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Abstract

Boundedness and different notions of stability of solutions of the
perturbed nonlinear system of the type y' = f(t, y)+g(t, y, Ty) are

discussed. Some new sufficient conditions are given. Examples on our
results are introduced. The obtained results improve and generalize
some of those given in the literature.

1. Introduction

In this paper, we study the asymptotic behaviour of solutions of the
functional differential equation of the form

y' = f(t, y)+a(t, vy, Ty), (1.1)
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knowing some asymptotic properties about the solution of the ordinary
differential equation

x'= f(t, x). (1.2)

Letted =[0, ), xeR", f eC(IxR", R"), f(t,0)=0, and the
derivative f, € C(J x R", R™). The functional perturbation g = g(t, y, z)
:JxR" xR"™ - R" is a continuous function and T is a continuous operator
mapping C(J, R") into C(J, R"). In this way, equation (1.1) may represent

several interesting cases, namely, integro-differential equations (see [8] and
[18]) as

y' = f(t, y)+ g(t, Y, j:o k(t, s, y(s))dsj, (1.3

functional (delay) differential equations as
y = f(t, y)+ gty yt-1),

etc., taking
t
Ty(t) = LO K(t, s, y(s))ds

and
Ty(t) = y(t - 1),

respectively. For detailed meanings of the various functions arising in (1.3),
see [1] and also [2-7], for more results, see [9, 10, 12, 14-17] and the
references therein. This paper is organized as follows: in Section 2, we
discuss the asymptotic behaviour of the solutions of some functional
differential equations which include these classes of equations. Moreover, we
determine the range of validity of the results. Thus, for example, we make
precise the initial conditions (the radius of attraction) for which the solution
tends to zero as t — o. Furthermore, we obtain nice estimates for the

solutions of (1.1) depending on the integral-norm (L;-norm) of the variable



The Asymptotic Behaviour of Solutions ... 13

coefficients of g. All that yields a more natural approach to the nonlinear
situation than the approach of Pachpatte [11]. Section 3 concerned with the
stability, strong stability and asymptotic stability of solutions of (1.1).
Finally, in Section 4, we give several examples to illustrate our obtained
results.

2. Asymptotic Behaviour and Boundedness of Solutions

In this section, we discuss the asymptotic behaviour and boundedness of
solutions of (1.3). Throughout this discussion, we consider ®(t) to be the
fundamental matrix of solutions of the nonlinear system (1.2), with the initial
value ®(ty) =1, where I is the identity matrix and |-| denotes the

n

Euclidean norm which is defined by | A(t) | = >, izl @, j |- We give the

following result which partially generalizes those of Pachpatte [11].

Theorem 2.1. Let all the solutions of (1.2) be bounded. Suppose that the
following assumptions are satisfied:

(i)
ot y, 2) [ < 2O yO) [+ 2200 2() ], (2.1)

(i)
lim It trA(s)ds > —oo 2.2)

t—>w t ) .

(iii)

waz(s)” Ty(s)||ds < o and wal(s)ds < . (2.3)
to to

Then the solutions of (1.1) are also bounded on J.

Proof. Let x(t) and y(t) be the solutions of (1.2) and (1.1), respectively,
with the initial data x(tg) = y(tg) = Xp. Using the linear variation of constants

formula (see [13]), we have
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) =50+ [ @O@ )t 5, y(s)ds

= o0 + [ @O S 5 v

From equation (2.1), we obtain

Iy < o]
[ 1001106 11O )+ 226 26 s,

where
adjo(t) adjd(t)
= . ,
det &(t) exp J trA(s)ds
to

o (t) = (2.4)

Since | @(t)| is bounded, and by the assumption (2.2), it follows that

| @7X(t) || is also bounded. Now, let
¢ = max(sup| (1), sup|| 1) ), (25)
t=tg t=tg

thus

[y® [ <l xo |
t
# [ 10O 070 1746 Y6) |+ 22(5)] 29 1
Therefore, from (2.4) and (2.5), we get

IO 1= el 1+ [ OO 0 (o)l o les

t
+ L o) || @7(t) [1n(s)] z(s) || ds
0
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or

IO 1= el | +caf, 249 o) 1ds +f, 2Ty Ids,

Setting ¢, = c2, and I: Xo(s)|| Ty(s)||ds = L, we have
0

t
YO I= e+ L+ + [, m@lyslds 12020

for some positive constant L. Applying Gronwall’s inequality (see [13]), we
get

)1 = e o+ e e, da(s)as .

It follows from the assumption (2.3) that
Iy <l x|+ LN, t=tg=0,
for some positive constant N, which completes the proof.

Theorem 2.2. Suppose that the conditions (2.1), (2.2) and (2.3) of
Theorem 2.1 hold. If all the solutions of (1.2) approach zero as t — o, then

so do the solution of (1.1).

Proof. Going through as in the proof of Theorem 2.1, we get
t

YO = @(t)xg + [ @O ($)g(t, y(s) TY(s)ds.
0

Since all the solutions of (1.2) approach zero as t — o, ||®(t)| — 0 as

t — oo. In view of the assumption (2.3) and the fact that | ®(t)| — 0 as
t — o, we have || ®72(t)| - 0 as t — oo. But since both | d(t)| and
| ®@7X(t) || are constant and approach zero as t — oo, it follows that they are
bounded for all t >ty > 0. Now let ¢ = max(supy,| @ (t)], supy,|| o) ).

Therefore, by the assumption (2.1), we have



16 S. A. A. El-Marouf and A. N. Al-Rehaili
t
[y <[ @)l %o ||+ j , | e@)[] @) |||l a(t, y(s), Ty(s)) | s,

It follows from (2.1) that

Iy < o) i %]
- 1011076 (9] ¥6) ]+ 22 (5)] Ty s
thus

YOI <[ D015 |+ f, 10014(6)] Y] +22(5) Ty(s) s

< O o] 0 1+ @l O s

Taking
_ 1
[o@]’
we get
| y® MOl t
IOl = 3aiel+ o[, oy @ +ef, 22 TyE)Ids

Setting Cjti) Lo(s)| Ty(s) | ds = L, by using (2.3), we have

[y NIO]
Iyl = g gayplrol+ L+ e[ igaa®ds

Applying Gronwall’s inequality (see [8]), we get

Ly®] Ly®)1 5
Iyl = L2 11+ L p[ . e (s)dsj, t>1>0
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where

20t [ly@®] _
exp(c Ji [ o) Xl(s)ds} -

thus

Ly ]
[y®)] < o) (I % |+ LN

<[y 1% [+ DNJ o], t=1t20,

for some constant N, where N = exp(czj'tt kl(s)ds). Therefore, all the
0

solutions of (1.1) approach zero as t — oo,

Theorem 2.3. Assume that the fundamental matrix of (1.2) satisfies the
condition

[e®)|<M and | @t (s)| <N, (2.6)

for some positive constants M and N, t >ty >0. Suppose that the

assumptions (2.1), (2.2) and (2.3) of Theorem 2.1 are satisfied. Then the
relation
YOI < (% l+KkL tzt 20, (2.7)

holds for some constants k >0 and L > 0. Moreover, if x(t) > 0 as

t — oo, then y(t) > 0 as t — .

Proof. As in the proof of Theorem 2.1, we get
t
y(t) = d(t)xo + L D)@ (s)g(t, ¥(s), Ty(s))ds.
0

Using the assumptions (2.1), (2.2) and (2.6), we have:

YO 1= 10O |+ [ 1 900) [ gts. ¥, Ty(s) s

<10 %+ [, | 000 6) 11k (5) 1+ 2] Ty(s)
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t
< Mlbxg |+ N[ Dl Y(5) |+ 72 Ty(s) s

t t
<M+ N| [} 7al o les + [zl o |

Let N| tto Jo|| Ty(s) [ ds = K. Then

YOI Mo +K)+ N 2l y(s) s
Applying Gronwall’s inequality (see [13]), we obtain
y(t) < (M o || + K)exp NL; dq(s)ds, t215 >0
<(M| x|+ K)L, t=tg=0,

for some positive constant L = exp NJ'tt Mq(s)ds. This proves (2.7). Now let
0

lim;_,,, X(t) = 0. Then given any ¢ >0, there exists a constant T =

T(e) > 0 such that | x(t)| < & forall t > T. Thus, from (2.7), we have:
yt)<(e+K)L, t>t;>0
y(t)=el, t>ty >0,

for some positive constant L independent of € and T(g). Hence y(t) — 0 as

t — oo. This completes the proof.
3. Stability Properties

In this section, we discuss the stability properties of solutions of (1.1)
using the those of (1.2) and we first introduce the following lemma:

Lemma 3.1. Let the functions a(t), bj(t) and c;(t),i =1, 2,..,n be
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nonnegative continuous functions on J = [0, ), and Up be a nonnegative

constant such that
t n S .
u(t) < ug + LO a(s)u(s)ds + Zi:lb‘(s)uto G (r)drjds, i=12 .., n (3.1
Then
t n $ .
u(t) < ug exp“to (a(s) + Zi:lbi (s)jtO Gi (r)drjds}, i=12.,n (32
Proof. Let
t n t S
)=t + [ s+ 37 [0 bi(s)[ J o (r)u(r)drjds.
Thus, by (3.1), we have u(t) <V (t). Moreover,
’ n t
V(D) < atv) + Y bi(t) j GV,
since v(t) is nondecreasing, the above inequality can be written as
!’ n t
V(t) < v(t)(a(t) L3 B j o (s)dsj.
Applying Gronwall’s inequality, we get

v(t) < ug epr:0 [a(s) + Zin:l b; (s)J‘:0 Cj (r)dr) ds}

But since u(t) < v(t), it follows that

u(t) < ug exp“t; (a(s) + Zin:l b; (s)jt: Ci (r)drj ds},

which completes the proof.

Theorem 3.2. Assume that all the solutions of (1.2) are uniformly stable.
Suppose that the following conditions hold:
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(i)
t
ot y. )< a®)] y b, o)l y(s)les, (33)
where a(t), b(t) and c(t) are nonnegative continuous functions on
J =0, ).
(i)
t s
.[F@pm@ﬂcﬁm@m<m,tzqz%za (3.4)
tq 4]
Then the zero solution of (1.1) is uniformly stably.

Proof. Let x(t) and y(t) be the solutions of (1.2) and (1.1), respectively,
with the initial condition X(t;) = y(t;) = x;. By the nonlinear variation of

constant formula, we obtain

YO = X0+ [ oD (s, Y9 Ty(s)es
t 1
=+ [ 0TS0, ¥(s) TY(s)ds

- 0007wy + | 000HS)(s, y(s) TY(S)ds.

Since the solutions of (1.2) are uniformly stable, there exists a positive
constant M such that

| dt)ds) <M, t=t =ty =0. (3.5)

In view of the assumptions (3.3) and (3.5), we obtain

IOl < @O0 1%+ [ 1 00)07) [] 9, v(s) Ty(s) s

<Ml |+ M (01O +b66) [ olo)] (o) ek s
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Now, applying Lemma 3.1, we have
t s
[0 1= ] o M a(s) b5 ol s
ik ik

Consequently, by the assumption (3.4), it follows that
Iy <ML [, t=t=ty=0,
for some positive constant L. This completes the proof.

Corollary 3.3. Assume that the solutions of (1.2) are asymptotically
stable. Suppose that the assumptions (3.3) and (3.4) of Theorem 3.2 are
satisfied. Then the zero solution of (1.1) is asymptotically stable.

Proof. Since the solutions of (1.2) are asymptotically stable, it follows
that | @(t)|| - 0 as t — oo which implies || x(t)| — 0 as t — . Let y(t)

be a solution of (1.1) with the initial condition: x(ty) = y(tp) = Xp. Then

YO = X0 + [ OO TS)0(s, y(s) Ty(s))s

Since | x(t)| > 0 as t — oo, givenany & > 0, thereexistsa T =T(g) > 0

such that || x(t)|| < & forall t > T(g) > 0. But since ®(t) is continuous and

| ®(t)| — 0 as t — oo, it follows that | d(t) | and | ®@~(t) || are bounded.

Thus from the assumptions (3.3) and (3.4), we obtain
t —
YOI o1+ [ [ @76 1l y(6), Ty(s) ds.

Setting
| )] @s) | = M?,

we get

12+ 2] (a0 61+ b6 e yeo) o s
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Now, applying Lemma 3.1, we have
5t s
[ y(t)| < eexp M I a(s) + b(s)j c(t)dr |ds | < eL,
to to

for some positive constant L, independent on g, for all t >ty > 0. Thus the

desired result follows.

Theorem 3.4. Suppose that the assumptions (3.3) and (3.4) of Theorem
3.2 are satisfied. If the solutions of (1.2) are strongly stable, then so does the
zero solution of (1.1).

Proof. It follows from the strong stability of (1.2) that there exists a
positive constant M such that

o) <M and @) [<M, t>ty>0. (3.6)

Now, using the nonlinear variation of constant formula given in [8], we
obtain

0 =+ [ oOO(S)g(s. y(5) TY()ds
1 t 1
= 0007 (1)1 + [, 2D )05, ¥s) Ty(s)ss
Iy = o] o™w) 1 |

t —
[ 1o 07w 11 (s, ¥(s). Ty(s) ds.
1
Thus, in view of the assumptions (3.3) and (3.6), we get
’ 5t s
I y@®) [ < M2 x|+ M j o EOIYE) [+ b6) j GOy o Jas.
By Lemma 3.1, we obtain

1)1 = M7 lexg{ M2 ats) b9 ety s |
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Again, from the assumption (3.4), we have
| y@®) <M x L
< L
for some positive constant L*, t > t; > t; > 0. This completes the proof.

Theorem 3.5. Assume that the solutions of (1.2) are uniformly
asymptotically stable. Suppose that the assumptions (3.3) and (3.4) of
Theorem 3.2 are satisfied. Then the zero solution of (1.1) is uniformly
asymptotically stable.

Proof. Since the solutions of (1.2) are uniformly asymptotically stable
then, there exist positive constants o. and M such that

| o) (s) | < Me™t=9) t>5>15>0. 3.7)

As in the proof of Theorem 3.2, we have, for any t; > tg,

YO = D)4 + [, DD )g(s, Y Ty(s))s

Iyl 0007 [ 1+ [ 100076 [, y(5) Ty(5) 10

In view of the assumptions (3.3) and (3.7), we obtain

| y(t) [ < M| xq Jet)

+M Ltl e—a(t—s)a(s)” y(t) ||+ b(s)Uti c(v)|| y(x) ”eathJ ds

or

| y() e < M xq e

+M Ltl (a(s)” y(s)[e* + b(s)J: c(v)] y()| eardtj ds.
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It follows from Lemma 3.1 that

| y(t)[e®t < M| x ||e°°t1(exp M L; (a(s) + b(s)th c(r)drj dsj, t>1t >t

< M| xq [e*L

or

| y(t)] < ML % [e*E), t>t >ty >0,
This completes the proof.

4. Examples

In this section, we give several examples to illustrate our obtained
results.

Example 4.1. Consider the perturbed differential equation of the form
y' = (sindt)y + g(t, y, Ty), 4.1)
where t e R™, y e R and g(t, y, Ty) = ety + e‘ZtItt h(s)y(s)ds, h(t) e
0

L4[0, o). Consider the linear differential equation of the form

X' = (sin4t)x, x(tg) =Xg, t=>ty>0. 4.2)
It is clear that the general solution of (4.2) is given by

X(t, tg, Xg) = X exp[%l(cos 4t — cos 4t0)} t>1t;>0.
Also, the fundamental matrix ®(t) is given by
D(t) = d(t, tg, Xg) = exp[%l (cos 4t — cos 4t0)}, t>t;>0.

Hence

|(I)(t, to, X0)|= <e, tZtoZO.

exp{%l (cos 4t — cos 4t, )}
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Therefore, the solution of (4.2) are bounded for all t > t; > 0. By returning

of Theorem 2.1, we obtain Aq(t)=e™' and A,(t)=e™?', and Ty(t)
_ e‘ZtItt h(s)y(s)ds. Clearly, the assumptions (2.1), (2.2) and (2.3) of
0

Theorem 2.1 are satisfied. Then all the solutions of (4.1) are uniformly
bounded for all t >ty > 0.

Example 4.2. Consider the perturbed differential equation of the form
y' =ty +g(t v, Ty), (4.3)

where t e R™, ye R and g(t, y, Ty) =e 'y + e‘ZtItt h(s)y(s)ds, h(t) e
0

L4[0, ). It is clear that the general solution of the linear differential

equation
X =-t2X, X(tg) =Xy, t=tyg>0 (4.4)
is given by
X(t, tg, Xg) = Xo exp[%l (t3 - tg)}
Therefore,

D(t) = DL, tg, Xg) = exp[%l(t3 = tg)} t>ty > 0.

Hence, all the solutions of (4.4) approach zero as t — . Then by Theorem
2.2, it follows that all the solutions of (4.3) approach zero as t — .

Remark 4.1. In the preceding example, we have

| O(t, tg, X0)| =

exp[%l(t?’ —tg)} ‘ -0 as t—>

Then the solutions of (4.4) are asymptotically stable. Moreover, by Corollary
3.3, it follows that, the zero solution of (4.3) is also asymptotically stable.
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Example 4.3. Consider the perturbed differential equation of the type

y' = (cos3t —3)y + g(t, y, Ty), (4.5)

wheret € R*, y € R and

g(t, y, Ty) = e 2ty e_tJ.ttO h(s)y(s)ds, h(t) e [0, «).

The solution of the linear differential equation
X' =(cos3t —3)x, x(tg)=Xy, t=tg=0 (4.6)

is given by
X(t, tg, Xg) = Xg expE(sin 3t —sin StO)} -exp[-3(t —ty)], t =1ty >0.
Hence the fundamental matrix is of the form

O(t) = O(t, tg, Xg) = exp{%l(sin 3t —sin 3t0)} -exp[-3(t —t5)], t = t5 > 0.

Thus the inverse matrix ®~(t) is given by

ol = 240 sy 50
det @(t)
Then equation (4.6) is uniformly asymptotically stable. Thus the assumptions
of Theorem 3.5 are satisfied, and so the zero solution of (4.5) is also

uniformly asymptotic stable.
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