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Abstract 

Injectivity of the continuous wavelet transform acting on a square 
integrable signal is proved under optimally weak conditions on the Fourier 
transform of the wavelet, namely that it is nonzero somewhere in almost 
every direction. For bounded signals, we prove injectivity modulo 
additive constants: if two bounded signals have the same continuous 
wavelet transform, then the signals differ by a constant. 

1. Introduction 

Uniqueness for the Fourier transform acting on an integrable (or square 

integrable) function means that 0ˆ =f  implies .0=f  In other words, the Fourier 

transform is injective. For distributions, a related statement says that if the Fourier 

transform f̂  is supported at the origin, then f is a polynomial. In particular, if a 



H.-Q. Bui and R. S. Laugesen 2 

bounded function has distributional Fourier transform supported at the origin, then it 
is a constant function. 

This note establishes analogous uniqueness results for the continuous wavelet 
transform. Given a function ψ (which we call a wavelet) and a function f (which we 
call a signal), the continuous wavelet transform of f with respect to ψ is the function 

( ) ( ) ( ) ( )∫ ∈>ψ=ψ=ψ d
d

tsts tsdxxxfftsfW
R

R ,,0,,, ,,  

where 

( ) .1
2, ⎟

⎠
⎞⎜

⎝
⎛ −ψ=ψ s

tx
s

x dts  

Notice s denotes the scale, and t is the translation. 

The scale and translation parameters vary continuously and so one calls ψW  the 

“continuous” wavelet transform, in distinction to the “discrete” wavelet transform 

which restricts to dyadic scales js 2=  and translations .2 kt j=  For more on 
wavelet transforms, readers may consult the texts of Daubechies [4], Holschneider 
[8], Mallat [12] and Meyer [13]. For precise relations between the continuous and 
discrete wavelet transforms, see Laugesen’s work on translational averaging [9, 10]. 

We will present four uniqueness (or injectivity) results for the continuous 

wavelet transform. The first result deals with signals in ,2L  under optimal 
assumptions that are weaker than the Calderón admissibility condition. The second 

result handles signals in pL  for .1 ∞<≤ p  The third treats ,∞L  and the case of 

polynomially bounded signals. The fourth result considers tempered distributions. 

Our motivation comes from work of Sun and Sundararajan [16] in theoretical 
economics. There the signal f is a mixed partial derivative of the characteristic 
function of some attribution problem. Such problems arise in cooperative game 
theory as cost-sharing problems, in investment finance as performance analyses of 
investment portfolios, and in operations research settings in the analysis of 
production process performance. The wavelet ψ represents the difference between 
two path-generated attribution methods. With the help of our wavelet uniqueness 
results, these authors show, roughly speaking, that if two different path-generated 
attribution methods yield the same attributions, then the characteristic function must 
lie in some specific constrained class. 
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2. Wavelet Uniqueness for Square Integrable Signals 

We say that a function λ on dR  is nontrivial in direction ξ (where ξ is a unit 
vector) if the set ( ){ }0:0 ≠ξλ> rr  has positive measure. For example, if λ is 

continuous, then nontriviality in a direction simply means λ is nonzero at some point 
on the ray in that direction. 

Our first result treats uniqueness for the continuous wavelet transform in .2L  

Proposition 1. Assume ( )., 2 dLf R∈ψ  If 

0, , =ψ tsf  for all dts R∈> ,0  

(in other words if ,)0≡ψ fW  then 

 ( ) ( )∫ ∫
∞ ∞

−− =ξψξ
0 0

1212 0ˆˆ dsssdrrrf dd  (1) 

for almost every unit vector ξ in .dR  

In particular, if ,0≡ψ fW  then nontriviality of ψ̂  in almost every direction 

implies 0=f  a.e. 

The symmetry of equation (1) reflects the interchangeability of the signal and 
the wavelet, which we see by a simple change of variable: 

.,, ,1, ψ=ψ − ststs ff  

In dimension ,1=d  the assumption that ψ̂  is nontrivial in almost every 

direction means that ψ̂  is nontrivial on each side of the origin: the two sets 

{ ( ) }0ˆ:0 ≠ψ> rr  and { ( ) }0ˆ:0 ≠−ψ> rr  both have positive measure. This 

assumption is the standard Tauberian condition in harmonic analysis. 

The nontriviality assumption is optimally weak for proving injectivity, because 
(working in one dimension, for simplicity) if ψ̂  is trivial in a direction, then we can 

choose 0ˆ ≡/f  to be supported in that direction, in which case 0, , =ψ tsf  by 

Parseval even though f is not identically zero. 
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Relation to the Calderón condition. The Calderón admissibility condition for 
continuous wavelets says that 

( ) 2

0
1dss

s

∞
ψ ξ =∫  

for almost every unit vector ξ (see [4, Section 2.4], [11]). This condition implies the 
hypothesis in Proposition 1 that ψ̂  is nontrivial in almost every direction, and 

indeed is stronger than that hypothesis because our ψ̂  need not vanish at the origin, 

or can vanish so slowly there that the Calderón integral diverges. 

On the other hand, the Calderón condition guarantees more than just uniqueness 
for the wavelet transform: it guarantees a Plancherel formula 

∫ ∫
∞

+ψ=
0 1

2
,

2
2 ,,

d dts
s
dsdtff

R
 

and hence (by polarization) a reproducing formula. Thus our proposition assumes 
less and obtains less than the standard theory based on the Calderón condition. 

Proof of Proposition 1. Define the Fourier transform with 2π in the exponent: 

( ) ( )∫ ⋅ωπ−ψ=ωψ
d

dxex xi
R

.ˆ 2  

Then by Parseval’s identity and the vanishing of the wavelet transform, we have 

, ,0 , , .s t s tf f= ψ = ψ  

Direct calculation of the Fourier transform shows that 

( ) ( ) 2 2
, ˆ ,i t d

s t s e s− π ω⋅ψ ω = ψ ω  and so the previous formula says that 

[ ( ) ( )] ( )tsf −⋅ψ⋅= ^ˆˆ0  for each .dt R∈  

Since the integrable function ( ) ( )⋅ψ⋅ sf ˆˆ  has vanishing Fourier transform, it must 

equal zero a.e., which means 

( ) ( )ωψω= sf ˆˆ0  for almost every dR∈ω  

for each .0>s  



Uniqueness for the Continuous Wavelet Transform 5 

Next we square and multiply by ,1−ω dd s  and then integrate to show that 

( ) ( )∫ ∫
∞

− ωωωψω=
d

dsdssf dd

R 0
122 ˆˆ0  

( ) ( ) ( )∫ ∫ ∫−

∞ ∞
−− ξξψξ=

1 0 0
1212 ˆˆ

dS
dd dsdSssdrrrf  

by expressing ξ=ω r  in spherical coordinates and then changing variable with 

.rss  The integrand therefore vanishes for almost every ξ, which proves 

equation (1). 

Finally, if ψ̂  is nontrivial in almost every direction, then ( )∫
∞ −ξψ
0

12ˆ dsss d  is 

positive for almost every ξ, and so (by the preceding formula) the integral 

( )∫
∞ −ξ
0

12ˆ drrrf d  must vanish for almost every ξ. Thus 0ˆ =f  a.e. and so 0=f  

a.e. ~ 

3. Uniqueness for p-integrable Signals 

Next we treat signals in .pL  The Fourier transform of the signal is a 
distribution, when .2>p  We show that distribution has support at the origin, which 

implies the signal must vanish. 

Theorem 2. Let ∞<≤ p1  and .111 =′+ pp  Assume ( ),dpLf R∈  ∈ψ  

( ),dpL R′  ( { }),0\ˆ dC R∞∈ψ  and that the wavelet transform vanishes identically: 

0, , =ψ tsf  for all .,0 dts R∈>  

If ψ̂  is nontrivial in every direction, then 0=f  a.e. 

The smoothness hypothesis on ψ̂  away from the origin simply means that some 

function ( { })0\dC R∞∈ν  represents the distribution ψ̂  when acting on test 

functions ( { });0\d
cC R∞∈η  in other words, [ ] ( ) ( )∫ ωωηων=ηψ d d

R
.ˆ  We will 
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write ψ̂  to mean both the distributional Fourier transform and the function ν, as 

there will be no danger of confusion. 

This smoothness hypothesis on ψ̂  is satisfied if ψ has compact support, because 

then ψ̂  is smooth on all of ,dR  including at the origin. 

For a non-compactly supported example, ψ could be a Gaussian or one of its 
derivatives (such as the Mexican hat, the negative second derivative of the 

Gaussian), in which case, the Fourier transform is smooth on all of .dR  

For an example, where ψ̂  is not smooth at the origin, suppose ( ) =ψ x  

( ),11 2x+π  which is the Poisson kernel in one dimension. Then ( ) ξπ−=ξψ 2ˆ e  is 

smooth away from the origin, but not at the origin. Similarly, if ψ is the first 
derivative of the Poisson kernel (in which case, ψ has integral equal to zero), then 

( ) ,2ˆ 2 ξπ−πξ=ξψ e  which is again smooth except at the origin. 

Proof of Theorem 2. We will show that the tempered distribution f̂  is 

supported at the origin. Then f is a polynomial (see [6, Corollary 2.4.2]), after 

suitable redefinition on a set of measure zero. Since f belongs to pL  by hypothesis, 
we conclude that the polynomial must be identically zero, as claimed in the theorem. 

To show f̂  is supported at the origin, we start with a Schwartz function η 

supported in { }.0\dR  We must show [ ] ,0ˆ =ηf  that is, [ ] .0ˆ =ηf  

Write ,ψ=φ  so that (by hypothesis) φ̂  is nontrivial in every direction. The 

proof proceeds in a number of steps. 

Step 1 [Cut-off function]. For each unit vector ,ξ′  choose 0>r  such that 

( ) .0ˆ ≠ξ′φ r  By continuity of ,φ̂  there exists a neighborhood Ξ of ξ′  on the unit 

sphere and a number 1>s  such that ( ) 0ˆ ≠ξφ q  for all Ξ∈ξ  and all [ ]., srrq ∈  

Cover the sphere with finitely many such neighborhoods nΞΞ ...,,1  having 

corresponding values nrr ...,,1  and ....,,1 nss  

Choose a nonnegative function ( { })0\d
cC R∞∈λ  such that ( ) 0>ξλ q  
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whenever [ ],, kkk rsrq ∈  ,kΞ∈ξ  ;...,,1 nk =  for example, we could take λ to be 

a radially symmetric “annular bump” function that is zero near the origin and 
positive from radius kk rmin  out to radius .max kkk rs  

Step 2 [Satisfying the Calderón condition]. Take ( ),...,,min 1 nsss =  and 

define a Schwartz function μ by letting its Fourier transform be 

( ) ( ) ( )
( ) ( )

{ }.0\,ˆ
ˆ

ˆ
2

d

j
jj ss

R
Z

∈ω
ωλωφ

ωλωφ=ωμ
∑ ∈

 

Note the term with 0=j  in the denominator is positive at every point ξ=ω q  with 

[ ],, kk srrq ∈  ,kΞ∈ξ  ,...,,1 nk =  and so by summing over j, we see the 

denominator is positive for every .0≠ω  Further, the series in the denominator 
converges because it involves only finitely many j values (for each ω), due to the 

compact support of λ in { }.0\dR  

Hence 

( ) ( ) { }∑
∈

∈ω=ωμωφ
Z

R
j

djj ss .0\,1ˆˆ  

Step 3 [Calderón reproducing formula]. Multiplying the result of Step 2 by 
( )ω−η  shows that 

( ) ( ) ( ) ( )∑
∈

ω−η=ω−ηωμωφ
Zj

jj ss .ˆˆ  

Only a finite range of j-values (independently of ω) is needed in the sum, because 

both η and μ̂  have compact support in { }.0\dR  

Applying the inverse Fourier transform gives a convolution formula: 

∑
∈

η=η∗μ∗φ
Zj

ss jj ,ˆˆ  

where we use the notation ( ) ( ) jdj
s

ssttj φ=φ  and so on. Convergence of the sum 

is guaranteed, because only finitely many j-values are summed. 
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Step 4 [Applying the reproducing formula]. Hence the distribution f acts on the 
Schwartz function η̂  according to 

 [ ] ( ) ( )∫ η=η
d

dxxxff
R

ˆˆ  

( ) ( ) ( )∑∫
∈

η∗μ∗φ=
Z R

j
ssd jj dxxxf ˆ  by Step 3 

( ) ( ) ( ) ( )∑∫ ∫
∈

η∗μ−φ=
Z R R

j
ssd d jj dtdxttxxf ˆ  

( ) ( )∑∫
∈

− η∗μψ=
Z R

j
sts

jd
d jj dttfs ˆ,

,
2  

,0=  

since 0,
,

=ψ
ts jf  by the hypothesis that the wavelet transform vanishes. 

Thus the distribution f̂  is supported at the origin, as we needed to show. ~ 

Comment on the literature. The construction of μ in Steps 1 and 2 originated 
in Calderón’s work on his reproducing formula [3]. The discrete form used above 
(involving sums rather than integrals, over the scales) is a special case of a result by 
Strömberg and Torchinsky [15, Chapter V, Lemma 6] (and see also [7]). 

Both the continuous and discrete Calderón reproducing formulas play an 
important role in the characterization of classical function spaces in mathematical 
analysis [1, 2, 5, 14, 17]. 

4. Uniqueness for Bounded or Polynomially Bounded Signals 

Next we treat signals in .∞L  Uniqueness of bounded signals will hold only up to 
additive constants. We do not know of any previous result on this question. 

More generally, we handle signals that grow polynomially. 

Theorem 3. Assume f is locally integrable with at most polynomial growth, 

meaning ( ) ( ) ( )dk Lxxf R∞− ∈+1  for some nonnegative integer k. Assume ψ is 

integrable with ( ) ( ) ( )dk Lxx R11 ∈+ψ  and ( { }),0\ˆ dC R∞∈ψ  and suppose the 
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wavelet transform vanishes identically: 

0, , =ψ tsf  for all .,0 dts R∈>  

If ψ̂  is nontrivial in every direction, then f is equal almost everywhere to a 

polynomial of degree .k≤  For example, if f is bounded ( ),0=k  then f must be 

constant. 

Proof of Theorem 3. The proof proceeds exactly as for Theorem 2, except that 

in the first paragraph of the proof, we do not know f belongs to pL  and so we cannot 
conclude the polynomial is identically zero. Instead, we simply conclude the 
polynomial has degree at most k. ~ 

Vanishing moments. The conclusion of the theorem forces the wavelet ψ to 
have vanishing moments. For example, if f is bounded ( ),0casethe =k  then f is 

constant by the theorem; and so either f is identically zero or else ψ has integral zero, 

( )∫ =ψ
d

dxx
R

,0  

because of the hypothesis that .0, 0,1 =ψf  

For higher moments, let us consider the one dimensional case and write the 

polynomial f as ( ) ∑ =
=

m
xcxf

0
 for some coefficients ,c  where ( ).deg fm =  

Suppose f is not identically zero, so that the leading coefficient is nonzero, .0≠mc  

Then ψ has vanishing moments up to order m, meaning 

( )∫ ==ψ
d

mdxxx
R

,...,,1,0,0  

we now show. From ,0, ,1 =ψ tf  we deduce that ( ) ( )∑ ∫=
=ψ+m dxxtxc0 .0

R
 

Differentiating m times with respect to t and then setting 0=t  shows that 

( )∫ =ψ
R

,0dxx  since .0≠mc  Differentiating 1−m  times with respect to t and 

setting 0=t  then shows that ( )∫ =ψ
R

.0dxxx  Repeating this argument down to the 

0th derivative establishes the claimed vanishing moments. 



H.-Q. Bui and R. S. Laugesen 10 

We conclude by extending the uniqueness result to signals that are general 
tempered distributions. 

Theorem 4. Assume f is a tempered distribution, ψ is a Schwartz function, and 
the wavelet transform vanishes identically: 

0, , =ψ tsf  for all .,0 dts R∈>  

If ψ̂  is nontrivial in every direction, then f is a polynomial. 

The proof requires only a rephrasing into distributional language of Step 4 in the 
proof of Theorem 2. We leave this task to the reader. 
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