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Abstract 

Support points of the subordination family ( )Fs  are determined for an 

analytic function ( ).KHsF ∈  We show that ( ) { ∈φφ= :supp FFs  

}. supp 0B  As a corollary we obtain ( )Fssupp  for ∞∈ HF  and prove 

the Abu-Muhanna conjecture. 

1. Introduction 

Let { }.1: <∈=∆ zz C  ( )∆A  denotes the linear space of functions 

analytic in ∆ with the topology of uniform convergence on compact sets. 

( )∆A  is locally convex. Let ( )∗∆A  be the space of continuous linear 

functionals on ( ).∆A  

The Krein-Milman theorem holds for every compact subset F of 

( ).∆A  If HF denotes the closed convex hull of F and EHF denotes the set 

of its extreme points, then .HEHFHF =  Furthermore, EHFF ⊃  and for 

every functional ( ) ,∗∆∈ AJ  

( ) ( ).RemaxRemax fJfJ
EHFfFf ∈∈

=  
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Let 0B  denote the class of functions ( )∆∈φ A  such that ( ) ,1<φ z  

,∆∈z  and ( ) .00 =φ  Let ( )., ∆∈ AFf  Then f is said to be subordinate to 

F if and only if there exists a function 0B∈φ  such that .φ= Ff  The 

class of functions subordinate to F is denoted by ( ).Fs  

A function f is called a support point of a compact subset F of ( )∆A  if 

( )∆∈ Af  and there exists a functional ( )∗∆∈ AJ  such that ( ) =fJRe  

( ){ }FggJ ∈:Remax  and JRe  is non-constant on F. The set of support 

points of F is denoted by .supp F  Each ( )∗∆∈ AJ  is uniquely 

represented by a sequence of complex numbers { }∞=0nnb  such that 

1suplim <
∞→

n
n

n
b  and ( ) ∑

∞

=
=

0
,

n
nnabfJ  where ( ) ∑

∞

=
=

0n

n
nzazf  is analytic 

in ∆ [7, p. 36]. 

The set 0supp B  consists of all finite Blashke products in 0B  [2]. 

Abu-Muhanna proved in [1] that ( ) { }0supp:supp BFFs ∈φφ⊂  

for any non-constant ( )., ∆∈ AFF  There are a few known cases in 

which equality is attained. For example, 

( ) { }0supp:supp BFFs ∈φφ=  (1) 

for ,KF ∈  where K denotes the class of univalent convex mappings on ∆ 

with ( ) ( ) 0100 =−′= FF  [5]. The equality holds also for any non-constant 

function F analytic in the closed unit disc [1]. 

The class of bounded analytic functions is denoted by ∞H  and 

( ) .maxlim 201
θ

π≤θ≤→∞ = i
r reff  

Also in [1], Abu-Muhanna conjectured that (1) holds for any bounded 

analytic function. We prove this conjecture as a corollary to the main 

result in Section 2. 
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2. Support Points of the Subordination Families with 

Majorants Subordinate to Convex Functions 

Let ( ) ( ) ( ){ }.: FsfAfKs KF ∈∃∆∈= ∈  This is to say, each f in ( )Ks  

is subordinate to a univalent convex mapping on ∆, with the standard 

normalization at 0. 

The set of extreme points of the closed convex hull ( )KEHs  of ( )Ks  

consists of the functions ( ),1 xzyz −  where 1== yx  [4]. We use this 

fact to prove that (1) occurs whenever ( ).KHsF ∈  

Theorem 1. If ( ),KHsF ∈  then ( ) { }.supp:supp 0BFFs ∈φφ=  

Proof. We need only to prove that if ,supp 0B∈φ  then ∈φF  

( ).supp Fs  Let ( ) ( )zz φ=φ  and let ( )[ ]∗∆∈ AJ  be given by coefficients of 

.φ  Then 

( ) ( )∫
π θ−

θ θ







φ

π
=

2

02
1 d

r
ereffJ

i
i  

for 1<r  sufficiently close to 1. It is easy to see that 

( ) ( ) ( )∫
π

θθ =θφφ
π

=φ
2

0
.1

2
1 deeJ ii  

Lemma 7.18 in [3] implies that ( ) ,0=φnJ  for ....,3,2=n  

Hence ( ) ( ) .1=φ=φ JFJ  We also have 

( )
( )

( )
( )

( )
( )fJfJfJ

KHsfKsfFsf
RemaxRemaxRemax

∈∈∈
≤≤  

 
( )

( ) .
1

RemaxRemax
,








−
==

∆∂∈∈ xz
yzJfJ

yxKEHsf
 

Assume now that ( ).∆∈ψ A  Then, for 1<r  and sufficiently close to 
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1 and for ,∆∂∈x  

( ) ( )∫ =ξ
ξ

−ξ
ξψ

π
=ψ

r
d

xi
x

12
1  

∫ ∫π

π

θ−

θ−θ−

θ−

θ−

θ−

θ

−









ψ

π
=θ







 −

−









ψ

π
=

0

2

2

02
1

2
1 d

x
r

e

r
e

r
e

d
r

ie

x
r

e

r
e

i i

ii

i

i

i

 

∫
π

θ

θ−

θ
−









ψ

π
=

2

0
.

12
1 d

xre

r
e

i

i

 

Let ( ) ( )
.

z
z

z
φ=ψ  Since ( ) 00 =φ  and ( )∆∈φ A  also ( ).∆∈ψ A  

Hence, 

∫ ∫
π π

θ

θ−
φθ

θ−

θ

θ
θ

−










π
=θ








φ

−π
=







−

2

0

2

0 12
1

12
1

1
d

xre

r
ere

yd
r

e

xre

yre
xz

yzJ
i

i
i

i

i

i
 

( ) ( )∫
π

θ

θ−

φ=ψ=θ
−









ϕ

π
=

2

0
.

12
1

x
xyxyd

xre

r
e

y
i

i

 

It follows that 
( ) ( )

.1maxRemax
1

Remax
,,,

=φ≤






 φ=






− ∆∂∈∆∂∈∆∂∈ x
xy

x
x

y
xz

yzJ
yxyxyx

 

Therefore, 
( )

( ) .1Remax ≤
∈

fJ
Fsf

 

Finally, since ( )FsF ∈φ2  and ( ) ( ) constRe,022 ≠=φ=φ JJFJ  

on ( ).Fs  Hence ( ).supp FsF ∈φ  

Since ( ) ( )[ ] ( ),0 zsffzf ∈− ∞  for any ,∞∈ Hf  and ,Kz ∈  we have 

the following corollary. 

Corollary. If ,∞∈HF  then ( ) { }.supp:supp 0BFFs ∈φφ=  
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