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Abstract 

Parameter estimation in logistic regression using the maximum 
likelihood approach and the discriminant function approach is 
revisited. A bootstrap estimation of the standard errors for the 
estimates of the model parameters in discriminant function approach is 
obtained. The asymptotic distributions are compared in both the 
estimation procedures using bootstrap sampling. All the computations 
are performed for three different vastly used data sets and analyzed. 

1. Introduction 

In a binary response model, it cannot be assumed that the errors have a 
normal distribution and hence usual linear regression is not applicable. Due 
to a wide range of applications, the binary response models are studied 
explicitly. Here we discuss the logistic regression model. For the latest 
developments in the area, the reader is referred to Cox and Snell [1], 
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McCullagh and Nelder [3], Ryan [6], Hosmer and Lemeshow [2], Powers 
and Xie [4], and the references therein. 

Initial notation for the model is now as follows: Let pXXX ...,,, 21  be 

p different regressors and Y be the response (dependent) variable. Y can only 
take the values of ‘1’ for ‘success’ and ‘0’ for ‘failure’. A random sample    
of n data points is taken from a phenomenon. A general binary model is 
assumed as 

( ) ( ) ,...,,2,1,...,,,...,,,1 2121 niXXXYEXXXYP piiiiipiiii =|=Λ=|=  

where [ ]1,0∈Λi  and ( ) .10 iiYP Λ−==  We define the logistic regression 

model as 

 ( )
( )
( ) ,exp1

exp

110

110

pipi

pipi
i xx

xx
β++β+β+

β++β+β
=β′Λ x  (1) 

where pβββ ...,,, 10  are unknown constants. Notice that there is no error 

term on the right side of (1), because the left side is a function of 
( ),...,,, 21 pXXXYE |  instead of Y, which serves to remove the error term. 

2. Motivation 

In logistic regression, maximum likelihood estimation procedure became 
only viable procedure as almost all the commonly used softwares use the 
method. As due to nature of data, often the design matrices are ill behaved 
but with the help of the generalized inverses of the matrices that difficulty 
can be overcome. But the inferences about the parameters are less reliable     
as the underlying asymptotic distributions might be affected by the 
multicollinearity among the regressors. Hence the initiation is taken in this 
paper to compare bootstrap distributions of the respective statistics in 
maximum likelihood estimation procedure and in discriminant function 
approach. 

In the following sections, we describe the commonly used maximum 
likelihood estimation procedure and inferences about the parameters, and the 
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discriminant function approach in estimating parameters and their inferences. 
Then we apply the procedures for three different vastly used data sets. 
Finally, we give a brief conclusion about the findings in the data sets used 
and some general comments. 

3. Maximum Likelihood Estimation (MLE) 

From (1), we have 

( )
( ) ,1ln 110 β′=β++β+β=⎥⎦

⎤
⎢⎣
⎡

β′Λ−
β′Λ xx

x
ppxx  

where [ ]pxxx ...,,,,1 21=′x  and ‘ln’ stands for the natural logarithm. The 

estimators are generally obtained by maximizing the logarithm of the 
likelihood function. The likelihood on data with n binary responses may be 
written as 

( )[ ] ( )[ ]∏
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−β′Λ−β′Λ=
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i iiL
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where ( )β′Λ ix  is defined in (1). The log-likelihood function (log stands for 

natural logarithm) is 
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Because ( )β′Λ ix  is nonlinear in the unknown parameters, we solve the 

likelihood equations derived from (2) iteratively using the Newton-Raphson 
method. The first and the second derivatives, which are used to maximize the 
log-likelihood, are given in the following expressions: 
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At the tth iteration, the estimates are obtained using the equation 

( ) ( ) [ ( ( ) )] (( )( ) ),ˆˆˆˆ 1111 −−−− ββ+β=β tttt UI  

where ( )0β̂  is obtained by regressing y on the x’s using the usual least 

squares method. The iteration is stopped when the consecutive iteration 
values are close and/or the log-likelihood values are maximized (see Powers 
and Xie [4] for details). 

Significance of the individual parameter can be tested by assuming that 
the samples are large, using the test statistic 

 ,...,,2,1,0,
ˆ

ˆ
pjsZ

jL

jL
jL =

β
=

β
 (4) 

where L stands for MLE, [ ( )] ,ˆ 1
ˆ

−
β β= jjjL

s I  the square root of the jth diagonal 

element of the inverse of ( )β̂I  in (3) evaluated at .β̂  Then for a large sample, 

jLZ  will have an approximate standard normal distribution under the null 

hypothesis, .0:0 =β jH  

For comparison, here we will also use bootstrap estimate of the standard 
error and (4) can be written as 

 ,...,,2,1,0,
ˆ

ˆ
pjsZ

Bj

jL
Bj =

β
=

β
 (5) 

where B stands for bootstrap. Asymptotic distribution of BjZ  can be assumed 

the standard normal and hence the p-values can be obtained. 

On the other hand, the respective p-values for the significances of the 
variables can also be computed using the usual bootstrap method. 

4. Discriminant Function Approach (DFA) 

In a dichotomous response model, discriminant function approach is a 
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well established parameter estimation procedure. The discriminant function 
approach in estimating parameters in the logistic regression models is based 
on the assumption that the distribution of the regressors, given the value of 
the response, is multivariate normal. Even though, this assumption is rarely 
valid, the estimates are plausible and simplistic in nature as they are based on 
sample means and covariances. 

The conditional distribution of the regressors ( )X  given the response 

( )0,1=y  is the following multivariate normal distributions: 

( ),,~ kk ΣNkyX μ=|  

where 1=k  (success), 0 (failure), and kμ  contains respective means and kΣ  

contains respective covariances for p regressors. Under these assumptions, 
the intercept coefficient in the logistic regression can be written as (see 
Hosmer and Lemeshow [2, p. 43]): 

 ( ) ( )01
1

01
0
1

0 5.0ln μ−μ′μ−μ−⎟
⎠
⎞

⎜
⎝
⎛
θ
θ=β −Σ  (6) 

and the 1×p  vector of the slope parameters can be written as 

 ( ) ,1
01

−′μ−μ=β Σ  (7) 

where ( )11 ==θ YP  and ( ) 10 10 θ−===θ YP  denote the respective 

probabilities. 

The discriminant function estimators of 0β  and β are found by 

substituting the respective sample estimates 00
~ X=μ  and ,~

11 X=μ  the 

sample mean vectors for the regressors at 0=y  and ,1=y  and == SΣ~  

( ) ( )
( ) ,2nn

S1nS1n
10

1100
−+

−+−  where 0S  and 1S  are the sample variance 

covariance pp ×  matrices for the regressors at 0=y  and ,1=y  

respectively, and 0n  and 1n  are the numbers of 0’s and 1’s for the response 

variable. And the estimates of 0θ  and 1θ  are the respective sample 
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proportions 
10
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=θ  Then 0
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Dβ  and Dβ̂  ( )vector1×p  

(D stands for DFA) can be computed after substituting the respective 
estimates in (6) and (7). 

Inferences can be made using the bootstrap distribution and by 
computing test statistics similar to (5) as 

 pjsZ
Bj

Dj
Dj ...,,2,1,0,

ˆ

ˆ
=

β
=

β
 (8) 

and B stands for bootstrap. Asymptotic distribution of DjZ  can be assumed 

the standard normal and hence the p-values can be obtained. 

Due to the availability of relevant software and established asymptotic 
properties, the maximum likelihood estimates are commonly used. Here,     
we have compared the bootstrap distributions for the above mentioned 
estimators and showed that how effectively inferences can also be drawn       
in the discriminant function approach using the respective bootstrap 
distributions. 

5. The Low Birth Weight Study (LBW) Data 

Data were collected as a part of a larger study at Baystate Medical Center 
in Springfield, Massachusetts and included in Hosmer and Lemeshow [2] and 
can be accessed from http://www-unix.oit.umass.edu/~statdata. Code sheet 
for the variables in The Low Birth Weight Data is as follows: 

Variable Description Codes/Values Name 

1 Identification Code ID Number ID 
2 Low Birth Weight 0 = ≥ 2500g LOW 
  1 = < 2500g  

3 Age of Mother Years AGE 
4 Weight of Mother at Last  Pounds LWT 
 Menstrual Period   
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5 Race 1 = White RACE 
  2 = Black  
  3 = Other  

6 Smoking Status During 0 = No SMOKE 
 Pregnancy 1 = Yes  

7 History of Premature Labor 0 = None PTL 
  1 = One  
  2 = Two, etc.  

8 History of Hypertension 0 = No HT 
  1 = Yes  

9 Presence of Uterine Irritability 0 = No UI 
  1 = Yes  

10 Number of Physician Visits 0 = None FTV 
 During the First Trimester 1 = One  
  2 = Two, etc.  

11 Birth Weight Grams BWT 

The Race variable is of nominal scale of three distinct values and hence 
created two independent variables called RACE2 and RACE3 for Black and 
Other, respectively. Then all the coefficients are estimated using the both 
MLE and DFA methods. In odd numbered tables, MLE computations are 
displayed. And in even numbered tables, DFA computations are displayed. 
The rows of the tables are indicating the variables as defined in the 
description of the data. The columns for odd numbered tables are defined as 
follows: 

jLβ̂  Maximum Likelihood Estimate 

jL
sβ̂  Standard Error Using Information Matrix 

jLZp  p-value Using jLZ  

jLβ̂  Mean of MLE’s for 10000 Bootstrap Samples 

Bj
sβ̂  Standard Deviation of MLE’s for Bootstrap Samples 

BOOTp  Bootstrap p-value 
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BjZp  Asymptotic p-value for MLE Using BjZ  

p-Chisq p-value for Chi-square Goodness-of-fit test 
 for Normality of BZ using 100 groups 

D2 Deviance ( ) ,10000
1

2∑ = Φ−= i iiU  

where 1...,,0002.0,0001.0=iU  and 

iΦ  are the standard normal distribution function 
values for the ordered studentized BjZ  values 

The columns for even numbered tables are defined as follows: 

Table 1. LBW Data: Maximum Likelihood Estimates (MLE) 

Variable jLβ̂  jL
sβ̂  

jLZp  Bjβ̂  Bj
sβ̂  BOOTp BjZp  p-Chisq D2 

Intercept 141.20 45.49 0.0019 135.89 22.48 0.0000 0.0000 0.0000 1.71 
AGE –0.15 0.32 0.6320 –0.16 0.32 0.6012 0.6277 0.0000 1.98 
LWT 0.01 0.05 0.9200 –0.00 0.06 0.9122 0.9314 0.0000 8.39 

RACE2 3.04 7.77 0.6952 3.93 3.91 0.4832 0.4418 0.0000 1.34 
RACE3 4.13 6.38 0.5173 1.42 2.92 0.3317 0.1603 0.0000 1.19 
SMOKE 3.87 6.97 0.5785 0.39 0.59 0.2819 0.0000 0.0000 2.17 

PTL 9.51 37.19 0.7983 8.33 3.71 0.0128 0.0102 0.0000 5.71 
HT 5.76 9.60 0.5484 3.32 7.23 0.4771 0.4270 0.0000 32.66 
UI –4.72 5.16 0.3604 –6.52 3.57 0.2213 0.1918 0.0000 3.38 

FTV 0.06 1.81 0.9752 0.39 0.59 0.9280 0.9229 0.0000 2.17 
BWT –0.06 0.02 0.0015 –0.05 0.01 0.0000 0.0000 0.0000 6.35 

 

Djβ̂  DFA Estimate of the Parameters 

Bjβ̂  Mean of DFA’s for 10000 Bootstrap Samples 

Bj
sβ̂  Standard Deviation of DFA’s for Bootstrap Samples 

BOOTp  Bootstrap p-value 

DjZ  
SBDFA

DFA  

DjZp  Asymptotic p-value for DjZ  

p-Chisq 
 

p-value for Chi-square Goodness-of-fit test 
for Normality of DjZ  using 100 groups 
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D2 Deviance ( ) ,10000
1

2∑ = Φ−= i iiU  

where 1...,,0002.0,0001.0=iU  and 

iΦ  are the standard normal distribution function 
values for the ordered studentized DjZ  values. 

Table 2. LBW Data: Discriminant Function Approach (DFA) 

Variable Djβ̂  Bjβ̂  Bj
sβ̂  BOOTp

DjZ  DjZp  p-Chisq D2 

Intercept 18.70 20.08 3.54 0.0001 5.29 0.0000 0.0000 2.58 
AGE –0.07 –0.08 0.08 0.3551 –0.93 0.3540 0.0000 0.75 
LWT –0.01 –0.01 0.01 0.6680 –0.42 0.6766 0.0958 0.20 

RACE2 –0.30 –0.33 1.01 0.7536 –0.30 0.7651 0.5512 0.28 
RACE3 –0.44 –0.47 0.65 0.4882 –0.67 0.5005 0.0014 0.27 
SMOKE –0.20 –0.23 0.63 0.7365 –0.32 0.7482 0.0082 0.34 

PTL 1.15 1.30 0.60 0.0609 1.92 0.0545 0.0000 4.53 
HT 0.87 0.93 1.34 0.5090 0.65 0.5183 0.6502 0.16 
UI –1.28 –1.36 0.97 0.1772 –1.32 0.1858 0.0106 0.39 

FTV –0.01 –0.02 0.28 0.9721 –0.03 0.9732 0.0077 0.81 
BWT –0.01 –0.01 0.01 0.0000 –7.75 0.0000 0.0000 3.68 

6. Lung Cancer and Bird Keeping (LCB) Data 

To investigate whether bird keeping is a risk factor, researchers in 
Hague, Netherlands conducted a case-control study of patients in 1985 at 
four hospitals in The Hague (population 450,000). They identified 49 cases 
of lung cancer among patients who were registered with a general practice, 
age 65 or younger, and had resided in the city since 1965. They also selected 
98 controls from a population of residents having the same general age 
structure. Data is obtained from Ramsey and Schafer [5, Display 20.2]. The 
description of the data is as follows: 

LC = Lung Cancer (1 = lung cancer patients, 0 = controls). 

FM = Sex ( ).0,1 MF ==  

SS = Socioeconomic status (1 = High, 0 = Low), determined by 
occupation of the household’s principal wage earner. 

BK = Indicator of bird keeping (caged birds in the home for more 
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than 6 consecutive months from 5 to 14 years before diagnosis 
(cases) or examination (controls). 

AG = Age, in years. 

YR = Years of smoking prior to diagnosis or examination. 

CD = Average rate of smoking, in cigarettes per day. 

Table 3. LCB Data: Maximum Likelihood Estimates (MLE) 

Variable jLβ̂  jL
sβ̂  jLZp

Bjβ̂  Bj
sβ̂  BOOTp BjZp  p-Chisq D2 

Intercept –1.38 1.75 0.4321 –1.22 2.12 0.5000 0.5154 0.0817 0.45 
FM –0.56 0.53 0.2907 –0.62 0.58 0.3274 0.3362 0.2073 0.27 
SS 0.11 0.47 0.8221 0.12 0.51 0.8341 0.8369 0.6160 0.15 
BK 1.36 0.41 0.0009 1.44 0.46 0.0063 0.0030 0.0845 0.59 
AG –0.04 0.04 0.2625 –0.05 0.05 0.3823 0.4296 0.0000 7.04 
YR 0.07 0.03 0.0059 0.09 0.04 0.0684 0.0589 0.0000 26.06 
CD 0.03 0.03 0.3081 0.03 0.03 0.3869 0.4027 0.0008 0.82 

Table 4. LCB Data: Discriminant Function Approach (DFA) 

Variable Djβ̂  Bjβ̂  Bj
sβ̂  BOOTp DjZ  DjZp  p-Chisq D2 

Intercept –2.22 –2.27 1.80 0.2124 –1.24 0.2165 0.2474 0.13 
FM –0.50 –0.53 0.55 0.3594 –0.91 0.3630 0.4250 0.16 
SS 0.16 0.18 0.46 0.7242 0.34 0.7330 0.0051 0.63 
BK 1.48 1.57 0.52 0.0094 2.83 0.0047 0.0000 2.69 
AG –0.01 –0.02 0.03 0.6311 –0.48 0.6338 0.1256 0.20 
YR 0.05 0.06 0.02 0.0081 2.79 0.0052 0.5448 0.21 
CD 0.02 0.02 0.03 0.4064 0.81 0.4187 0.0002 0.75 

7. Intensive Care Unit (ICU) Data 

The data that was collected by the Baystate Medical Center in 
Springfield, Massachusetts was used. As mentioned earlier, the data consists 
of 200 observations which were part of a study on the survival of patients 
following admission to an adult intensive care unit (ICU). The goal was to 
develop a logistic model to predict the probability of survival to hospital 
discharge of patient and to gain a better understanding of the risk factors 
associated with ICU mortality. 
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Variable Description Codes/Values Name 
1 Identification Code ID Number ID 
2 Vital Status 0 = Lived STA 
  1 = Died  

3 Age Years AGE 
4 Sex  0 = Male SEX 
  1 = Female  

5 Race 1 = White RACE 
  2 = Black  
  3 = Other  

6 Service at ICU Admission 0 = Medical SER 
  1 = Surgical  

7 Cancer Part of Present Problem 0 = No CAN 
  1 = Yes  

8 History of Chronic Renal Failure 0 = No CRN 
  1 =Yes  

9 Infection Probable at ICU 0 = No INF 
 Admission 1 = Yes  

10 CPR Prior to ICU Admission 0 = No CPR 
 During the First Trimester 1 = Yes  

11 Systolic Blood Pressure at ICU Admission mm Hg SYS 
12 Heart Rate at ICU Admission Meats/min HR 
13 Previous Admission to an ICU 0 = No PRE 

 Within 6 Months 1 = Yes  
14 Type of Admission 0 = Elective TYP 

  1 = Emergency  
15 15 Long Bone, Multiple, Neck, 0 = No FRA 

 Single Area, or Hip Fracture 1 = Yes  
16 PO2 from Initial Blood Gases 0 = > 60  PO2 

  1 = ≤ 60  
17 PH from Initial Blood Gases 0 = ≥ 7.25 PH 

  1 = < 7.25  
18 PCO2 from Initial Blood Gases 0 = ≤ 45 PCO 

  1 = > 45  
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19 Bicarbonate from Initial Blood Gases 0 = ≥ 18 BIC 
  1 = < 18  

20 Creatinine from Initial Blood Gases 0 = ≤ 2.0 CRE 
  1 = > 2.0  

21 Level of Consciousness at ICU Admission 0 = No Coma LOC 
  1 = Deep Stupor  
  2 = Coma  

All computations are performed using MATLAB software and the 
programs are available from the author upon request. 

Table 5. ICU Data: Maximum Likelihood Estimates (MLE) 
Variable jLβ̂  jL

sβ̂  
jLZp  Bjβ̂  Bj

sβ̂  BOOTp BjZp  p-Chisq D2 

Intercept –5.39 1.20 0.0070 –8.01 6.16 0.2237 0.3815 0.0000 67.24 
AG 0.05 0.02 0.0029 0.07 0.07 0.1670 0.4479 0.0000 130.31 
SYS –0.01 0.01 0.1720 –0.02 0.02 0.4568 0.5528 0.0000 29.65 
HRA –0.00 0.01 0.7890 –0.01 0.02 0.8695 0.9002 0.0000 19.30 

RACE2 –0.81 1.17 0.4895 –4.46 4.32 0.6970 0.8518 0.0000 91.47 
RACE3 0.41 1.11 0.7145 –0.92 4.23 0.8011 0.9233 0.0000 129.50 

SEX –0.55 0.50 0.2702 –0.94 1.11 0.4344 0.6180 0.0000 73.87 
SER –0.64 0.59 0.2807 –0.83 1.40 0.4685 0.6489 0.0000 54.19 
CAN 2.75 0.98 0.0049 4.41 3.98 0.2290 0.4890 0.0000 138.19 
CRN –0.11 0.78 0.8873 –0.28 3.30 0.9301 0.9734 0.0000 174.42 
INF –0.07 0.53 0.8889 –0.22 1.08 0.9185 0.9449 0.0000 35.75 
CPR 0.93 0.99 0.0072 0.83 4.17 0.5605 0.8229 0.0000 163.11 
PRE 0.98 0.64 0.1239 1.35 1.34 0.3035 0.4641 0.0000 41.96 
TYP 2.67 1.00 0.0072 5.37 4.20 0.2891 0.5242 0.0000 143.11 
FRA 1.26 1.01 0.2132 1.09 3.05 0.4667 0.6802 0.0000 69.63 
PO2 0.28 0.86 0.7476 –0.67 3.47 0.8651 0.9368 0.0000 123.84 
PH 2.38 1.23 0.0537 4.06 7.72 0.3316 0.7580 0.0000 254.84 

PCO –3.15 1.38 0.0225 –6.38 10.99 0.2919 0.7747 0.0000 312.01 
BIC –0.77 0.91 0.4021 –1.20 5.44 0.6755 0.8881 0.0000 238.42 
CRE 0.14 1.07 0.8958 0.11 4.19 0.9339 0.9733 0.0000 150.49 
LOC 2.72 0.76 0.0003 7.34 8.02 0.3032 0.7343 0.0000 262.11 

8. Concluding Remarks 

For all three data sets, bootstrap standard errors for DFA method are 
lower compared to that of MLE methods. 
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Bootstrap p-values ( )BOOTp  matched with asymptotic p-values ( )BjZp  in 

MLE only exception is in case of SMOKE variable in LBW data. 

Bootstrap p-values ( )BOOTp  matched with asymptotic p-values ( )DjZp  in 

DFA in all data sets. 

In MLE, asymptotic p-values contradicted with bootstrap p-values in 
several instances, such as, in LBW data for the variable PTL, in LCB data for 
the variable YR, and in ICU data for the variables AG, CAN, CPR, TYP, PH, 
PCO and LOC. 

The Chi-square p-values indicate that the asymptotic distributions are 
not normal except for some variables in LCB data which might be due to 
simplicity of this data set compared to the other two data sets. 

For all data sets, the deviance statistic (D2) is lower for DFA method 
compared to the MLE method showing that bootstrap distributions for the 
respective statistics are closer to normal. 

Table 6. ICU Data: Discriminant Function Approach (DFA) 

Variable Djβ̂  Bjβ̂  Bj
sβ̂ BOOTp DjZ  DjZp  p-Chisq D2 

Intercept –5.09 –5.85 2.41 0.0485 –2.11 0.0348 0.0000 1.82 
AG 0.04 0.05 0.02 0.0250 2.38 0.0175 0.0068 0.43 
SYS –0.01 –0.01 0.01 0.4038 –0.82 0.4132 0.0077 0.81 
HRA –0.01 –0.01 0.01 0.7706 –0.27 0.7860 0.0000 1.21 

RACE2 –0.96 –1.14 0.83 0.2426 –1.17 0.2429 0.0132 0.18 
RACE3 0.43 0.45 1.20 0.6957 0.36 0.7183 0.0000 2.03 

SEX –0.53 –0.62 0.59 0.3561 –0.91 0.3639 0.0103 0.30 
SER –0.55 –0.59 0.82 0.4852 –0.67 0.5010 0.0983 0.41 
CAN 2.49 2.83 1.11 0.0402 2.24 0.0250 0.0000 2.08 
CRN 0.06 0.08 1.30 0.9615 0.05 0.9632 0.0000 1.16 
INF 0.19 0.17 0.60 0.7449 0.31 0.7544 0.0183 0.58 
CPR 0.56 0.63 1.69 0.7274 0.33 0.7400 0.0000 0.89 
PRE 1.08 1.26 0.88 0.2157 1.23 0.2185 0.0000 1.09 
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TYP 2.04 2.34 0.71 0.0138 2.87 0.0041 0.0000 1.41 
FRA 0.72 0.77 1.13 0.5107 0.64 0.5236 0.0000 1.94 
PO2 0.31 0.24 1.83 0.8468 0.17 0.8646 0.0000 1.51 
PH 1.94 2.18 1.96 0.2948 0.99 0.3211 0.0000 1.46 

PCO –2.15 –2.21 1.58 0.1598 –1.36 0.1728 0.0000 1.64 
BIC –0.34 –0.14 2.05 0.8564 –0.16 0.8698 0.0000 3.36 
CRE 0.49 0.60 1.82 0.7671 0.27 0.7882 0.0000 1.78 
LOC 3.25 3.92 1.21 0.0339 2.67 0.0075 0.0000 10.71 

9. General Remarks 

When the data sets have large number of variables, the standard error 
computations are not reliable and hence the respective p-values. Bootstrap   
p-values should be preferred as they represent the true distribution of the 
estimates compared to the asymptotic distributions. 
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