5}=\left\{a_{3}^{1}, a_{3}^{2}, x_{3}\right\},\left\{a_{3}^{1}, a_{3}^{2}, x_{4}\right\},\left\{a_{3}^{1}, a_{3}^{2}, x_{5}\right\}$, $\left\{a_{3}^{1}, a_{3}^{2}, x_{3}, x_{5}\right\}$ or $\left\{a_{3}^{1}, a_{3}^{2}, x_{4}, x_{5}\right\}$.

Let \mathcal{G}_{S} be a set of pairs of a graph G and a subset of $V(G)$ such that

$$
\mathcal{G}_{S}=\mathcal{G}_{1} \cup \mathcal{G}_{2} \cup \mathcal{G}_{2}^{\prime} \cup \mathcal{G}_{3} \cup \mathcal{G}_{4} \cup \mathcal{G}_{5} .
$$

Proposition 3. If $(G, S) \in \mathcal{G}_{S}$, then G is a 2 -conncected $C Z_{3}(S)$-free graph.

Proof. We suppose $(G, S) \in \mathcal{G}_{1}$. We assume that (G, S) satisfies the following properties:
(1) G contains three subgraphs A_{1}, A_{2}, A_{3} such that for each $i \in$ $\{1,2,3\}, A_{i}$ is isomorphic to a member of \mathcal{A}^{\prime} containing a unique triangle T_{i} with $V\left(T_{i}\right)=\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\}\left(a_{1}^{i}\right.$ and a_{2}^{i} are bases of $\left.A_{i}\right)$,
(2) G contains two subgraphs A_{4}, A_{5} such that for each $i \in\{4,5\}, A_{i}$ is isomorphic to a member of \mathcal{A} containing a unique triangle T_{i} with $V\left(T_{i}\right)=\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\}$,
(3) A_{1}, A_{2}, A_{3} are pairwise disjoint, and $A_{4} \cap A_{5}=\varnothing$,
(4) for each $j \in\{1,2,3\}, A_{j} \cap A_{4}=\left\{a_{1}^{j}\right\}=\left\{a_{j}^{4}\right\}, A_{j} \cap A_{5}=\left\{a_{2}^{j}\right\}=\left\{a_{j}^{5}\right\}$, and
(5) $\left\{a_{3}^{1}, a_{3}^{2}, a_{3}^{3}\right\} \subseteq S \subseteq\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}, a_{1}^{2}, a_{2}^{2}, a_{3}^{2}, a_{1}^{3}, a_{2}^{3}, a_{3}^{3}\right\}$.

First, we assume $S=\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}, a_{1}^{2}, a_{2}^{2}, a_{3}^{2}, a_{1}^{3}, a_{2}^{3}, a_{3}^{3}\right\}$. Assume to the contrary, suppose that G contains an induced subgraph F which is a member of $C(S)$ or $Z_{3}(S)$.

Case 1. F is a member of $C(S)$.
By the definition of $C(S), F$ contains three independent vertices in S such that these vertices are leaves of F.

Subclaim 1.1. $\left\{a_{3}^{1}, a_{3}^{2}, a_{3}^{3}\right\} \subseteq V(F)$ and these vertices are leaves of F.
Since F is a connected graph and $\left\{a_{1}^{i}, a_{2}^{i}\right\}(i \in\{1,2,3\})$ is a cut set in G, F contains three vertices a_{h}^{1}, a_{j}^{2} and $a_{k}^{3}(h, j, k=1$ or 2$)$, If $h, j, k=1$, then $\left\langle a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\rangle$ is isomorphic to K_{3}. But F contains no K_{3}, a contradiction. By the same argument, if $h, j, k=2$, then we can lead a contradiction. If $h, j=1$ and $k=2$, then F does not contain a_{1}^{3}. On the other hand, by the definition of \mathcal{G}_{1}, for any $a_{3}^{2}-a_{2}^{3}$ path P, P contains a_{2}^{1}, a_{2}^{2} or a_{1}^{3}. Hence F contains a_{2}^{1} or a_{2}^{2}. Since F is an induced subgraph in G, we obtain a $d_{F}\left(a_{3}^{1}\right) \geq 2$ or $d_{F}\left(a_{3}^{2}\right) \geq 2$. But a_{3}^{1} and a_{3}^{2} are leaves of F, a contradiction. Similarly, we can prove the proposition for the other cases.

Subclaim 1.2. $\left\{a_{3}^{i}, a_{3}^{j}, a_{2}^{k}\right\}$ or $\left\{a_{3}^{i}, a_{3}^{j}, a_{1}^{k}\right\} \subseteq V(F)(\{i, j, k\}=\{1,2,3\})$ and these vertices are leaves of F.

We suppose $\left\{a_{3}^{1}, a_{3}^{2}, a_{2}^{3}\right\} \subseteq V(F)$ and these three vertices are leaves of F. By the same argument in Case $1, F$ contains three vertices a_{h}^{1}, a_{j}^{2} and a_{k}^{3} ($h, j, k=1$ or 2). If $h=j=k$, then we can find a triangle in F, a contradiction. By $a_{2}^{3} \in V(F), a_{2}^{1}$ or a_{2}^{2} are not contained in $V(F)$. Without loss of generality, we may assume $a_{2}^{2} \notin V(F)$. Hence $V(F)$ contains a vertex a_{1}^{2}. For any $a_{1}^{2}-a_{2}^{3}$ path P which does not contain a_{2}^{2}, P contains $\left\{a_{1}^{3}\right\}$ or $\left\{a_{1}^{1}, a_{2}^{1}\right\}$. If $\left\{a_{1}^{1}, a_{2}^{1}\right\} \subseteq V(F)$, then $d_{F}\left(a_{3}^{1}\right) \geq 2$, a contradiction. Hence $a_{1}^{3} \in V(F)$. Since F contains no triangle, $a_{1}^{1} \notin V(F)$, otherwise we can find
a triangle in F. We obtain $a_{2}^{1} \in V(F)$. But since F is an induced subgraph in G and $a_{2}^{1} a_{2}^{3}, a_{1}^{3} a_{2}^{3} \in E(G)$, we obtain $d_{F}\left(a_{2}^{3}\right) \geq 2$, a contradiction. By a similar argument, we can prove the proposition for the other cases.

Subclaim 1.3. $\left\{a_{1}^{i}, a_{2}^{j}, a_{3}^{k}\right\} \subseteq V(F) \quad(\{i, j, k\}=\{1,2,3\})$ and these vertices are leaves of F.

We suppose $\left\{a_{1}^{1}, a_{2}^{2}, a_{3}^{3}\right\} \subseteq V(F)$ and these vertices are leaves of F. Since $\left\{a_{1}^{3}, a_{2}^{3}\right\}$ is a two cut in G, F contains a_{1}^{3} or a_{2}^{3}. Without loss of generality, we assume $a_{1}^{3} \in V(F)$. Since a_{1}^{1} is a leaf of F, F is an induced subgraph in G and $a_{1}^{1} a_{1}^{3}, a_{1}^{1} a_{2}^{1} \in E(G)$, we obtain $a_{2}^{1} \notin V(F)$. Similarly, we obtain $a_{2}^{3} \notin V(F)$. Since $\left\{a_{2}^{1}, a_{1}^{2}, a_{2}^{3}\right\}$ is a minimal three cut in G, F contains a vertex a_{1}^{2}. But $\left\langle\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}\right\rangle$ is a triangle. Hence we can find a triangle in F, a contradiction. By a similar argument, we can prove the proposition for the other cases.

Case 2. F is a member of $Z_{3}(S)$.
By the definition of $Z_{3}(S), F$ contains a triangle T and a vertex $x \in S$. By the definition of \mathcal{G}_{1}, G contains only five triangles $\left\langle\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}\right\}\right\rangle,\left\langle\left\{a_{1}^{2}\right.\right.$, $\left.\left.a_{2}^{2}, a_{3}^{2}\right\}\right\rangle,\left\langle\left\{a_{1}^{3}, a_{2}^{3}, a_{3}^{3}\right\}\right\rangle,\left\langle\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}\right\rangle$ and $\left\langle\left\{a_{2}^{1}, a_{2}^{2}, a_{2}^{3}\right\}\right\rangle$.

Subclaim 2.1. F contains $\left\langle\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}\right\}\right\rangle$, $\left\langle\left\{a_{1}^{2}, a_{2}^{2}, a_{3}^{2}\right\}\right\rangle$ or $\left\langle\left\{a_{1}^{3}, a_{2}^{3}, a_{3}^{3}\right\}\right\rangle$.
We assume that F contains $\left\langle\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}\right\}\right\rangle$. By $a_{1}^{1} a_{1}^{2}, a_{1}^{1} a_{1}^{3}, a_{2}^{1} a_{2}^{2}, a_{2}^{1} a_{2}^{3} \in$ $E(G), x \notin\left\{a_{1}^{2}, a_{2}^{2}, a_{1}^{3}, a_{2}^{3}\right\}$. Hence $x \in\left\{a_{3}^{2}, a_{3}^{3}\right\}$. We suppose $x=a_{3}^{2}$. Since $\left\{a_{1}^{2}, a_{2}^{2}\right\}$ is a cut set in G, F contains a_{1}^{2} or a_{2}^{2}. But $a_{1}^{1} a_{1}^{2}, a_{2}^{1} a_{2}^{2} \in E(G)$. Hence, a $v-V(T)$ path P in F has length 2. But it contradicts the definition of $Z_{3}(S)$. By a similar argument, we can prove the proposition for the other cases.

Subclaim 2.2. F contains $\left\langle\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}\right\rangle$ or $\left\langle\left\{a_{2}^{1}, a_{2}^{2}, a_{2}^{3}\right\}\right\rangle$.
We assume that F contains $\left\langle\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}\right\rangle$. By the definition of $Z_{3}(S)$, $x \in S \backslash V(T)$. By $a_{1}^{1} a_{2}^{1}, a_{1}^{1} a_{3}^{1}, a_{1}^{2} a_{2}^{2}, a_{1}^{2} a_{3}^{2}, a_{1}^{3} a_{2}^{3}, a_{1}^{3} a_{3}^{3} \in E(G), E(V(T),\{x\})$ $\neq \varnothing$, a contradiction. By a similar argument, we can prove the proposition for the other cases.

By a similar argument, we can prove the proposition for

$$
S \subsetneq\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}, a_{1}^{2}, a_{2}^{2}, a_{3}^{2}, a_{1}^{3}, a_{2}^{3}, a_{3}^{3}\right\}
$$

In the case $(G, S) \in \mathcal{G}_{S} \backslash \mathcal{G}_{1}$, by a similar argument, we can show that G is a 2-connetcted $\mathrm{CZ}_{3}(S)$-free graph.

Easily, we can prove the following proposition.
Proposition 4. Let $(G, S) \in \mathcal{G}_{S}$. Then G contains no cycle D such that $S \subseteq V(D)$.

By Propositions 3 and 4, every member of \mathcal{G}_{S} is an exception of Problem 2. The following proposition says that the class \mathcal{G}_{S} is a maximal in a sense as an exceptional class of Problem 2.

Proposition 5. Let G be a graph and $S \subseteq V(G)$ such that $(G, S) \in \mathcal{G}_{S}$. Let $H=G \cup P$ be a graph obtained from G by adding a path P so that P is a $V(G)-V(G)$ path in H. Then H satisfies one of the following statements:
(1) H is not $\mathrm{CZ}_{3}(S)$-free,
(2) H contains a cycle passing through all vertices of S, or
(3) $(H, S) \in \mathcal{G}_{S}$.

Proof. We suppose $(G, S) \in \mathcal{G}_{1}$. We assume (G, S) satisfies the following properties:
(1) G contains three subgraphs A_{1}, A_{2}, A_{3} such that for each $i \in\{1,2,3\}, \quad A_{i}$ is isomorphic to a member of \mathcal{A}^{\prime} containing a unique triangle T_{i} with $V\left(T_{i}\right)=\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\} \quad\left(a_{1}^{i}\right.$ and a_{2}^{i} are bases of A_{i}),
(2) G contains two subgraphs A_{4}, A_{5} such that for each $i \in\{4,5\}, A_{i}$ is isomorphic to a member of \mathcal{A} containing a unique triangle T_{i} with $V\left(T_{i}\right)=\left\{a_{1}^{i}, a_{2}^{i}, a_{3}^{i}\right\}$,
(3) A_{1}, A_{2}, A_{3} are pairwise disjoint, and $A_{4} \cap A_{5}=\varnothing$,
(4) for each $j \in\{1,2,3\}, A_{j} \cap A_{4}=\left\{a_{1}^{j}\right\}=\left\{a_{j}^{4}\right\}, A_{j} \cap A_{5}=\left\{a_{2}^{j}\right\}=\left\{a_{j}^{5}\right\}$ and
(5) $\left\{a_{3}^{1}, a_{3}^{2}, a_{3}^{3}\right\} \subseteq S \subseteq\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}, a_{1}^{2}, a_{2}^{2}, a_{3}^{2}, a_{1}^{3}, a_{2}^{3}, a_{3}^{3}\right\}$.

First, we assume $S=\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}, a_{1}^{2}, a_{2}^{2}, a_{3}^{2}, a_{1}^{3}, a_{2}^{3}, a_{3}^{3}\right\}$.
Let $G^{\prime}=\left\langle\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}, a_{1}^{2}, a_{2}^{2}, a_{3}^{2}, a_{1}^{3}, a_{2}^{3}, a_{3}^{3}\right\}\right\rangle$. If for any $a_{i^{\prime}}^{i}, a_{j^{\prime}}^{j}$ such that $a_{i^{\prime}}^{i} a_{j^{\prime}}^{j} \notin E(G)\left(i, j \in\{1,2,3,4,5\}, i^{\prime}, j^{\prime} \in\{1,2,3\}\right),\left\langle\left\{H \backslash G^{\prime}\right\} \cup\left\{a_{i^{\prime}}^{i}, a_{j^{\prime}}^{j}\right\}\right\rangle$ contains an $a_{i^{\prime}}^{i}-a_{j^{\prime}}^{j}$ path, then we can find a cycle D such that $S \subseteq V(D)$ in H. Hence there exists i such that P is an $A_{i}-A_{i}$ path $(i \in\{1,2,3,4,5\})$.

Case 1. $i \in\{4,5\}$.
We suppose $i=4$. If for any triangle T in $A_{4}, E(P) \cap E(T)=\varnothing$, then $A_{4} \in \mathcal{A}$. By the definition of $\mathcal{A},(H, S) \in \mathcal{G}_{1}$. Hence there exists a triangle T such that $E(P) \cap E(T) \neq \varnothing$. Let P^{\prime} be a $\left(V(T) \backslash\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}\right)$ $\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}$ path such that $\left|V\left(P^{\prime}\right)\right|$ is as small as possible. Without loss of generality, we may assume $\left\{a_{1}^{1}\right\} \subseteq\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\} \cap V\left(P^{\prime}\right)$. Let $a_{1}^{1^{-}}=N_{P^{\prime}}\left(a_{1}^{1}\right)$. If $\left|N_{H}\left(a_{1}^{1^{-}}\right) \cap\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}\right| \geq 2$, then there exists $k \in\{2,3\}$ such that $a_{1}^{k} \in$
$N_{H}\left(a_{1}^{1^{-}}\right) \cap\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}$. In this case, $\left\langle\left\{a_{1}^{1^{-}}, a_{1}^{1}, a_{1}^{k}, a_{2}^{1}, a_{2}^{h}, a_{3}^{h}\right\}\right\rangle$ is a member of $Z_{3}(S) \quad(h \notin\{1, k\})$. Hence H is not $C Z_{3}(S)$-free. By the above argument, for any $x \in V\left(A_{4}\right) \backslash\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}$, we obtain $\mid N_{H}(x) \cap$ $\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\} \mid \leq 1$. Hence $\left|V(T) \cap\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}\right| \leq 1$. We obtain $N_{H}\left(a_{1}^{1^{-}}\right)$ $\bigcap\left\{a_{1}^{1}, a_{1}^{2}, a_{1}^{3}\right\}=\left\{a_{1}^{1}\right\}$. If there exists a vertex $a^{\prime} \in V(T) \backslash\left\{a_{1}^{1^{-}}\right\}$such that $a^{\prime} a_{1}^{1} \in E(G)$, then $\left\langle\left\{a^{\prime}, a_{1}^{1^{-}}, a_{1}^{1}, a_{2}^{1}, a_{2}^{2}, a_{3}^{2}\right\}\right\rangle$ is a member of $Z_{3}(S)$. By the above argument, there exists $k \in\{2,3\}$ such that $\left\langle V(T) \cup V\left(P^{\prime}\right)\right.$ $\left.\cup\left\{a_{2}^{1}, a_{2}^{k}, a_{3}^{k}\right\}\right\rangle$ contains a member of $Z_{3}(S)$. We obtain H is not $C Z_{3}(S)$ free.

By a similar argument, we can prove the proposition for $i=5$.
Case 2. $i \in\{1,2,3\}$.
We suppose $i=1$. If for any triangle T in $A_{1}, E(P) \cap E(T)=\varnothing$, then $A_{1} \in \mathcal{A}^{\prime}$. Hence by the definition of $\mathcal{A}^{\prime},(H, S) \in \mathcal{G}_{1}$. There exists a triangle T such that $E(P) \cap E(T) \neq \varnothing$. Let P^{\prime} be a $\left(V(T) \backslash\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}\right\}\right)-\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}\right\}$ path such that $\left|V\left(P^{\prime}\right)\right|$ is as small as possible. We suppose $\left\{a_{3}^{1}\right\} \subseteq\left\{a_{1}^{1}, a_{2}^{1}\right.$, $\left.a_{3}^{1}\right\} \cap V\left(P^{\prime}\right)$. Let $a_{3}^{1^{-}}=N_{P^{\prime}}\left(a_{3}^{1}\right)$. If $\left|N_{H}\left(a_{3}^{1^{-}}\right) \cap\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}\right\}\right| \geq 2$, then without loss of generality, we may assume $\left\{a_{1}^{1}, a_{3}^{1}\right\} \subseteq N_{H}\left(a_{3}^{1^{-}}\right) \cap\left\{a_{1}^{1}\right.$, $\left.a_{2}^{1}, a_{3}^{1}\right\} .\left\langle\left\{a_{3}^{1^{-}}, a_{1}^{1}, a_{3}^{1}, a_{1}^{2}, a_{2}^{2}, a_{2}^{3}\right\}\right\rangle$ is a member of $Z_{3}(S)$. Hence $\left\{a_{3}^{1}\right\}=$ $N_{H}\left(a_{3}^{1^{-}}\right) \cap\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}\right\}$. If $N_{G}\left(V(T) \backslash\left\{a_{3}^{1^{-}}\right\}\right) \cap\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}\right\}=\varnothing,\langle V(T) \cup$ $\left.V\left(P^{\prime}\right) \cup\left\{a_{2}^{1}, a_{2}^{2}, a_{3}^{2}\right\}\right\rangle$ contains a member of $Z_{3}(S)$. If there exists $i \in\{1,2\}$ such that $\left|E\left(V(T),\left\{a_{i}^{1}\right\}\right)\right|=2$, then $\left\langle V(F) \cup\left\{a_{i}^{1}, a_{i}^{2}, a_{j}^{2}, a_{j}^{3}\right\}\right\rangle$ contains a member of $Z_{3}(S)(j \in\{1,2\} \backslash\{i\})$. If for any $i \in\{1,2\},\left|E\left(V(T),\left\{a_{i}^{1}\right\}\right)\right|=0$,
then there exists a vertex $a^{\prime} \in V(T) \backslash\left\{a_{3}^{1^{-}}\right\}$such that $a^{\prime} a_{3}^{1} \in E(G)$. By the choice of $P^{\prime}, a_{3}^{1^{-}} \in V(T)$. $\left\langle\left\{a^{\prime}, a_{3}^{1^{-}}, a_{3}^{1}, a_{1}^{1}, a_{1}^{2}, a_{3}^{2}\right\}\right\rangle$ contains a member of $Z_{3}(S)$. Hence for any $i \in\{1,2\},\left|E\left(V(T),\left\{a_{i}^{1}\right\}\right)\right| \leq 1$ and there exists $i \in\{1,2\}$ such that $\left|E\left(V(T),\left\{a_{i}^{1}\right\}\right)\right|=1$. But $\left\langle V(T) \cup\left\{a_{i}^{1}, a_{i}^{2}, a_{j}^{2}, a_{j}^{3}\right\}\right\rangle$ contains a member of $Z_{3}(S) \quad(j \in\{1,2\} \backslash\{i\})$. Therefore, we obtain $a_{3}^{1} \notin\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}\right\} \cap V\left(P^{\prime}\right)$. Without loss of generality, we can assume $a_{1}^{1} \in\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}\right\} \cap V\left(P^{\prime}\right)$. If $E\left(V(T),\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}\right\}\right)=\varnothing$, then $\left\langle V(T) \cup V\left(P^{\prime}\right)\right.$ $\left.\cup\left\{a_{1}^{2}, a_{2}^{2}, a_{2}^{3}\right\}\right\rangle$ contains a member of $Z_{3}(S)$. Hence $E\left(V(T),\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}\right\}\right)$ $\neq \varnothing$. By the choice of $P^{\prime}, E\left(V(T),\left\{a_{1}^{1}\right\}\right) \neq \varnothing$. If $\left|E\left(V(T) \backslash\left\{a_{2}^{1}\right\},\left\{a_{1}^{1}\right\}\right)\right| \geq 2$, let $a^{\prime}, a^{\prime \prime} \in V(T) \backslash\left\{a_{2}^{1}\right\}$ such that $a^{\prime} a_{1}^{1}, a^{\prime \prime} a_{1}^{1} \in E(G)$. But $\left\langle\left\{a^{\prime}, a^{\prime \prime}, a_{1}^{1}, a_{1}^{2}\right.\right.$, $\left.\left.a_{2}^{2}, a_{2}^{3}, a_{3}^{3}\right\}\right\rangle$ contains a member of $Z_{3}(S)$. Hence $\left|E\left(V(T) \backslash\left\{a_{2}^{1}\right\},\left\{a_{1}^{1}\right\}\right)\right|=1$. Let $a^{\prime} \in V(T) \backslash\left\{a_{2}^{1}\right\}$ such that $a^{\prime} a_{1}^{1} \in E(G)$. If $V(T)=\left\{a^{\prime}, a_{1}^{1}, a_{2}^{1}\right\}$, then (H, S) is also a member of \mathcal{G}_{1}. Suppose $V(T) \neq\left\{a^{\prime}, a_{1}^{1}, a_{3}^{1}\right\}$. If $V(T)=$ $\left\{a^{\prime}, a_{1}^{1}, a_{3}^{1}\right\}$, then $\left\langle\left\{a^{\prime}, a_{1}^{1}, a_{3}^{1}, a_{1}^{2}, a_{2}^{2}, a_{2}^{3}\right\}\right\rangle$ contains a member of $Z_{3}(S)$. Other cases, $\left\langle V(T) \cup V\left(P^{\prime}\right) \cup\left\{a_{1}^{1}, a_{1}^{2}, a_{3}^{2}, a_{2}^{3}\right\}\right\rangle$ contain a member of $Z_{3}(S)$. By a similar argument, we can prove the proposition for $i \in\{2,3\}$.

Similarly, we can prove the proposition for

$$
S \subsetneq\left\{a_{1}^{1}, a_{2}^{1}, a_{3}^{1}, a_{1}^{2}, a_{2}^{2}, a_{3}^{2}, a_{1}^{3}, a_{2}^{3}, a_{3}^{3}\right\}
$$

By a similar argument, we can also prove the proposition for the case $(G, S) \in \mathcal{G}_{S} \backslash \mathcal{G}_{1}$.

Finally in this section, we propose the following conjecture.
Conjecture 6. Let G be a connected graph and $S \subseteq V(G)$. If G is a $C Z_{3}(S)$-free graph, then G contains a cycle D such that $S \subseteq V(D)$ or $(G, S) \in \mathcal{G}_{S}$.

References

[1] B. Bollobás and G. Brightwell, Cycles through specified vertices, Combinatorica 13 (1993), 147-155.
[2] H. Broersma, H. Li, J. Li, F. Tian and H. J. Veldman, Cycles through subsets with large degree sums, Discrete Math. 171 (1997), 43-54.
[3] R. Diestel, Graph Theory, 2nd ed., Springer, New York, 2000.
[4] R. Faudree, R. Gould, Z. Ryjáček and I. Schiermeyer, Forbidden subgraphs and pancyclicity, Congr. Numer. 109 (1995), 13-32.
[5] O. Favaron, E. Flandrin, H. Li, Y. Liu, F. Tian and Z. Wu, Sequences, claws and cyclability of graphs, J. Graph Theory 21 (1996), 357-369.
[6] T. Sugiyama and M. Tsugaki, Pairs of the classes of forbidden subgraphs related to $K_{1,3}$ and P_{6} implying the existence of a cycle containing specified vertices, Discussiones Mathematicae Graph Theory 29 (2009), 645-650.

