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Abstract 

The transient thermal behavior under the effect of the dual-phase-lag 
heat conduction model using Laplace transformation technique is 
investigated semi-analytically. The heat transfer mechanism during 
rapid heating of the slab from a macroscopic point of view using the 
dual-phase-lag heat conduction model is studied. The slab consists of 
thin metal layer. The effects of the phase-lag in heat flux vector and 
temperature gradient on the thermal behavior of the slab are 
investigated. It is clear that all the three models (Fourier, hyperbolic, 
and dual-phase-lag) give almost the same predictions since the values 
of qτ  and Tτ  are relatively small. 

Nomenclature 

 L Width of domain, m 

 c Specific heat capacity, 11 K.kgJ. −−  
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 k Thermal conductivity, 11 K.mW. −−  

 0q  Reference conduction heat flux, LTkΔ  

 S Laplacian domain 

 t Time, s 

 0t  Reference time, 0qcLTρΔ  

 T Temperature domain 1, K 

 ∞T  Ambient temperature, K 

 wT  Wall temperature, K 

 W Laplace transformation of the dimensionless temperature 

 x x-coordinate 

 y y-coordinate 

Greek symbols 

 α  Thermal diffusivity 

 η Dimensionless time, 
0t
t  

 θ Dimensionless temperature, 
∞

∞
−
−

TT
TT

w
 

 ξ Dimensionless x-coordinate, L
x  

 ρ Density, 3mkg. −  

 τ~ Thermal relaxation time, s 

 qτ
~  Phase-lag in heat flux vector, s 

 Tτ
~  Phase-lag in temperature gradient, s 

 τ Dimensionless thermal relaxation time, 2

~

L
ατ  
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1. Introduction 

Although Fourier’s law is appropriate in describing heat conduction in 
most common engineering situations, however, it breaks down in situations 
involving very short times, high heat fluxes, and at very low temperatures 
[1]. The anomaly of this classical theory is from the assumption that the heat 
flux vector and the temperature gradient across a material volume occur at 
the same instant of time. Such an immediate response results in an infinite 
speed of heat propagation. In order to associate a finite heat propagation 
speed, Cattaneo [2] and Vernotte [3] modified Fourier’s law by including a 
relaxation model that, in parallel to Fourier’s law, can be written as [4] 

 ( ) ( ).,, ηξθ∇−=τ+ηξ kq q  (1) 

This equation shows that the temperature gradient θ∇  established at a 
position ξ at time η results in a heat flux to flow at the same position but at a 
different instant of time .qτ+η  Physically, qτ  represents the relaxation 

time or the phase-lag time between the temperature gradient and the 
commencement of heat flow in a medium. This modified Fourier’s law 
incorporating with the conservation of energy leads to the wave-based 
hyperbolic heat conduction equation (HHCE). For some initial or boundary 
conditions, the HHCE will introduce a sharp wave front in the history of 
wave propagation, resulting in several physical phenomena which cannot be 
depicted by diffusion. Comprehensive literature surveys of heat waves until 
the eighties can be found in the review articles by Joseph and Preziosi [5, 6] 
and more recently by Ozisik and Tzou [7]. Although the HHCE can solve the 
paradox of instantaneous response of thermal disturbance, it also introduces 
some unusual behaviors [8] and physically impossible solutions [9, 10]. 
Instead of the precedence assumption in equation (1), assuming the lead of 
the temperature gradient to the heat flux, a more general model, the dual-
phase-lag (DPL) model, was proposed by Tzou [4, 11, 12]. This model 
allows either the temperature gradient to precede the heat flux or the heat 
flux to precede the temperature gradient. Mathematically, the constitutive 
law for DPL is represented by 
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 ( ) ( ),,, Tq kq τ+ηξθ∇−=τ+ηξ  (2) 

where Tτ  is the phase-lag of the temperature gradient. Ever since its 

agreement with experimental results was shown [13], the DPL model has 
attracted a considerable interest in the fundamental transport process of heat 
and mass including, for example, thermal stresses of thin plate [14], lagging 
behavior of heat transport in amorphous materials [15], semi-infinite slab 
with surface heat flux [16], non-equilibrium entropy production [17, 18], 
thermalization and relaxation during short-time transient in microscale [19, 
20], temperature-dependent thermal lagging under ultrafast laser heating 
[21], and, more recently, the growth of interfacial phase compound in metal 
matrix composites as well as in thin films [22-24]. In this exposition, we 
shall study the propagation of an ultrashort pulsed energy across the solid-
solid interface of dissimilar material layers. With the advent of modern laser 
with ultrashort pulse duration, picosecond or femtosecond, the ultrafast heat 
transport process has become an important problem with practical 
importance [25]. Many interesting phenomena and unusual results regarding 
energy transport at interface of dissimilar materials have been explored [26-
29]. Most of them, however, were within the framework of HHCE, that is, 
attentions were mainly on the effect of .qτ  No researches, to authors’ best 

knowledge, had focused on the effect of Tτ  on the energy disposition at 

layer interface. Mathematically, the DPL model introduces additional high-
order, mixed spatial and time derivative terms in the governing equation as 
well as in boundary condition at the layer. This study, therefore, mainly 
focuses on the effect of Tτ  on the fundamental nature of heat transfer at a 

thin slab layer within the DPL heat conduction model. 

2. Case Study 

Consider a slab that consists of Lx ≤≤0  as illustrated in Figure 1. Let 
k be the thermal conductivity, and α be the thermal diffusivity for the layer. 
Knowledge of the transient heat conduction in a layer composite thin slab is 
of importance in a number of different applications such as coating, cladding, 
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foils forming, fabricating of the p-n junctions, semi-conductors and electric 
chips. Initially, the temperature was 0°C. For ,0>t  the boundary surface at 

0=x  is kept insulated and the boundary surface at Lx =  is kept at .wT  
The thickness of the layer is assumed to be very small relative to the height 
of the slab, so it is reasonable to assume that the conducted heat is transferred 
in the x-direction only. In this case, the energy equations are written as 

,
x
q

t
Tc

∂
∂

−=
∂
∂

ρ  (3) 

.~~
2

11
xt

T
x
T

t
qq Tq ∂∂

∂
τκ−

∂
∂

κ−=
∂
∂

τ+  (4) 

Combining equations (3) and (4) yields 

 .
~1~

2

2

2

3

2

2

t
T

t
T

xt
T

x
T q

T
∂

∂
α

τ
+

∂
∂

α
=

∂∂

∂
τ+

∂

∂
 (5) 

Initial and boundary conditions: 

( ) ,0,0 =xT  

( ) ,0,0 =
∂
∂ xt
T  

( ) ,, wTLtT =  

( ) 00, =
∂
∂ t

x
T  

using these dimensionless parameters, 

.,
~

,,, 0020
qcLTt

Lt
t

TT
TT

L
x

w
ρΔ=ατ=τ=η

−
−

=θ=ξ
∞

∞  

Equations (3) and (4) in dimensionless form become 

ξ∂
∂−=

η∂
θ∂ Q

 (6) 

.2ξ∂η∂

θ∂
τ−

ξ∂
θ∂

−=
η∂

∂
τ+ Tq

QQ  (7) 
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Equation (5) is reduced to 

 .2

2

2

3

2

2

η∂

θ∂
τ+

η∂
θ∂

=
ξ∂η∂

θ∂
τ+

ξ∂

θ∂
qT  (8) 

Initial and boundary conditions: 

( ) ( ) ,0,0,0,0 =ξ
η∂
θ∂=ξθ  

( ) ,11, =ηθ  

( ) .00, =η
ξ∂
θ∂  (9) 

Now, with the notation that ( ) ( ){ },,, ηξθ=ξ LSW  Laplace transformation 

of equations (8) and (9) yields 

,2
2

2

2

2
WSSW

d
WdS

d
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qT τ+=⎟⎟
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⎝
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q  (10) 

Equation (10) assumes the following solution: 

 ,21
ξλ−ξλ += eCeCW  (11) 

where .
1

2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

τ+

τ+
=λ

S
SS

T

q  

Also, Laplace transformation of the boundary conditions yields 

( ) ,11, SSW =  

( ) .00, =
ξ∂

SdW
 (12) 
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Insert equation (11) into (12) and solve for 1C  and 2C  to yield 

.

1

21 λ−λ +

⎟
⎠
⎞

⎜
⎝
⎛

==
ee

SCC  

Equation (11) is inverted using a computer program based on Riemann-sum 
approximation as 

 ( ) ( ) ( ) ,1,Re,2
1,

1 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞⎜

⎝
⎛

η
π+γξ+γξ

η
≅ηξθ ∑

=

γη N

n

n
kkk

inWWe  (13) 

where 1=k  for domain (1) and 2=k  for domain (2). In equation (13), Re 

represents the real part of the summation and .1−=i  7.4=γη  gives the 

most satisfactory results Tzou [11-13]. Equation (13) yields the exact 
temperature distribution in the domain for the dual phase heat conduction 
model case. 

3. Results and Discussion 

Figure 2 shows spatial temperature distribution within the domain using 
the parabolic and hyperbolic heat conduction models. It is clear from the 
figure that both models give almost the same predictions since the values of 

qτ  are relatively small. This implies that the phase-lag concept has 

insignificant effect on the predictions of the hyperbolic heat conduction 
model when qτ  are relatively small. It is clear that as qτ  increases, the 

deviation between both models increases. Spatial temperature distribution 
within the domain at different phase-lag in temperature gradient using the 
dual phase heat conduction model is shown in Figure 3. Figure 4 shows 
transient temperature distribution for parabolic and dual-phase-lag perfect 
contact heat conduction model in two domains. It is clear that the parabolic 
and dual-phase-lag gives almost the same predictions for small values of ,Tτ  
also, the deviation between the two models increases as Tτ  increases. 
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4. Conclusion 

The thermal behavior of a thin layer under the effect of the dual-phase-
lag heat conduction model is investigated. It is clear that all the three models 
(Fourier, hyperbolic, and dual-phase-lag) give almost the same predictions 
since the values of qτ  and Tτ  are relatively small. 
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Figure 1. Schematic diagram of the problem under consideration. 
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Figure 2. Spatial temperature distribution within the domain using the 
parabolic and hyperbolic heat conduction models. 
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Figure 3. Spatial temperature distribution within the domain at different 
phase-lag in temperature gradient using the dual phase heat conduction 
model. 
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Figure 4. Transient temperature distribution for parabolic and dual-phase-lag 
heat conduction model in the domain. 


