

Far East Journal of Theoretical Statistics
Volume 39, Number 1, 2012, Pages 67-77
Published Online: June 2012
Available online at http://pphmj.com/journals/fjts.htm
Published by Pushpa Publishing House, Allahabad, INDIA

 HousePublishingPushpa2012©
2010 Mathematics Subject Classification: 60K20.

 Keywords and phrases: software reliability, failure detection process, hazard rate function,
mean value function, maximum likelihood estimation.
Received February 29, 2012

MODELING AND STATISTICAL INFERENCE ON
GENERALIZED INVERSE EXPONENTIAL SOFTWARE

RELIABILITY GROWTH MODEL

K. M. Manjunatha and K. Harishchandra

Department of Statistics
Bangalore University
Bangalore-560 056, India
e-mail: manjustat@gmail.com; harish.jbc@gmail.com

Abstract

Finite failure non-homogeneous Poisson process models proposed in
the literature exhibit either constant, monotonic increasing or
decreasing failure occurrence rates per fault and are inadequate to
describe the failure process underlying both increasing/decreasing
failure rates. In this article, we propose generalized inverse
exponential software reliability growth model, which can capture both
increasing/decreasing nature of failure occurrence rate per fault. The
system parameters are estimated by means of the maximum likelihood
estimators and the properties of the estimators are discussed. The
experimental results of real data show that our proposed model
performs better.

1. Introduction

In last three decades, we have seen formulation of several software
reliability growth models (SRGMs) to predict the reliability of software

K. M. Manjunatha and K. Harishchandra 68

systems. These models are concerned with forecasting future system
operability from the failure data collected during the testing phase of a
software product. A plethora of SRGMs have appeared in the literature.
However, many existing finite failure category models describe the failure
behaviour as of constant, increasing and decreasing; see Goel and Okumoto
[3], Ohba [6], Yamada et al. [8], Goel [2] and Gokhale et al. [4]. For further
information regarding this, one can refer to Lyu [5] and Pham [7]. But in
most of the situations, these may not be true because in early stages of
testing, the testers are new to software, so they need time to adjust, it implies
less detection of failure caused by faults at beginning. As testing progresses,
testers will get good exposure to software implies increase in detection of
failures and it implies detection of faults increases in this period of time and
when most of software faults are eliminated, then failure of software
decreases as time increases. This phenomenon of increasing/decreasing
failure behaviour is not included in the existing finite failure models. This
idea leads us to a development of new model taking into account of both
increasing/decreasing behaviours of the software failures by its hazard rate
function.

In this paper, we describe finite failure non-homogeneous Poisson
process (NHPP) class of SRGMs and offer a decomposition of the mean
value function (MVF) of the finite failure NHPP models, which enables us to
attribute the nature of failure intensity of the software to the hazard function
and we propose a SRGM which describes the increasing/decreasing nature of
the failure occurrence rate per fault. The unknown model parameters are
estimated using maximum likelihood method.

2. Finite Failure NHPP Models

This is a class of time-domain SRGMs, which assume that software
failures display the behaviour of a NHPP. The parameter of the stochastic
process, ()tλ which denotes the failure intensity of the software at time t, is

time dependent. Let ()tN denote the cumulative number of faults detected

by time t, and ()tm denote its expectation. Then () ()[],tNEtm = and the

Modeling and Statistical Inference … 69

failure intensity ()tλ is related as follows:

 () ()∫ λ=
t

dsstm
0

 and () () ,t
tmt

∂
∂=λ (1)

()tN is known to have a NHPP probability mass function with MVF (),tm

that is,

(){ } ()[] (),,1,0,
!

∞=== − ne
n
tm

ntNP tm
n

 (2)

Various time-domain models have appeared in the literature which describe
the stochastic failure process by an NHPP. These models differ in their
failure intensity function (),tλ and hence ().tm The NHPP models can be

further classified into finite failure and infinite failure categories; see Lyu [5].
Finite failure NHPP models assume that the expected number of faults
detected given infinite amount of testing time will be finite, whereas the
infinite failure models assume that an infinite number of faults would be
detected in infinite testing time. Let a denote the expected number of faults
that would be detected in given infinite testing time in case of finite failure
NHPP models. Then the mean value function of the finite failure NHPP
models can also be written as

 () (),taFtm = (3)

where ()tF is a distribution function.

From equation (3), the instantaneous failure intensity ()tλ in case of the

finite failure NHPP models is given by

 () (),tFat ′=λ (4)

which can be re-written as

 () ()[] ()
() ()[] (),1 thtmatF

tFtmat −=
−
′

−=λ (5)

where ()th is the failure occurrence rate per fault of the software, or the rate

K. M. Manjunatha and K. Harishchandra 70

at which the individual faults manifest themselves as failures during testing.
The quantity ()[]tma − denotes the expected number of faults remaining in

the software at time t and since it is monotonically non-increasing function of
time, the nature of the overall failure intensity ()tλ is governed by the

nature of failure occurrence rate per fault (),th from (5).

2.1. Existing models

The failure occurrence rate per fault ()th can be a constant, increasing,

decreasing, or increasing/decreasing. Here we describe some of the existing
finite failure NHPP models along with their hazard functions. The Goel-
Okumoto [3] (GO) model has had a strong influence on software reliability
modeling. Table 2.1 gives the expressions for () ,tm ()tλ and ()th for the

GO model. In this model, failure occurrence rate per fault is constant, i.e.,
()th is time independent; however since the expected number of remaining

faults decreases with time, the overall software failure intensity decreases
with time. The software quality continues to improve as testing progresses.
However, in most real-life testing scenarios, the software failure intensity
increases initially and then decreases. Goel [2] proposed a generalized GO or
Weibull model which captures the increasing/decreasing nature of the failure
intensity and the nature of failure occurrence rate per fault is determined by
the parameter γ, and is increasing for 1<γ and decreasing for .1>γ Refer

to Table 2.1 for expressions for (),tm ()tλ and ().th S-shaped SRGM

proposed by Yamada et al. [8] captures the software error removal
phenomenon in which there is a time delay between the actual detection of
the fault and its reporting. The testing process in this case can be seen as
consisting of two phases: fault detection and fault isolation. The S-shaped
model has an increasing failure occurrence rate per fault and its expressions
of () ()ttm λ, and ()th are presented in Table 2.1.

Modeling and Statistical Inference … 71

Table 2.1. NHPP models (),tm ()tλ and ()th

Coverage function ()tm ()tλ ()th

GO ()btea −−1 btabe− b

Weibull ()
γ−− btea 1

γ−−γγ btetab 1 1−γγtb

S-shaped [()]btebta −+− 11 btteab −2 bt
tb

+1

2

We now present the graph of a data set which led us to the development
of generalized inverse exponential SRGM. Data set is from the U. S. Navy
Feet Computer Programming Center and is given by Goel and Okumoto [3].
The data set consists of 26 failures in 250 days. The hazard rates for the GO,
generalized GO and S-shaped models are shown in Figure 2.1.

Figure 2.1. Hazard for existing NHPP models.

2.2. Proposed model

In this section, we develop a SRGM in which increasing/decreasing
behaviour of failure occurrence rate per fault can be captured by nature of
hazard function of generalized inverted exponential distribution given in

K. M. Manjunatha and K. Harishchandra 72

Abouammoh and Alshingiti [1]. The hazard rate function ()th of generalized

inverse exponential SRGM is given as

 () .
12 ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

α=
−

−

tb

tb

e
e

t
bth (6)

The corresponding MVF ()tm and failure intensity function ()tλ are

() [()],11 α−−−= tbeatm (7)

() () .1 1
2

−α−− −α=λ tbtb ee
t

bat (8)

Figure 2.2 shows the hazard of the generalized inverse exponential model.
The parameters of the model are set up in such a way that there are 26
failures in 250 time units.

Figure 2.2. Hazard for generalized inverse exponential model.

2.3. Software reliability

Let ()...,2,1=iSi be a random variable representing the ith software

failure occurrence time. Then we have ...;,2,1,1 =−= − iSSX iii ,00 =S

which is a random variable representing the time-interval between ()1−i th

Modeling and Statistical Inference … 73

and ith software failure occurrences. The conditional probability that the ith
software failure does not occur between (] ()0,, ≥+ xxtt on the condition

that the ()1−i th software failure has occurred at testing time t, is given by

() { } () (){ }[] .0,0,expPr 1 ≥≥−+−==|>=| − xttmtxmtSxXtxR ii (9)

Substituting (7) into (9), we have the software reliability for finite failure
generalized exponential model as

 () { [(()) ()]}.11exp α−α+− −−−=| tbxtb eeatxR (10)

To predict future reliability, we have to estimate unknown parameters
involved in above expression. In order to do so, we have carried maximum
likelihood method in next section.

3. Estimation of Parameters

We estimate unknown system parameters of the finite failure NHPP
model by using method of maximum likelihood. We obtain estimates by
considering two types of data.

3.1. Interval domain data

Suppose that n data pairs () ()nii tttniyt <<<<= 210;...,,2,1,

are observed during the testing phase where the observed number of software
faults detected up to testing time it is .iy The simultaneous probability mass

function of () () (){ },...,,, 2211 nn ytNytNytN === i.e., the likelihood

function for the interval domain data is

 () (){ }()

() () (){ }[],exp!
1

1
1

1 1

∏
=

−
−

−
− −−

−
−

=
−n

i
ii

ii

yy
ii tmtmyy

tmtmL
ii

 (11)

where 0=t and .00 =y Taking the natural logarithm of (11) yields log-

likelihood function, that is

 () () ()[] ()∑
=

−− −−−=
n

i
niiii tmymtmyyL

1
11 .lnln (12)

K. M. Manjunatha and K. Harishchandra 74

Substituting mean value function ()tm given in (7) into (12), we get log-

likelihood function

() [() ()]∑
=

α−α−
−

−−−−−=
n

i

tbtb
ii ii eaeayyL

1
1 111lnln

 (()).11 α−−−− ntbea (13)

Taking partial derivative of expression (13) w.r.t. a, b and α and then
equating them to zero, we get likelihood equations, which are

()

[()]
,

11
1

1

α−
=

−

−−

−

=
∑

ntb

n

i
ii

e

yy
a (14)

()
() ()

() ()∑
=

α−α−

−α−−−α−−

−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−−

−α−−α

−
−

−−n

i
tbtb

tbtb

i

tbtb

i
ii

ii

iiii

ee

eeteetyy
1

11

1
1

11

11

1

11

() ,01 1 =−α+ −α−− nn tbtb

n
eet

a (15)

() () [] () []
() ()∑

=
α−α−

−α−−α−

−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−−

−−−−−
−

−

−−n

i
tbtb

tbtbtbtb
ii

ii

iiii

ee
eeeeyy

1
1

11
1log11log1

1

11

() [] .01log1 =−−+ −α− nn tbtb eea (16)

We do not get closed form expressions for the maximum likelihood estimates
(MLEs) of a, b and α. However, the MLEs can be obtained by iterative

procedure. Let ba ˆ,ˆ and α̂ be the MLEs of parameters a, b and α,

respectively. We can then obtain MLEs of ()tm and ()tλ by replacing a, b

and α by its MLEs ba ˆ,ˆ and α̂ in expressions (7) and (8), respectively.

Modeling and Statistical Inference … 75

3.2. Time domain data

Suppose that the data set on n software failure-occurrence times ,is i.e.,

realization of iS ()nsssni ≤≤≤≤= 210;...,,2,1 is observed during

the testing phase. The simultaneous probability density function, i.e., the
likelihood function for the software failure-occurrence time data is

 () () ()[] (),expexp
1 11
∏ ∏∫
= =

λ−=⎥⎦
⎤

⎢⎣
⎡ λ−λ=

−

n

i

n

i
in

s

si ssmdxxsL i

i
 (17)

where .00 =s Taking the natural logarithm of (17) yields log-likelihood

equation, that is

 () ().lnln
1
∑
=

−λ=
n

i
ni smsL (18)

Substituting ()tm and ()tλ given in (7) and (8), we obtain logarithmic

likelihood functions for time domain data

() () []∑
=

−

⎭
⎬
⎫

⎩
⎨
⎧ −−α+−−α=

n

k

sb

i
i ies

bsabL
1

1log1log2logln

 [()].11 α−−−− nsbea (19)

Taking partial derivative of expression (19) w.r.t. a, b and α and then
equating them to zero, we get likelihood equations, which are

()
,

11 α−−−
=

nsbe
na (20)

()
()

()∑ ∑
= =

−−
−

−
=−α+

−
−α+−

n

i

n

i

sbsb

nsb
i

sb

i
nn

i

i
ees

a
es

e
sb

n

1 1
,01

1
11 (21)

[] () []∑
=

−α−− =−−+−+
α

n

i

sbsbsb nni eeaen

1
.01log11log (22)

K. M. Manjunatha and K. Harishchandra 76

Again here also we do not get closed form expressions for MLEs of a, b and
α. However, the MLEs can be obtained by iterative solution procedure. Let

,â b̂ and α̂ be MLEs of a, b and α, respectively. Then MLEs of ()tm and

()tλ are obtained by replacing a, b and α by its MLEs ,â b̂ and α̂ in

expressions (7) and (8), respectively.

4. Numerical Example

We now present a numerical example for finite failure SRGMs based on
actual testing-data. The data set consists of 26 software failure-occurrence
time data ks (days;)26...,,2,1=k cited by Goel and Okumoto [3]. Here

we obtain the estimation results and AIC value for existing and our proposed
finite failure SRGMs are summarized in Table 4.1.

Table 4.1. Maximum likelihood and AIC estimates

Model GO Weibull S-shaped GIED

Estimates 0152.34ˆ =a 7786.29ˆ =a 5041.27ˆ =a 7259.99ˆ =a

 0058.0ˆ =b 0014.0ˆ =b 0186.0ˆ =b 2155.48ˆ =b

 3653.1ˆ =γ 1735.0ˆ =α

AIC 161.3803 156.9831 157.836 156.6431

From above table, we observe that our proposed model performs better
compared to other models.

5. Conclusions

In this paper, we have proposed finite failure generalized exponential
SRGM which was motivated by the fact that the existing finite failure NHPP
models were inadequate to describe failure process underlying increasing/
decreasing phenomenon. We use decomposition of the MVF of finite failure
NHPP model which enables us to attribute the nature of the failure intensity
to the failure occurrence rate per fault. The model parameters are estimated
by MLE method and numerical example is illustrated for estimation

Modeling and Statistical Inference … 77

technique. Finally, model comparison study is carried using Akaike’s
information criteria and it shows that our proposed model performs better
compared to previous finite failure category models.

References

 [1] A. M. Abouammoh and A. M. Alshingiti, Reliability estimation of generalized
inverted exponential distribution, J. Stat. Comput. Simul. 79(11) (2009),
1301-1315.

 [2] A. L. Goel, Software reliability models: assumptions, limitations, and
applicability, IEEE Trans. Software Engineering SE-11(12) (1985), 1411-1423.

 [3] A. L. Goel and K. Okumoto, Time-dependent error-detection rate model for
software reliability and other performance measures, IEEE Trans. Reliability
R-28(3) (1979), 206-211.

 [4] S. Gokhale, P. N. Marinos and K. S. Trivedi, Important milestones in software
reliability modeling, Proc. 8th Intl. Conference on Software Engineering and
Knowledge Engineering (SEKE’96), Lake Tahoe, 1996, pp. 345-352.

 [5] M. R. Lyu, Handbook of Software Reliability Engineering, McGraw-Hill, New
York, 1996.

 [6] M. Ohba, Software reliability analysis models, IBM J. Res. Develop. 28(4)
(1984), 428-442.

 [7] H. Pham, System Software Reliability, Springer-Verlag, 2006.

 [8] S. Yamada, M. Ohba and S. Osaki, S-shaped reliability growth modeling for
software error detection, IEEE Trans. Reliability R-32(5) (1983), 475-484.

