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Abstract

We study the commutative-transitive kernel of some infinite groups. In
particular, we prove that supersoluble groups are 1-(commutative-
transitive).

We say that a group G is commutative-transitive (briefly: a CT-group)
if [a,b]=1 and [b, c] =1 imply that [a, c]=1 for all a, b, c € G\{1}.

Then CT-groups are precisely those groups in which the relation of

commutativity is transitive on the set of non-trivial elements.
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It is obvious that abelian groups are CT-groups. Moreover, a group
having non-trivial center is commutative-transitive if and only if it is

abelian. Thus a non-abelian nilpotent group cannot be a CT-group.

Of course, a group G is commutative-transitive if and only if the
centralizer Cg(x) is abelian, for all x € G\{l}. If G is a free group, then

the centralizer of every non-identity element of G is cyclic. It follows that
free groups are commutative-transitive, and so the class of CT-groups is
not closed under taking homomorphic images. On the contrary, this class

is obviously closed under taking subgroups.

The classification of all locally finite CT-groups has been given by Wu
(see [4, Theorems 10 and 11]).

In [2], the authors introduced an ascending series

1=7,G) cT1(G)c- < T,(G) < -

of characteristic subgroups of a group G contained in the derived

subgroup G' of G. By definition 7j(G) is the subgroup of G’ generated
by those commutators [a, ¢] such that a, ¢ € G\{l} and there exist a
positive integer ¢ and elements x, ..., x; € G\{1} with [a, x;] =[x}, x9]
= =[x,c]=1 if n>1, then T,(G) is defined by T,(G)/T,_;(G)
= T1(G/T,,_1(G)). The commutative-transitive kernel of G is the subgroup
T(G) =, Tu(G) of G

Obviously a group G is commutative-transitive if and only if 7'(G)
= {1}, and for every group G the quotient G/T(G) is commutative-

transitive. We say that a group G is n-(commutative-transitive) if
T(G) = T,,(G) for some nonnegative integer n. So G is 0-(commutative-
transitive) if and only if it is a C7T-group. Of course, if a group is
n-(commutative-transitive), then it is also m-(commutative-transitive),

for all m > n.

Every group G having non-trivial center is 1-(commutative-
transitive). More precisely, in this case T(G) = T1(G) = G
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In [1] we proved that locally finite groups are 1-(commutative-
transitive). In this paper our purpose is to state similar results for other
classes of infinite groups.

As pointed out in Theorem 12 of [4], the class of locally finite
CT-groups is quotient closed. This fact plays a crucial role in our proof in
[1]. Unfortunately, this closure property not always holds. For instance,
the class of soluble CT-groups is not quotient closed, since all free soluble
groups are commutative-transitive (see [4, Corollary 20]). The class of
supersoluble CT-groups is not quotient closed either. For, the infinite
dihedral group is a supersoluble CT-group (see [4, Lemma 7]) having
some non-abelian nilpotent quotients.

On the other hand, it is easy to prove that a residually finite group

whose finite quotients are CT-groups is itself a CT-group.

Proposition 1. Let G be a residually finite group, and suppose that
all finite quotients of G are CT-groups. Then G is a CT-group.

Proof. We may assume that G is infinite. Suppose there exist
elements a, b, c € G\{1} such that [a, b] =1 =[b, ¢] and [a, c] # 1. Since

G is residually finite, there exists a normal subgroup N of G such that
G/N is finite and a, b, ¢, [a, c] ¢ N. By hypothesis G/N is a CT-group.

Moreover aN, bN, cN € G/N\{1}. Then [aN, bN] =1 = [bN, c¢N] implies
that [aN, ¢N] = 1. It follows that [a, ¢] € N, a contradiction.

In particular, Proposition 1 implies that if every finite factor of a
polycyclic group G is commutative-transitive, then G is commutative-
transitive.

Lemma 2. Let G be an abelian-by-cyclic group. Then either
T(G)=1{1} or T(G)=Ti(G) =G

Proof. Let A be an abelian normal subgroup of G such that G/A is
cyclic. If [g, a] # 1 for all g € G\A and for all a € A\{l}, then G is a
CT-group (see [4, Lemma 7]), so T(G) = {1}.

Otherwise there exist elements g € G\A and ay € A\{l} such that

[g, ag] = 1. Put G/A = (xA). Then g = x*b, where x* ¢ A and b < A.
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b

Hence 1 = [g, ag] = [x"b, ag] = [x*, ao = [x*, ap]. From [x", x*]=1 =

k

[x*, ag] = [ag, a] it follows that [x", a] € T}(G) for all integers n and for

all a € A. Now for all elements g; = xa; and g9 = x"2a9 of G we get

[81, g2] = [x"ay, 2™ ag] = [xMay, ag][x™ay, x™2]2 =[x, ag][a;, 2™ ].
Then [g;, g] € T1(G). Therefore T}(G) = G'.

Theorem 3. Let G be a group having a non-trivial normal subgroup
N such that AutN is cyclic. Then T(G) = Ty(G).

Proof. Let C = C5(N) be the centralizer of N in G. Hence G/C is
cyclic. If C = {1}, then G is cyclic, thus T(G) = T;)(G). Otherwise, for all
y € N\{1} and for all ¢;, ¢y € C, we get [c;, y] =1 = [y, cg]. This means
that C'=Ti(C)<Ti(G)<G <C, so C/Ti(G) is abelian. Therefore
G/Ty(G) is abelian-by-cyclic. By Lemma 2, either G/T;(G) is a CT-group,
and therefore T(G) = T1(G), or G'/Ti(G) = T1(G/T1(G)) = T5(G)/T;(G),
and therefore G' = Ty(G). In any case the result follows.

It is well known that every infinite supersoluble group has a cyclic
normal subgroup of odd prime-power or infinite order (see, for instance,
5.4.8 in [3]). Hence from Theorem 3 and from the results in [1] it follows
that every supersoluble group is 2-(commutative-transitive). In what
follows we shall improve this result by proving that supersoluble groups
are 1-(commutative-transitive).

Recall that if G is a supersoluble group, then the elements of odd
order form a finite characteristic subgroup D of G. Moreover, the Fitting
subgroup F of G is nilpotent, and G/F is a finite abelian group (see, for

instance, 5.4.9 and 5.4.10 in [3]).

Proposition 4. Let G be an infinite supersoluble group which is
abelian-by-(finite abelian). Then either T(G) =1 or Ti(G) = G' = T(G).

Proof. Let A be maximal in the set of all abelian subgroups of finite
index of G containing the derived subgroup G'. Thus G/A = (x;A) x

(x9A) x -+ x (x,A), where |x;A|= pi" for suitable primes p; (not all
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necessarily distinct) and positive integers a;. If n =1, then G is abelian-

by-cyclic, and the result follows from Lemma 2. So we may assume n > 1.

We shall prove that G' < T3(G). It is easy to see that G' = ([x;, x;],

[A, x;]11<4,j< n)G. So our purpose is to show that [x;, x;] € T;(G)
and [x;, a] € T1(G) for all i, j € {1, 2, ..., n} and for all a € A.

If for every i € {1, 2, ..., n} there exists a non-trivial power of x;, say

xiri, which commutes with a non-trivial element a; of A, then the result

is true. For, in that case we get [v;, x]]=1=[x}, ¢;]=][q;, a;] =

[a;, x;J] = [x]r.j, x;], so [x;, x;] € T(G). Moreover, for all a € A, we have

[xi’ x:l] =1= [erL7 ai] = [ai’ a]7 S0 [Xi, a] € Tl(G)

Let x € G. If x has infinite order, then there exists a non-trivial
power of x which belongs to A, since G/A 1is finite. If x has odd order,
then x € D, where D is the subgroup consisting of all elements of G

having odd order. Since G/Cs(D) is finite and A is infinite, the

centralizer C4(x) is not trivial. If x has order 2Ps, where s = 1 is odd,

p . .. .
then x2 has odd order. In each of the previous cases, it is evident that
there exists a non-trivial power of x which commutes with a non-trivial

element of A.

Therefore we may assume that for some x € {x;, xg, ..., x,,} the order

ot-

1
of xis 2f. Put y = x* . So either y acts fixed-point-freely on A, or there

exists a non-trivial power of x commuting with a non-trivial element of A.

Notice that if ¢ and d are elements of G having order 2 modulo A, and
both ¢ and d act fixed-point-freely on A, then ¢ and d cannot be linearly

independent modulo A. In fact, for all a € A, we get (aa®)’ = a‘a = aa®,

so a¢ = a ! In the same way a® = a™! and a®® = @ for all a € A. It
follows that c¢d € C5(A) = A. Therefore ¢ and d are not linearly

independent modulo A.
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Therefore, without loss of generality, we may assume that for every
i€{2,3,..,n} there exists a non-trivial power «x!' of x; which

commutes with a non-trivial element a; of A. Moreover, we may assume

t-1
that the order of x; is 2!, and that x12 acts fixed-point-freely on A.

Since A is infinite abelian and G is supersoluble, there exists a non-

trivial normal subgroup (b) of G such that (b) is torsion-free and

=
() < A. Hence bl =b*!. But xi‘zt acts fixed-point-freely on A, so

b*1 = bl Therefore t =1, and x; has order 2.
For every i€ {2, 3, ..., n} let us consider the element x;x;. Then

there exists a non-trivial power (x;x;)" of x;x; which commutes with a
non-trivial element h; of A. Otherwise we have x;x; of order 2, which

acts fixed-point-freely on A, and that yields %A = x;x;A, a contradiction.

Therefore, for all a e A, we get [x;x;, (%) ] =1 = [(xy%;)", b;] =

[h;, al, so [xx;, a] € T1(G). Since [x;, a] € T}1(G), it easily follows that
[x1, a] € T1(G). Finally, since [x1%;, (x7%;)1] = 1 = [(x056;)%, 7] = [By, @]
= [ag, x'] =[x}, %;], we get [v1%;, x;] € T1(G), and also [x1, x;] € T1(G),

as required.

Theorem 5. Let G be an infinite supersoluble group. Then either
T(G) =1 or T1(G) = G' = T(G).

Proof. Let F be the Fitting subgroup of G. If F'is abelian, then G is
abelian-by-(finite abelian), and the result follows from Proposition 4. So

we may assume that F'is not abelian.

We claim that for all x € G there exists a non-trivial power of x
which commutes with a non-trivial element of F. If the order of x is not a

power of 2, we can argue analogously as in Proposition 4, since F' is

infinite and its center is not trivial. Otherwise, if the order of x is 2!, put

t-1
y = x? . Since Fis not abelian, and y has order 2, the element y cannot
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act fixed-point-freely on F. So again there exists a non-trivial power of x

which commutes with a non-trivial element of F.

Therefore for all x;, x5 € G there exist a non-trivial power xj' of x

which commutes with a non-trivial element a; of F, and a non-trivial

power x;? of xy which commutes with a non-trivial element ay of F. Let

z be a non-trivial element of the center of F. Then we get [x;, ;'] =1 =

[x', a1] = [an, 2] = [z, ag] = [ag, x5 ] =[x, x5]. Thus [x1, 23] € [(G),

and the result follows.
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