SUPPORT POINTS AND SUBORDINATION

K. T. HALLENBECK

(Received February 11, 2005)

Submitted by K. K. Azad

Abstract

Support points of the subordination family s(F) are determined for an analytic function $F \in Hs(K)$. We show that $\operatorname{supp} s(F) = \{F \circ \phi : \phi \in \operatorname{supp} B_0\}$. As a corollary we obtain $\operatorname{supp} s(F)$ for $F \in H^\infty$ and prove the Abu-Muhanna conjecture.

1. Introduction

Let $\Delta = \{z \in \mathbb{C} : |z| < 1\}$. $A(\Delta)$ denotes the linear space of functions analytic in Δ with the topology of uniform convergence on compact sets. $A(\Delta)$ is locally convex. Let $A(\Delta)^*$ be the space of continuous linear functionals on $A(\Delta)$.

The Krein-Milman theorem holds for every compact subset F of $A(\Delta)$. If HF denotes the closed convex hull of F and EHF denotes the set of its extreme points, then HF = HEHF. Furthermore, $F \supset EHF$ and for every functional $J \in A(\Delta)^*$,

$$\max_{f \in F} \operatorname{Re} J(f) = \max_{f \in EHF} \operatorname{Re} J(f).$$

 $2000~\mathrm{Mathematics}$ Subject Classification: Primary 30D55, 30D50.

Key words and phrases: analytic function, continuous linear functional, H^p -classes, support point, extreme point.

© 2005 Pushpa Publishing House

Let B_0 denote the class of functions $\phi \in A(\Delta)$ such that $|\phi(z)| < 1$, $z \in \Delta$, and $\phi(0) = 0$. Let $f, F \in A(\Delta)$. Then f is said to be *subordinate* to F if and only if there exists a function $\phi \in B_0$ such that $f = F \circ \phi$. The class of functions subordinate to F is denoted by s(F).

A function f is called a $support\ point$ of a compact subset F of $A(\Delta)$ if $f \in A(\Delta)$ and there exists a functional $J \in A(\Delta)^*$ such that $\operatorname{Re} J(f) = \max\{\operatorname{Re} J(g): g \in F\}$ and $\operatorname{Re} J$ is non-constant on F. The set of support points of F is denoted by $\operatorname{supp} F$. Each $J \in A(\Delta)^*$ is uniquely represented by a sequence of complex numbers $\{b_n\}_{n=0}^{\infty}$ such that $\limsup_{n \to \infty} \sqrt[n]{|b_n|} < 1$ and $J(f) = \sum_{n=0}^{\infty} b_n a_n$, where $f(z) = \sum_{n=0}^{\infty} a_n z^n$ is analytic in Δ [7, p. 36].

The set supp B_0 consists of all finite Blashke products in B_0 [2].

Abu-Muhanna proved in [1] that $\operatorname{supp} s(F) \subset \{F \circ \phi : \phi \in \operatorname{supp} B_0\}$ for any non-constant $F, F \in A(\Delta)$. There are a few known cases in which equality is attained. For example,

$$\operatorname{supp} s(F) = \{ F \circ \phi : \phi \in \operatorname{supp} B_0 \} \tag{1}$$

for $F \in K$, where K denotes the class of univalent convex mappings on Δ with F(0) = F'(0) - 1 = 0 [5]. The equality holds also for any non-constant function F analytic in the closed unit disc [1].

The class of bounded analytic functions is denoted by H^{∞} and

$$||f||_{\infty} = \lim_{r \to 1} \max_{0 \le \theta \le 2\pi} |f(re^{i\theta})|.$$

Also in [1], Abu-Muhanna conjectured that (1) holds for any bounded analytic function. We prove this conjecture as a corollary to the main result in Section 2.

2. Support Points of the Subordination Families with Majorants Subordinate to Convex Functions

Let $s(K) = \{f \in A(\Delta) : \exists_{F \in K} \ f \in s(F)\}$. This is to say, each f in s(K) is subordinate to a univalent convex mapping on Δ , with the standard normalization at 0.

The set of extreme points of the closed convex hull EHs(K) of s(K) consists of the functions yz/(1-xz), where |x|=|y|=1 [4]. We use this fact to prove that (1) occurs whenever $F \in Hs(K)$.

Theorem 1. If $F \in Hs(K)$, then $supp s(F) = \{F \circ \phi : \phi \in supp B_0\}$.

Proof. We need only to prove that if $\phi \in \operatorname{supp} B_0$, then $F \circ \phi \in \operatorname{supp} s(F)$. Let $\overline{\phi}(z) = \overline{\phi(\overline{z})}$ and let $J \in [A(\Delta)]^*$ be given by coefficients of $\overline{\phi}$. Then

$$J(f) = \frac{1}{2\pi} \int_0^{2\pi} f(re^{i\theta}) \overline{\phi} \left(\frac{e^{-i\theta}}{r} \right) d\theta$$

for r < 1 sufficiently close to 1. It is easy to see that

$$J(\phi) = \frac{1}{2\pi} \int_0^{2\pi} \phi(e^{i\theta}) \overline{\phi(e^{i\theta})} d\theta = 1.$$

Lemma 7.18 in [3] implies that $J(\phi^n) = 0$, for n = 2, 3, ...

Hence $J(F \circ \phi) = J(\phi) = 1$. We also have

$$\begin{split} \max_{f \in s(F)} \operatorname{Re} J(f) &\leq \max_{f \in s(K)} \operatorname{Re} J(f) \leq \max_{f \in Hs(K)} \operatorname{Re} J(f) \\ &= \max_{f \in EHs(K)} \operatorname{Re} J(f) = \max_{x, \ y \in \partial \Delta} \operatorname{Re} J\left(\frac{yz}{1 - xz}\right). \end{split}$$

Assume now that $\psi \in A(\overline{\Delta})$. Then, for r < 1 and sufficiently close to

1 and for $x \in \partial \Delta$,

$$\begin{split} \psi(x) &= \frac{1}{2\pi i} \int_{|\xi|=1/r}^{1} \frac{\psi(\xi)}{\xi - x} d\xi \\ &= \frac{1}{2\pi i} \int_{2\pi}^{0} \frac{\psi\left(\frac{e^{-i\theta}}{r}\right)}{\frac{e^{-i\theta}}{r} - x} \left(\frac{-ie^{-i\theta}}{r}\right) d\theta = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\psi\left(\frac{e^{-i\theta}}{r}\right) \frac{e^{-i\theta}}{r}}{\frac{e^{-i\theta}}{r} - x} d\theta \\ &= \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\psi\left(\frac{e^{-i\theta}}{r}\right)}{1 - xre^{i\theta}} d\theta. \end{split}$$

Let $\psi(z) = \frac{\overline{\phi}(z)}{z}$. Since $\overline{\phi}(0) = 0$ and $\overline{\phi} \in A(\overline{\Delta})$ also $\psi \in A(\overline{\Delta})$.

Hence,

$$J\left(\frac{yz}{1-xz}\right) = \frac{1}{2\pi} \int_0^{2\pi} \frac{yre^{i\theta}}{1-xre^{i\theta}} \,\overline{\phi}\left(\frac{e^{-i\theta}}{r}\right) d\theta = y \frac{1}{2\pi} \int_0^{2\pi} \frac{re^{i\theta\overline{\phi}}\left(\frac{e^{-i\theta}}{r}\right)}{1-xre^{i\theta}} d\theta$$
$$= y \frac{1}{2\pi} \int_0^{2\pi} \frac{\phi\left(\frac{e^{-i\theta}}{r}\right)}{1-xre^{i\theta}} d\theta = y\psi(x) = y \frac{\overline{\phi}(x)}{x}.$$

It follows that $\max_{x, y \in \partial \Delta} \operatorname{Re} J\left(\frac{yz}{1-xz}\right) = \max_{x, y \in \partial \Delta} \operatorname{Re}\left(y\frac{\overline{\phi}(x)}{x}\right) \leq \max_{x, y \in \partial \Delta}\left|\frac{y\overline{\phi}(x)}{x}\right| = 1.$ Therefore, $\max_{f \in s(F)} \operatorname{Re} J(f) \leq 1.$

Finally, since $F \circ \phi^2 \in s(F)$ and $J(F \circ \phi^2) = J(\phi^2) = 0$, $\text{Re } J \neq \text{const}$ on s(F). Hence $F \circ \phi \in \text{supp } s(F)$.

Since $[f(z) - f(0)]/\|f\|_{\infty} \in s(z)$, for any $f \in H^{\infty}$, and $z \in K$, we have the following corollary.

Corollary. If $F \in H^{\infty}$, then $\operatorname{supp} s(F) = \{F \circ \phi : \phi \in \operatorname{supp} B_0\}$.

References

- Yusuf Abu-Muhanna, Variability regions and support points of subordinate families,
 J. London Math. Soc. (2) 29 (1984), 477-484.
- [2] P. Cochrane and T. H. MacGregor, Frechet differentiable functionals and support points for families of analytic functions, Trans. Amer. Math. Soc. 236 (1978), 75-92.
- [3] D. J. Hallenbeck and A. E. Livingston, Applications of extreme point theory to classes of multivalent functions, Trans. Amer. Math. Soc. 221 (1976), 339-359.
- [4] D. J. Hallenbeck and T. H. MacGregor, Subordination and extreme point theory, Pacific Math. J. 50 (1974), 455-468.
- [5] D. J. Hallenbeck and T. H. MacGregor, Support points of families of analytic functions described by subordination, Trans. Amer. Math. Soc. 278 (1983), 523-546.
- [6] D. J. Hallenbeck and Katarzyna Tkaczyńska, Extreme points and support points of subordination families with p-valent majorants, Annales Polonici Mathematici L (1989), 93-115.
- [7] G. Schober, Univalent functions selected topics, Lecture Notes in Math. 478, Springer-Verlag, Berlin, Heidelberg, New York, 1975.
- [8] Katarzyna Tkaczyńska, On extreme points of subordination families with a convex majorant, J. Math. Anal. Appl. 145(1) (1990), 216-231.
- [9] Katarzyna Tkaczyńska, Extreme points of classes of analytic functions with positive real part and restricted second coefficient, Math. Japon. 36(2) (1991), 221-223.
- [10] Katarzyna Tkaczyńska-Hallenbeck, On properties of extreme points of subordination families with a convex majorant, Math. Japon. 41(3) (1995), 537-543.

Department of Mathematics Widener University Chester, PA 19013, U. S. A.

e-mail: hall@maths.widener.edu