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Abstract 

Finite failure non-homogeneous Poisson process models proposed in 
the literature exhibit either constant, monotonic increasing or 
decreasing failure occurrence rates per fault and are inadequate to 
describe the failure process underlying both increasing/decreasing 
failure rates. In this article, we propose generalized inverse 
exponential software reliability growth model, which can capture both 
increasing/decreasing nature of failure occurrence rate per fault. The 
system parameters are estimated by means of the maximum likelihood 
estimators and the properties of the estimators are discussed. The 
experimental results of real data show that our proposed model 
performs better. 

1. Introduction 

In last three decades, we have seen formulation of several software 
reliability growth models (SRGMs) to predict the reliability of software 
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systems. These models are concerned with forecasting future system 
operability from the failure data collected during the testing phase of a 
software product. A plethora of SRGMs have appeared in the literature. 
However, many existing finite failure category models describe the failure 
behaviour as of constant, increasing and decreasing; see Goel and Okumoto 
[3], Ohba [6], Yamada et al. [8], Goel [2] and Gokhale et al. [4]. For further 
information regarding this, one can refer to Lyu [5] and Pham [7]. But in 
most of the situations, these may not be true because in early stages of 
testing, the testers are new to software, so they need time to adjust, it implies 
less detection of failure caused by faults at beginning. As testing progresses, 
testers will get good exposure to software implies increase in detection of 
failures and it implies detection of faults increases in this period of time and 
when most of software faults are eliminated, then failure of software 
decreases as time increases. This phenomenon of increasing/decreasing 
failure behaviour is not included in the existing finite failure models. This 
idea leads us to a development of new model taking into account of both 
increasing/decreasing behaviours of the software failures by its hazard rate 
function. 

In this paper, we describe finite failure non-homogeneous Poisson 
process (NHPP) class of SRGMs and offer a decomposition of the mean 
value function (MVF) of the finite failure NHPP models, which enables us to 
attribute the nature of failure intensity of the software to the hazard function 
and we propose a SRGM which describes the increasing/decreasing nature of 
the failure occurrence rate per fault. The unknown model parameters are 
estimated using maximum likelihood method. 

2. Finite Failure NHPP Models 

This is a class of time-domain SRGMs, which assume that software 
failures display the behaviour of a NHPP. The parameter of the stochastic 
process, ( )tλ  which denotes the failure intensity of the software at time t, is 

time dependent. Let ( )tN  denote the cumulative number of faults detected 

by time t, and ( )tm  denote its expectation. Then ( ) ( )[ ],tNEtm =  and the 
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failure intensity ( )tλ  is related as follows: 

 ( ) ( )∫ λ=
t

dsstm
0

  and  ( ) ( ) ,t
tmt

∂
∂=λ  (1) 

( )tN  is known to have a NHPP probability mass function with MVF ( ),tm  

that is, 

( ){ } ( )[ ] ( ) ....,,1,0,
!

∞=== − ne
n
tm

ntNP tm
n

 (2) 

Various time-domain models have appeared in the literature which describe 
the stochastic failure process by an NHPP. These models differ in their 
failure intensity function ( ),tλ  and hence ( ).tm  The NHPP models can be 

further classified into finite failure and infinite failure categories; see Lyu [5]. 
Finite failure NHPP models assume that the expected number of faults 
detected given infinite amount of testing time will be finite, whereas the 
infinite failure models assume that an infinite number of faults would be 
detected in infinite testing time. Let a denote the expected number of faults 
that would be detected in given infinite testing time in case of finite failure 
NHPP models. Then the mean value function of the finite failure NHPP 
models can also be written as 

 ( ) ( ),taFtm =  (3) 

where ( )tF  is a distribution function. 

From equation (3), the instantaneous failure intensity ( )tλ  in case of the 

finite failure NHPP models is given by 

 ( ) ( ),tFat ′=λ  (4) 

which can be re-written as 

 ( ) ( )[ ] ( )
( ) ( )[ ] ( ),1 thtmatF

tFtmat −=
−
′

−=λ  (5) 

where ( )th  is the failure occurrence rate per fault of the software, or the rate 
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at which the individual faults manifest themselves as failures during testing. 
The quantity ( )[ ]tma −  denotes the expected number of faults remaining in 

the software at time t and since it is monotonically non-increasing function of 
time, the nature of the overall failure intensity ( )tλ  is governed by the 

nature of failure occurrence rate per fault ( ),th  from (5). 

2.1. Existing models 

The failure occurrence rate per fault ( )th  can be a constant, increasing, 

decreasing, or increasing/decreasing. Here we describe some of the existing 
finite failure NHPP models along with their hazard functions. The Goel-
Okumoto [3] (GO) model has had a strong influence on software reliability 
modeling. Table 2.1 gives the expressions for ( ) ,tm  ( )tλ  and ( )th  for the 

GO model. In this model, failure occurrence rate per fault is constant, i.e., 
( )th  is time independent; however since the expected number of remaining 

faults decreases with time, the overall software failure intensity decreases 
with time. The software quality continues to improve as testing progresses. 
However, in most real-life testing scenarios, the software failure intensity 
increases initially and then decreases. Goel [2] proposed a generalized GO or 
Weibull model which captures the increasing/decreasing nature of the failure 
intensity and the nature of failure occurrence rate per fault is determined by 
the parameter γ, and is increasing for 1<γ  and decreasing for .1>γ  Refer 

to Table 2.1 for expressions for ( ),tm  ( )tλ  and ( ).th  S-shaped SRGM 

proposed by Yamada et al. [8] captures the software error removal 
phenomenon in which there is a time delay between the actual detection of 
the fault and its reporting. The testing process in this case can be seen as 
consisting of two phases: fault detection and fault isolation. The S-shaped 
model has an increasing failure occurrence rate per fault and its expressions 
of ( ) ( )ttm λ,  and ( )th  are presented in Table 2.1. 
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Table 2.1. NHPP models ( ),tm  ( )tλ  and ( )th  

Coverage function ( )tm  ( )tλ  ( )th  

GO ( )btea −−1  btabe−  b 

Weibull ( )
γ−− btea 1  

γ−−γγ btetab 1  1−γγtb  

S-shaped [ ( ) ]btebta −+− 11  btteab −2  bt
tb

+1

2
 

We now present the graph of a data set which led us to the development 
of generalized inverse exponential SRGM. Data set is from the U. S. Navy 
Feet Computer Programming Center and is given by Goel and Okumoto [3]. 
The data set consists of 26 failures in 250 days. The hazard rates for the GO, 
generalized GO and S-shaped models are shown in Figure 2.1. 

 
Figure 2.1. Hazard for existing NHPP models. 

2.2. Proposed model 

In this section, we develop a SRGM in which increasing/decreasing 
behaviour of failure occurrence rate per fault can be captured by nature of 
hazard function of generalized inverted exponential distribution given in 
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Abouammoh and Alshingiti [1]. The hazard rate function ( )th  of generalized 

inverse exponential SRGM is given as 

 ( ) .
12 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

α=
−

−

tb

tb

e
e

t
bth  (6) 

The corresponding MVF ( )tm  and failure intensity function ( )tλ  are 

( ) [ ( ) ],11 α−−−= tbeatm  (7) 

( ) ( ) .1 1
2

−α−− −α=λ tbtb ee
t

bat  (8) 

Figure 2.2 shows the hazard of the generalized inverse exponential model. 
The parameters of the model are set up in such a way that there are 26 
failures in 250 time units. 

 
Figure 2.2. Hazard for generalized inverse exponential model. 

2.3. Software reliability 

Let ( )...,2,1=iSi  be a random variable representing the ith software 

failure occurrence time. Then we have ...;,2,1,1 =−= − iSSX iii  ,00 =S  

which is a random variable representing the time-interval between ( )1−i th 
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and ith software failure occurrences. The conditional probability that the ith 
software failure does not occur between ( ] ( )0,, ≥+ xxtt  on the condition 

that the ( )1−i th software failure has occurred at testing time t, is given by 

( ) { } ( ) ( ){ }[ ] .0,0,expPr 1 ≥≥−+−==|>=| − xttmtxmtSxXtxR ii  (9) 

Substituting (7) into (9), we have the software reliability for finite failure 
generalized exponential model as 

 ( ) { [( ( ) ) ( ) ]}.11exp α−α+− −−−=| tbxtb eeatxR  (10) 

To predict future reliability, we have to estimate unknown parameters 
involved in above expression. In order to do so, we have carried maximum 
likelihood method in next section. 

3. Estimation of Parameters 

We estimate unknown system parameters of the finite failure NHPP 
model by using method of maximum likelihood. We obtain estimates by 
considering two types of data. 

3.1. Interval domain data 

Suppose that n data pairs ( ) ( )nii tttniyt <<<<= 210;...,,2,1,  

are observed during the testing phase where the observed number of software 
faults detected up to testing time it  is .iy  The simultaneous probability mass 

function of ( ) ( ) ( ){ },...,,, 2211 nn ytNytNytN ===  i.e., the likelihood 

function for the interval domain data is 

 ( ) ( ){ }( )

( ) ( ) ( ){ }[ ],exp!
1

1
1

1 1

∏
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where 0=t  and .00 =y  Taking the natural logarithm of (11) yields log-

likelihood function, that is 

 ( ) ( ) ( )[ ] ( )∑
=

−− −−−=
n

i
niiii tmymtmyyL

1
11 .lnln  (12) 
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Substituting mean value function ( )tm  given in (7) into (12), we get log-

likelihood function 

( ) [ ( ) ( ) ]∑
=

α−α−
−

−−−−−=
n

i

tbtb
ii ii eaeayyL

1
1 111lnln  

 ( ( ) ).11 α−−−− ntbea  (13) 

Taking partial derivative of expression (13) w.r.t. a, b and α and then 
equating them to zero, we get likelihood equations, which are 
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( ) [ ] .01log1 =−−+ −α− nn tbtb eea  (16) 

We do not get closed form expressions for the maximum likelihood estimates 
(MLEs) of a, b and α. However, the MLEs can be obtained by iterative 

procedure. Let ba ˆ,ˆ  and α̂  be the MLEs of parameters a, b and α, 

respectively. We can then obtain MLEs of ( )tm  and ( )tλ  by replacing a, b 

and α by its MLEs ba ˆ,ˆ  and α̂  in expressions (7) and (8), respectively. 
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3.2. Time domain data 

Suppose that the data set on n software failure-occurrence times ,is  i.e., 

realization of iS  ( )nsssni ≤≤≤≤= 210;...,,2,1  is observed during 

the testing phase. The simultaneous probability density function, i.e., the 
likelihood function for the software failure-occurrence time data is 

 ( ) ( ) ( )[ ] ( ),expexp
1 11
∏ ∏∫
= =

λ−=⎥⎦
⎤

⎢⎣
⎡ λ−λ=

−

n

i
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i
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s

si ssmdxxsL i

i
 (17) 

where .00 =s  Taking the natural logarithm of (17) yields log-likelihood 

equation, that is 

 ( ) ( ).lnln
1
∑
=

−λ=
n

i
ni smsL  (18) 

Substituting ( )tm  and ( )tλ  given in (7) and (8), we obtain logarithmic 

likelihood functions for time domain data 
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Taking partial derivative of expression (19) w.r.t. a, b and α and then 
equating them to zero, we get likelihood equations, which are 
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Again here also we do not get closed form expressions for MLEs of a, b and 
α. However, the MLEs can be obtained by iterative solution procedure. Let 

,â  b̂  and α̂  be MLEs of a, b and α, respectively. Then MLEs of ( )tm  and 

( )tλ  are obtained by replacing a, b and α by its MLEs ,â  b̂  and α̂  in 

expressions (7) and (8), respectively. 

4. Numerical Example 

We now present a numerical example for finite failure SRGMs based on 
actual testing-data. The data set consists of 26 software failure-occurrence 
time data ks  (days; )26...,,2,1=k  cited by Goel and Okumoto [3]. Here 

we obtain the estimation results and AIC value for existing and our proposed 
finite failure SRGMs are summarized in Table 4.1. 

Table 4.1. Maximum likelihood and AIC estimates 

Model GO Weibull S-shaped GIED 

Estimates 0152.34ˆ =a 7786.29ˆ =a 5041.27ˆ =a  7259.99ˆ =a  

 0058.0ˆ =b  0014.0ˆ =b  0186.0ˆ =b  2155.48ˆ =b  

  3653.1ˆ =γ   1735.0ˆ =α  

AIC 161.3803 156.9831 157.836 156.6431 

From above table, we observe that our proposed model performs better 
compared to other models. 

5. Conclusions 

In this paper, we have proposed finite failure generalized exponential 
SRGM which was motivated by the fact that the existing finite failure NHPP 
models were inadequate to describe failure process underlying increasing/ 
decreasing phenomenon. We use decomposition of the MVF of finite failure 
NHPP model which enables us to attribute the nature of the failure intensity 
to the failure occurrence rate per fault. The model parameters are estimated 
by MLE method and numerical example is illustrated for estimation 
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technique. Finally, model comparison study is carried using Akaike’s 
information criteria and it shows that our proposed model performs better 
compared to previous finite failure category models. 
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