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Abstract 

Welch [22] stated the Behrens-Fisher problem as a partial differential 
equation of infinite order and described how to obtain an exact 
solution of it by a series approach in reciprocal numbers of degrees of 
freedom. This solution gives the limit of the critical region of the 
Behrens-Fisher test variable as a function that only depends on the 
empirical variance ratio. However, Linnik [11] showed that such a 
function cannot be continuous, and up to now, it has not yet been 
commented upon that this contradicts Welch’s approach, whose 
solution is postulated to be infinitely often differentiable. This paper 
tries to dissolve this contradiction on the basis of the Welch-Aspin 
test, which uses the expansion of Welch’s series approach up to the 
fourth order. It becomes plausible that the convergence radius of 
Welch’s series is zero, so Welch’s approach does not provide an exact 
solution, and this is conform with Linnik’s non-existence theorem. The 
investigation of the error probability of the first kind shows the 
accuracy of the Welch-Aspin test, but also indicates that developing 
too high orders could deteriorate the results. 
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1. Introduction 

To obtain a similar test of equal means, ,: 210 μ=μH  of normally 

distributed populations, which need not be homoscedastic, Behrens [5] and 
Fisher [6] proposed to find the probability distribution of 
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under .0H  Fisher approximated it by ignoring the random variation of the 

proportion ( ) ( ),2
2
21

2
11

2
1 nsnsns +  so the error probabilities of the first 

kind did not come close to α. The first good approximation came from 
Welch [21], who worked, like Fisher, at the University College London. The 
so-called “approximate t-solution” of Welch [23], which is most used in 
statistical packages, goes back to it. Solutions of Bartlett (in Neyman [13, p. 
138]) and Scheffé [18, 19], which lead to exactly similar tests are not related 
to t in (1). The main disadvantage of these tests is that they are randomized 
throughout the sample space; their test result changes when permuting the 
sample. This and a loss of power of these tests make them undesirable. 

Based on the classical and sufficient statistics 2
121 ,, sxx  and ,2

2s  Welch 

[22] stated the function h for the limit between acceptance and rejection 
region of the mean difference 21 xxd −=  as a solution of a partial 

differential equation of infinite order, claiming that “this, in a very condensed 
form, is the solution of our problem” (after equation (11)). He also described 
how to obtain it by a series approach in reciprocal numbers of degrees of 
freedom. This solution is proportional to the standard deviation of the mean 

difference, ( ) ,21
2

2
21

2
1 nsnssd +=  so dshh =∗ :  gives the boundary of 

the acceptance region of the Behrens-Fisher test variable t in (1). It shall be 

shown in the present article that ∗h  can be written as a function that only 
depends on the empirical variance ratio, and this gives exactly the desired 
shape of a scale-invariant solution (cf. e.g. Lehmann [10, Section 6.6]). 
Welch [22] clearly described how to obtain all orders of his series solution, 
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and the Behrens-Fisher problem seemed to be mathematically solved, 
provided that the sample numbers and thus the degrees of freedom 

1−=ν ii n  are not too small, so that the series converges. For small iν  

Welch suggested to write his differential equation as an integral equation. 

However, without reference to Welch [22], Linnik ([11, Theorem 8.3.11]) 
showed that such a function cannot be continuous, which contradicts 
Welch’s approach because his solving function h is postulated to be infinitely 
often differentiable. The fact that Linnik’s claim about a non-existing 
continuous function of this kind is related to ( ) 221 sxx −=ξ  and that 

Linnik’s theorem is based on some weak conditions (Lipschitz continuity and 
finite derivative in certain intervals) is not essential since ξ and t can be 
transformed each other. Linnik’s assumption ,42 ≥n  or, since the samples 

can be exchanged, ,41 ≥n  allows the existence of a continuous function if 

1n  or 2n  is less than four, however, Welch’s [22] approach provides a series 

solution in reciprocal numbers of degrees of freedom, and if this series 
converged for small ,1−=ν ii n  it would also converge for large iν  and 

thus provide the exact solution. Therefore, this assumption would not clarify 
the contradiction between Welch and Linnik. 

                                                           
1To claim the non-existence of such a function, Pfanzagl [15] referred to Salaevskii’s [17] 
theorem, which is also cited in Linnik [11, Theorem 8.2.1]. However, this theorem refers to 
the impossibility to find a test variable that is a continuous function of ( ) dsxxt 21 −=  and 

the ratio ,21 ss  so that any critical region of the form [ )∞,C  (for a one-sided test) gives a 

similar test. Thus, the Salaevskii theorem requires that the continuous function that is to be 
found must be the same for any significance level α. Welch [22], however, proposed the 
concept of how to obtain a continuous and even infinitely often differentiable function h for 

the boundary of the rejection region of 21 xxd −=  in dependence of α. Salaevskii’s theorem 

only shows that, contrary to the boundary of the rejection region of d  in Student’s test, 
Welch’s h cannot be factorized into a term independent of α and a quantile value that only 
depends on α. But this was never intended by Welch and is not necessary to obtain an 
unbiased test. It is not Salaevskii’s [17] theorem, which is cited by Linnik [11, Theorem 
8.2.1], but Linnik’s [11, Theorem 8.3.1] which refutes the existence of an exact solution in the 
spirit of Welch [22]. 
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The contradiction between Welch [22] and Linnik [11] has not yet been 
commented upon. Instead, the Welch-Aspin test, which originates from 
Welch [22], is only referred to as an approximation of the Behrens-Fisher 
problem (e.g. Pfanzagl [15]). The tables of Mehta and Srinivasan [12], where 
Welch’s [22] series approach is compared with Banerjee’s [4], Fisher’s [6], 
Pagurova’s [14] and Wald’s [20] approximations, show that for small 
samples Welch’s approach and Mehta’s and Srinivasan’s improvement of 
Pagurova’s [14] test perform best with respect to the α-error probability. 
Welch’s [22] series is expanded up to the second order, but the Welch-Aspin 
test is based on Aspin’s [1] development up to the fourth order, and its 
remarkable precision is mentioned by several authors, e.g. by Lee and 
Gurland [9]. Of course, all these finite series are only approximations, but 
this does not give us the right to maintain the non-existence of an exact 
solution and to simultaneously disregard that Welch [22] gave the recipe how 
to obtain all orders and thus an exact series solution. This discrepancy shall 
be clarified in the following. 

2. The Question of Convergence of Welch’s and  
Aspin’s Series Solution 

We shall see that Welch’s series solution writes as a function that only 
depends on the empirical variance ratio. If Welch’s series uniformly 
converged, then the limiting function would, as all partial sums, also be 
continuous, and this would contradict Linnik’s [11] Theorem 8.3.1. 
Therefore, the contradiction between the non-existence of an exact similar 
solution of the Behrens-Fisher problem and Welch’s exact series approach 
can only be resolved if the uniform convergence of Welch’s series fails. 
Since Linnik’s [11] non-existence of a solution is not confined to small-
sample cases, this divergence must necessarily even hold if the sample 
numbers in  are arbitrarily high. The question arises if this is believable. 

Welch [22] described his method in a very condensed form. Aspin [1] 
did this in a similar way, but with two exchanged differential operators. A 
more extensive description is given in Bachmaier [2, Chapter 10]. It follows 



On Welch’s and Aspin’s Series Solution … 35 

Aspin [1], but the function to be developed is not related to the mean 
difference ,21 xx −  but directly to the Behrens-Fisher test variable t in (1), 

and derivatives with respect to 2
iσ  are replaced by derivatives with respect to 

.: 2
iii nσ=γ  To discuss whether or not Welch’s series approach converges, 

it is helpful to present the result of Aspin’s development up to the fourth 
order. This gives us the possibility to correct a printing mistake2 in Aspin’s 
[1] paper and to show that Welch’s method exclusively provides terms that 

only depend on the variance ratio ( ) ( ).2
2
21

2
1 nsns  

2.1. Aspin’s development up to the fourth order 

Based on the abbreviation 
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and the normal quantile ( )α−Φ= − 1: 1u  for a one-sided test, Aspin [1] 

presented the series development of the boundary h that must be exceeded by 

21 xx −  to reject 210 : μ=μH  in favor of .: 211 μ>μH  She had calculated 

it up to the fourth order. It follows the corresponding expansion of the 

boundary ,dshh =∗  which is related to the Behrens-Fisher test variable t: 

 [ ]( ) ( ) ( ) ( ) ( ) ( ),432104 ghghghghghgh ∗∗∗∗∗∗ ++++=  (3) 

where ( )21, ggg =  and ( )ghk
∗  contains the following terms in 21

21
kk −− νν  

                                                           
2The summand of the fifth last line on page 90, which corresponds here to the fifth last line of 

( ),4 gh∗  results in ( ) 2
212264

1 VV−  instead of ( ) .
64
1 2

2142VV−  A further printing mistake 

concerns the method description. At page 90, equation (11), every exponent of iσ  must be 

twice as big as the corresponding exponent of ,i∂  thus the expression 26
ii ∂σ  must be 

corrected to .36
ii ∂σ  
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with ,21 kkk =+  which we call terms in :k−ν  

( ) ,0 ugh =∗  (4) 

( ) ( ) ,14
1

21
2

1 Vuugh +⋅=∗  (5) 
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2  
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( ) 54
8642 7168112621707355

1 Vuuuu +++++  

( ) 2
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All these ( )ghk
∗  only depend on ,lkV  which can be written in a way that 

makes clear that they only depend on the variance ratio 2
2

2
1 ss  or 

( ) ( ) :212
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2
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and we may believe that this would not change when developing all other 

orders ,∗kh  ,N∈k  which are all continuous functions of .g  

Setting ∞=ν :2  or 0:2 =s  in (4)-(8), so that ,02 =g  leads to the one-

sample case, where the lkV  simplify to .1 1
kν  The resulting ( ( )) N∈

∗
kk gh 1  

gives the series development of the t-quantile for any number of degrees of 
freedom (Fisher [7, p. 151]): 
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The coefficients occurring in (4)-(8) are very large and they increase with 

increasing order k, but it seems that the summands in the ∗
kh  cancel each 

other nearly completely out when setting ,0:2 =g  so that we arrive at the 

one-sample case; for the coefficients in (10)-(14) are much smaller and they 
decrease with increasing order k, which is necessary for the series’ 
convergence. 

By contrast, to avoid a contradiction between Welch’s [22] exact concept 
of a series approach and Linnik’s Theorem 8.3.1 about its non-existence, 
there must exist a ratio 21 gg  for which Aspin’s series in (4)-(8) does not 

even converge for arbitrarily large .iν  

A series ++++ ∗∗∗∗
3210 hhhh  that diverges for any arbitrarily large iν  

corresponds to a one-dimensional power series ++++ 3
3

2
210 xaxaxaa  

with a convergence radius of zero, and this requires the ratio of absolute 
coefficients, ,1 kk aa +  to be unbounded, which applies for example if ka  

increases with an order of k!. Figures of the rejection region boundary 
developed up to different orders shall help us to judge this question. 

2.2. Figures for Aspin’s series development 

In the following, the degree of sample heteroscedasticity is not measured 
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by variance ratios like 2
2

2
1 ss  or ( ) ( ),2

2
21

2
1 nsns  but, for reasons of 

symmetry, by the ratio (R) of difference (D) and sum (S) of the :2
iii nsg =  
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The value 0 occurs when the empirical variances of the means, 

,2
iii nsg =  are equal. The limiting values 1−  and 1+  are obtained if all the 

variance of the mean difference comes from one of the two samples 
1RDS( −=  if ∞=ν1  or ;01 =s  1RDS +=  if ∞=ν2  or ),02 =s  so they 

correspond to the one-sample case, where Welch’s [22] series development 
gives the t-quantile. 

Figures 1-4 show the limits of the acceptance region of a one-sided test 
of 210 : μ≤μH  ( )210 :or μ=μH  versus 211 : μ>μH  for 05.0=α  as a 

function of RDS, when developed up to different order 4,3,2,1,0=K  

according to Welch [22] and Aspin [1]. It is called ,~∗h  where ( )RDS~∗h  

( ).gh∗=  

At the boundary of the RDS area, ,1RDS ±=  all figures suggest that the 
series converges. As has been shown by Fisher [7, p. 151], it gives the series 
of the t-quantile, which converges to α−ν 1;1t  if 1RDS +=  and to α−ν 1;2t  if 

.1RDS −=  The corresponding power series for 05.0=α  results in 

( ) ( ) 644854.11~
==± ∗∗

ighh  

.433876.0983002.0420203.1523769.1
432 +

ν
+

ν
+

ν
+

ν
+

iiii
 (16) 

The strong decrease of the latter coefficients also suggests that it 
converges even for .1=νi  
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Figure 1. The limits of the rejection region for 321 =ν=ν  and 05.0=α  

(one-sided test). 

 

 

 

 

Figure 2. The limits of the rejection region for 521 =ν=ν  and 05.0=α  

(one-sided test). 
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Figure 3. The limits of the rejection region for 921 =ν=ν  and 05.0=α  

(one-sided test). 

Clear doubts that the series converges arise at the mid of the RDS area, 
where RDS lies around zero. In the balanced case 321 =ν=ν  (Figure 1) 

the absolute value of ( )RDS~
4
∗h  proves at 0RDS =  greater than that of 

( ),RDS~
3
∗h  so that a convergence is unbelievable. In the balanced cases with 

more degrees of freedom (Figures 2-3) and in the unbalanced case ,41 =ν  

82 =ν  (Figure 4), ( )RDS~
4
∗h  is at its maximum already less than 

( ) ,RDS~
3
∗h  where the maximum lies at 0RDS =  in balanced cases and 

around 1.0RDS −=  or 2.0−  in the unbalanced case 8,4 21 =ν=ν  (Figure 

4). Therefore, a convergence seems possible, so the power series needs 
further investigation. This shall be done for balanced cases ,:21 ν=ν=ν  

where the absolute summands, ( ) ,RDS~∗
kh  of the series have their maximum 

at ,0RDS =  i.e., for ,:21 ggg ==  for which the lkV  in (2) simplify to 

.21 kl
lkV −− ν=  Hence, the following power series at 0RDS =  arises for 
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:05.0=α  

( ) ( )
ν

+== ∗∗ 761885.0644854.1,0~ gghh  

 .160788.12094171.3406834.0
432 +

ν
−

ν
−

ν
−  (17) 

Contrary to the power series in (16), which treats ,1RDS ±=  the 

coefficients ka  of the series in (17) do not decrease, but they increase 

exorbitantly. A convergence for small 21 ν=ν=ν  seems impossible, but is 

it plausible that the series converges for no N∈ν  at all, so that the 
convergence radius in ν1  is indeed zero? For this, it is necessary that the 

ratios of absolute coefficients, ,1−kk aa  is unbounded. The sequence of 

these ratios for 4,3,2,1=k  results in (0.463, 0.534, 7.605, 3.930). There is 

a strong increase from the second to the third ratio, but the fourth ratio 
decreases, so that there might be doubts that this ratio sequence tends to 
infinity. However, considering that the absolute quadratic coefficient of the 
series, 0.407, is even smaller than the linear one, one should rather suggest 
that the absolute coefficients of even order turn out smaller throughout than 
those of odd order, and, to obtain a convergence radius of zero in ,1 ν  it 

suffices that any subsequence of ratios, for example the sequence 2−kk aa  

for odd or even k (or both), goes to infinity. And this might be supposed 
when viewing the power series in (17). 

 
Figure 4. The limits of the rejection region for ,41 =ν  82 =ν  and 05.0=α  
(one-sided test). 
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All in all, the series development up to the fourth order makes it 
believable throughout that its convergence radius is zero. These means, when 
generalizing the test to unbalanced cases too, that the series development of 
Welch [22] and Aspin [1] converges for no pair ( ),, 21 νν  unless at least one 

of these numbers is infinity. 

Welch’s and Aspin’s development is a series whose partial sums are all 
continuous. Only if the partial sums converge uniformly, the limit of the 
series is necessarily a continuous function too, which would contradict 
Linnik’s Theorem 8.3.1. One could claim that the series does not converge 
uniformly, but pointwise, so that the limiting function need not be 
continuous, which would be compatible with Linnik’s theorem. First of all, a 
pointwise, but not uniform convergence to a discontinuous function is not 
very plausible, but if it indeed applied, this limiting discontinuous function 
would not be proven to be the solution because Welch’s differential approach 
postulates the function to be found to be infinitely often differentiable and 
thus continuous. 

3. The Utility of the Welch-Aspin Test 

Welch [22] mentioned that the partial differential equation on which the 
Welch-Aspin test is based should be replaced by an integral equation if the 

iν  are small, and Aspin [1], who solved the differential equation up to the 

fourth order, produced her tables starting from .621 =ν=ν  Mehta and 

Srinivasan [12] also warn against “using the asymptotic expansions for too 
small sample sizes” and investigated Welch’s [22] test, which is developed 
up to the second order ( ).2=K  In this section, which mainly relates to 

balanced cases, the Welch-Aspin test ( )4=K  is investigated even for 

,121 =ν=ν  but Figure 5 shows that, at the 5% level, its application for 

very small iν  is not meaningful, in particular, for 121 =ν=ν  a t-value of 

zero would suffice to reject the null hypothesis of equal iμ  in favor of a one-

sided alternative if RDS is close to zero, and a test versus the two-sided 
alternative with the corresponding 10.0=α  would no longer be possible. 
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Therefore, for small iν  the question as to how far the series should be 

expanded shall be investigated in the following. The limiting function ∗h~  
should be such that it enables the calculation of reasonably small P-values. 
Further, the error probability of the first kind should come as close as 
possible to α. 

 

Figure 5. The limits of the rejection region for 4=K  and 05.0=α  (one-
sided test). 
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3.1. P-values 

 

Figure 6. The limits of the rejection region for 421 =ν=ν  and .4=K  

Figure 6 treats the case 421 =ν=ν  when all orders ( )4i.e., =K  of the 

Welch-Aspin test are computed. It shows ∗h~  for different α down to 0.001 

(for one-sided testing). Although ∗h~  should increase for decreasing α, 
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( )0~∗h  begins to decrease when α falls short of 0.003584, where ( )0∗h  

obtains its maximum value .427755949.2max =t  This means in praxis that 

one should not test at a level of 003584.0<α  and that one-sided P-values 
smaller than 0.003584 cannot be obtained. If the t value exceeds ,maxt  then 

it would nevertheless be meaningful to claim that the P-value is less than 
0.003584. To ensure that P-values down to 0.001 can be reached, it turned 

out that ∗h~  should only be computed up to the third order ( ).3=K  This 

equally holds for .321 =ν=ν  For 221 =ν=ν  and 121 =ν=ν  the series 

should only be computed up to the second order ( ).2=K  P-values down to 

0.001 by computing all orders of the Welch-Aspin test ( )4=K  can already 

be obtained if 521 =ν=ν  or greater. 

3.2. Error probabilities of the first kind 

The probability for the α-error of the Welch-Aspin test has already been 
much investigated (e.g. Lee and Gurland [9]). In the focus of this section is 
its dependence of the order K up to which the series is developed. In the 
following, the probability for the α-error is called ;~α  it is obtained by 
numerically computing the following double integral: 
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where the notation ( ) ( ) 21 ggghgh +⋅= ∗  corresponds to Aspin [1], whose 

function h relates to the test variable ,21 xx −  and 
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⎝
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denote the densities of the independent variance estimators, ,2
iii nsg =  of 

the means .ix  These ig  follow a ( ) 2
iii νχ⋅νγ  distribution, where .2

iii nσ=γ  

The region of rejection for 2=a  is illustrated in dependence of the ratio 
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RDS of difference and sum of sample variances of the means. Analogously, 
α~  and power shall be described in dependence of such a ratio, which now 
refers to the population variances instead of the sample variances: 

 .RaDS 22

22

22

22

21
21

yyxx

yyxx

YX

YX
nn

nn

σ+σ

σ−σ
=

σ+σ

σ−σ
=

γ+γ
γ−γ=  (20) 

Hence, ( )RaDS12
1:1 +=γ  and ( )RaDS12

1:2 −=γ  can be set such that 

,121 =γ+γ  which simplifies the computation of α~  in (18)-(19). 

Figure 7 illustrates the error probability of the first kind for 41 =ν  and 

.82 =ν  It shows that the development up to the fourth order gives the best 

result and that the level 05.0=α  is reached exactly for even six values of 
RaDS. 

 

Figure 7. The error probability of the first kind, ,~α  for 8,4 21 =ν=ν  and 

05.0=α  (one-sided test). 
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The actual error probabilities of the first kind, ,~α  in Tables 1 and 2 are 
given such that, within the range of RaDS values (i.e., within each line), the 
maximal deviation from the nominal level 05.0=α  has a two-digit 
precision. This also visualizes the accuracy of the Welch-Aspin test with 
respect to the maximal order of development. 

Table 1 shows that Welch’s [22] series approach is even applicable in the 
case of minimal samples, i.e., if .121 =ν=ν  The best result is obtained 

when Welch’s series is developed up to the second order ( ),2=K  where α~  

ranges between 0.04 and 0.06. For 221 =ν=ν  and 321 =ν=ν  the series 

should be developed up to the third order ( )3=K  to obtain the most accurate 

.~α  The fourth order ( )4=K  should only be developed if 421 =ν=ν  or 

greater. These results indicate that there also exists for greater iν  an order K 

up to which the series development is optimal with respect to .~α  It seems 
that there exist no ∞<νi  for which the development of all orders would be 

optimal, and this would mean that the infinite series cannot be the exact 
solution, and Linnik’s [11] Theorem 8.3.1 of the non-existence of a 
continuous solution would be confirmed again. 
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Table 1. Probability of α-error of the Welch-Aspin test at 05.0=α  

 

Table 2 exhibits the exactness of the Welch-Aspin test for greater iν  like 

1021 =ν=ν  and ,2021 =ν=ν  which could make one believes that the 

exact solution must also exist, but this nevertheless does not imply that the 
development of any additional order improves the accuracy of the test. 
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Table 2. Probability of α-error of the Welch-Aspin test at 05.0=α  

 

4. Summary of Results and Conclusions 

Welch [22] stated the Behrens-Fisher problem as a partial differential 
equation, which he solved by a series approach. Although his series approach 
converges to the t-quantile for the special case of one sample, it does not 
seem to converge in the two-sample case when the variances of the sample 
means are rather equal, and it is believable throughout that the convergence 
fails for arbitrarily high .iν  This non-convergence resolves the contradiction 

with Linnik [11], who states in Theorem 8.3.1 that an exact continuous 
solution for the rejection region of the Behrens-Fisher test cannot exist unless 
one sample size is less than four. 

Nevertheless, for 60 years there has not been developed a better test than 
the Welch-Aspin test. It is the most accurate solution of the Behrens-Fisher 
problem. It performs especially well for high ;iν  for very small iν  only the 

first two or three orders should be expanded, so that also small P-values can 
be computed. 

Although Welch’s [22] series approach does not converge, the good 
performance of its finite order development recommends Welch’s method to 
other test problems. It has been used by James [8] for ANOVA under 
heterogeneous variances and by Bachmaier [2] for equivalence tests. 
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Currently, the present author also applies this method to the role-reversal of 
the latter test, which is the two-sided test for relevant difference [3]. 
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