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Abstract 

Boundedness and different notions of stability of solutions of the 
perturbed nonlinear system of the type ( ) ( )Tyytgytfy ,,, +=′  are 

discussed. Some new sufficient conditions are given. Examples on our 
results are introduced. The obtained results improve and generalize 
some of those given in the literature. 

1. Introduction 

In this paper, we study the asymptotic behaviour of solutions of the 
functional differential equation of the form 

( ) ( ),,,, Tyytgytfy +=′  (1.1) 
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knowing some asymptotic properties about the solution of the ordinary 
differential equation 

( )., xtfx =′  (1.2) 

Let [ ),,0 ∞=∈ Jt  ,nRx ∈  ( ),, nn RRJCf ×∈  ( ) ,00, ≡tf  and the 

derivative ( )., nn
x RRJCf ×∈  The functional perturbation ( )zytgg ,,=  

nnn RRRJ →××:  is a continuous function and T is a continuous operator 

mapping ( )nRJC ,  into ( )., nRJC  In this way, equation (1.1) may represent 

several interesting cases, namely, integro-differential equations (see [8] and 
[18]) as 

( ) ( )( ) ,,,,,,
0

⎟
⎠
⎞

⎜
⎝
⎛+=′ ∫

t

t
dssystkytgytfy  (1.3) 

functional (delay) differential equations as 

( ) ( )( ),,,, τ−+=′ tyytgytfy  

etc., taking 

( ) ( )( )∫=
t

t
dssystktTy

0
,,  

and 

( ) ( ),τ−= tytTy  

respectively. For detailed meanings of the various functions arising in (1.3), 
see [1] and also [2-7], for more results, see [9, 10, 12, 14-17] and the 
references therein. This paper is organized as follows: in Section 2, we 
discuss the asymptotic behaviour of the solutions of some functional 
differential equations which include these classes of equations. Moreover, we 
determine the range of validity of the results. Thus, for example, we make 
precise the initial conditions (the radius of attraction) for which the solution 
tends to zero as .∞→t  Furthermore, we obtain nice estimates for the 
solutions of (1.1) depending on the integral-norm ( )normL -1  of the variable 
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coefficients of g. All that yields a more natural approach to the nonlinear 
situation than the approach of Pachpatte [11]. Section 3 concerned with the 
stability, strong stability and asymptotic stability of solutions of (1.1). 
Finally, in Section 4, we give several examples to illustrate our obtained 
results. 

2. Asymptotic Behaviour and Boundedness of Solutions 

In this section, we discuss the asymptotic behaviour and boundedness of 
solutions of (1.3). Throughout this discussion, we consider ( )tΦ  to be the 

fundamental matrix of solutions of the nonlinear system (1.2), with the initial 
value ( ) ,0 It =Φ  where I is the identity matrix and ⋅  denotes the 

Euclidean norm which is defined by ( ) ∑ == n
ji jiatA 1, , .  We give the 

following result which partially generalizes those of Pachpatte [11]. 

Theorem 2.1. Let all the solutions of (1.2) be bounded. Suppose that the 
following assumptions are satisfied: 

  (i) 

( ) ( ) ( ) ( ) ( ) ,,, 21 tzttytzytg λ+λ≤  (2.1) 

 (ii) 

( )∫ ∞−>∞→
t

tt dsstrA
0

,lim  (2.2) 

(iii) 

( ) ( )∫
∞

∞<λ
0

2t
dssTys    and   ( )∫

∞
∞<λ

0
.1t

dss  (2.3) 

Then the solutions of (1.1) are also bounded on J. 

Proof. Let ( )tx  and ( )ty  be the solutions of (1.2) and (1.1), respectively, 

with the initial data ( ) ( ) .000 xtytx ==  Using the linear variation of constants 

formula (see [13]), we have 
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( ) ( ) ( ( ) ( ) ( )( ))∫
∞ −ΦΦ+=
0

,,1
t

dssystgsttxty  

( ) ( ( ) ( ) ( )( ))∫
∞ −ΦΦ+Φ=
0

.,,1
0 t

dssystgstxt  

From equation (2.1), we obtain 

( ) ( ) 0xtty Φ≤  

( ) ( ) ( ) ( ) ( ) ( )[ ]∫ λ+λΦΦ+ −t

t
dsszssysst

0
,21

1  

where 

( ) ( )
( )

( )

( )
.

expdet
0

1

∫
Φ=

Φ
Φ=Φ−

t

t
dsstrA

tadj
t
tadjt  (2.4) 

Since ( )tΦ  is bounded, and by the assumption (2.2), it follows that 

( )t1−Φ  is also bounded. Now, let 

( ( ) ( ) ),sup,supmax 1

00
ttc

tttt

−

≥≥
ΦΦ=  (2.5) 

thus 

( ) ( ) 0xtty Φ≤  

( ) ( ) ( ) ( ) ( ) ( )[ ]∫ λ+λΦΦ+ −t

t
dsszssystt

0
.21

1  

Therefore, from (2.4) and (2.5), we get 

( ) ( ) ( ) ( ) ( )∫ λΦΦ+≤ −t

t
dssysttxcty

0
1

1
0  

( ) ( ) ( ) ( )∫ λΦΦ+ −t

t
dsszstt

0
2

1  



The Asymptotic Behaviour of Solutions … 15 

or 

( ) ( ) ( ) ( ) ( )∫ ∫ λ+λ+≤
t

t

t

t
dssTyscdssyscxcty

0 0
.21110  

Setting ,2
1 cc =  and ( ) ( )∫ =λ

t
t

LdssTys
0

,2  we have 

( ) ( ) ( ) ( )∫ ≥≥λ+++≤
t

t
ttdssyscLxcty

0
,0, 0110  

for some positive constant L. Applying Gronwall’s inequality (see [13]), we 
get 

( ) ( ) ( ) .exp
0

110 ⎟
⎠
⎞

⎜
⎝
⎛ λ+≤ ∫

t

t
dsscLxcty  

It follows from the assumption (2.3) that 

( ) ( ) ,0, 00 ≥≥+≤ ttNLxcty  

for some positive constant N, which completes the proof. 

Theorem 2.2. Suppose that the conditions (2.1), (2.2) and (2.3) of 
Theorem 2.1 hold. If all the solutions of (1.2) approach zero as ,∞→t  then 
so do the solution of (1.1). 

Proof. Going through as in the proof of Theorem 2.1, we get 

( ) ( ) ( ) ( ) ( ) ( )( )∫ −ΦΦ+Φ=
t

t
dssTysytgstxtty

0
.,,1

0  

Since all the solutions of (1.2) approach zero as ,∞→t  ( ) 0→Φ t  as 

.∞→t  In view of the assumption (2.3) and the fact that ( ) 0→Φ t  as 

,∞→t  we have ( ) 01 →Φ− t  as .∞→t  But since both ( )tΦ  and 

( )t1−Φ  are constant and approach zero as ,∞→t  it follows that they are 

bounded for all .00 ≥≥ tt  Now let ( ( ) ( ) ).sup,supmax 1
00 ttc tttt

−ΦΦ=  

Therefore, by the assumption (2.1), we have 
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( ) ( ) ( ) ( ) ( ) ( )( )∫ −ΦΦ+Φ≤
t

t
dssTysytgstxtty

0
,,,1

0  

It follows from (2.1) that 

( ) ( ) 0xtty Φ≤  

( ) ( ) [ ( ) ( ) ( ) ( ) ]∫ λ+λΦΦ+ −t

t
dssTyssysst

0
,21

1  

thus 

( ) ( ) ( ) [ ( ) ( ) ( ) ( ) ]∫ λ+λΦ+Φ≤
t

t
dssTyssystcxtty

0
210  

( )
( ) ( ) ( ) ( ) ( )∫ λ+λ+

Φ
≤

t

t
dssTyssyscxt

ty
0

.210  

Taking 

( )
,1

t
c

Φ
=  

we get 

( ) ( )
( )

( )
( )

( ) ( ) ( )∫ ∫ λ+λ
Φ

+
Φ

≤
t

t

t

t
dssTyscdss

t
sycx

t
tyty

0 0
.21

2
0  

Setting ( ) ( )∫ =λ
t
t

LdssTysc
0

,2  by using (2.3), we have 

( ) ( )
( ) ( ) ( )

( ) ( ) .
0

1
2

0 ∫ λ
Φ

++
Φ

≤
t

t
dsst

sycLxt
tyty  

Applying Gronwall’s inequality (see [8]), we get 

( ) ( )
( )

( ) ( )
( )

( ) ,0,exp 01
2

0
0

≥≥⎟
⎠

⎞
⎜
⎝

⎛
λ

Φ
+

Φ
≤ ∫ ttdss

t
sycLx

t
tyty

t

t
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where 

( )
( )

( ) ,exp
0

1
2 Ndss

t
tyc

t

t
=⎟

⎠

⎞
⎜
⎝

⎛
λ

Φ∫  

thus 

( ) ( )
( ) ( )NLxt
tyty +

Φ
≤ 0  

( ) ( ) ( ) ,0, 00 ≥≥Φ+≤ tttNLxty  

for some constant N, where ( ) .exp
0

1
2 ⎟

⎠
⎞⎜

⎝
⎛ λ= ∫

t
t

dsscN  Therefore, all the 

solutions of (1.1) approach zero as .∞→t  

Theorem 2.3. Assume that the fundamental matrix of (1.2) satisfies the 
condition 

( ) Mt ≤Φ    and    ( ) ( ) ,1 Nst ≤ΦΦ −  (2.6) 

for some positive constants M and N, .00 ≥≥ tt  Suppose that the 

assumptions (2.1), (2.2) and (2.3) of Theorem 2.1 are satisfied. Then the 
relation 

( ) ( ) ,0, 00 ≥≥+≤ ttLkxty  (2.7) 

holds for some constants 0>k  and .0>L  Moreover, if ( ) 0→tx  as 

,∞→t  then ( ) 0→ty  as .∞→t  

Proof. As in the proof of Theorem 2.1, we get 

( ) ( ) ( ) ( ) ( ) ( )( )∫ −ΦΦ+Φ=
t

t
dssTysytgstxtty

0
.,,1

0  

Using the assumptions (2.1), (2.2) and (2.6), we have: 

( ) ( ) ( ) ( ) ( ) ( )( )∫ −ΦΦ+Φ=
t

t
dssTysysgstxtty

0
,,1

0  

( ) ( ) ( ) [ ( ) ( ) ]∫ λ+λΦΦ+Φ≤ −t

t
dssTysystxt

0
21

1
0  
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[ ( ) ( ) ]∫ λ+λ+≤
t

t
dssTysyNxM

0
210  

( ) ( ) .
0 0

210 ⎥⎦
⎤

⎢⎣
⎡ λ+λ+≤ ∫ ∫

t

t

t

t
dssTydssyNxM  

Let ( )∫ =λ
t
t

KdssTyN
0

.2  Then 

( ) ( ) ( )∫ λ++≤
t

t
dssyNKxMty

0
.10  

Applying Gronwall’s inequality (see [13]), we obtain 

( ) ( ) ( )∫ ≥≥λ+≤
t

t
ttdssNKxMty

0
0,exp 010  

( ) ,0, 00 ≥≥+≤ ttLKxM  

for some positive constant ( )∫ λ=
t
t

dssNL
0

.exp 1  This proves (2.7). Now let 

( ) .0lim =∞→ txt  Then given any ,0>ε  there exists a constant =T  

( ) 0>εT  such that ( ) ε<tx  for all .Tt ≥  Thus, from (2.7), we have: 

( ) ( ) 0, 0 ≥≥+ε≤ ttLKty  

( ) ,0, 0 ≥≥ε= ttLty  

for some positive constant L independent of ε and ( ).εT  Hence ( ) 0→ty  as 

.∞→t  This completes the proof. 

3. Stability Properties 

In this section, we discuss the stability properties of solutions of (1.1) 
using the those of (1.2) and we first introduce the following lemma: 

Lemma 3.1. Let the functions ( ) ( )tbta i,  and ( ) nitci ...,,2,1, =  be 
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nonnegative continuous functions on [ ),,0 ∞=J  and 0u  be a nonnegative 

constant such that 

( ) ( ) ( ) ( ) ( )∫ ∑ ∫=
=⎟

⎠
⎞

⎜
⎝
⎛ ττ++≤

t

t

n
i

s

t ii nidsdcsbdssusautu
0 010 ....,,2,1,  (3.1) 

Then 

( ) ( ) ( ) ( ) ....,,2,1,exp
0 010 nidsdcsbsautu
t

t

n
i

s

t ii =⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ ττ+≤ ∫ ∑ ∫=

 (3.2) 

Proof. Let 

( ) ( ) ( ) ( ) ( ) ( ) .
0 0 010 ∫ ∑ ∫ ∫=

⎟
⎠
⎞

⎜
⎝
⎛ τττ++=

t

t

n
i

t

t

s

t ii dsducsbdssusautv  

Thus, by (3.1), we have ( ) ( ).tVtu ≤  Moreover, 

( ) ( ) ( ) ( ) ( ) ( )∑ ∫=
+≤′

n
i

t

t ii dssvsctbtvtatv
1 0

,  

since ( )tv  is nondecreasing, the above inequality can be written as 

( ) ( ) ( ) ( ) ( ) .
1 0

⎟
⎠
⎞

⎜
⎝
⎛ +≤′ ∑ ∫=

n
i

t

t ii dssctbtatvtv  

Applying Gronwall’s inequality, we get 

( ) ( ) ( ) ( ) .exp
0 010 ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ ττ+≤ ∫ ∑ ∫=

t

t

n
i

t

t ii dsdcsbsautv  

But since ( ) ( ),tvtu ≤  it follows that 

( ) ( ) ( ) ( ) ,exp
0 010 ⎥⎦

⎤
⎢⎣
⎡

⎟
⎠
⎞

⎜
⎝
⎛ ττ+≤ ∫ ∑ ∫=

t

t

n
i

t

t ii dsdcsbsautu  

which completes the proof. 

Theorem 3.2. Assume that all the solutions of (1.2) are uniformly stable. 
Suppose that the following conditions hold: 
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 (i) 

( ) ( ) ( ) ( ) ( )∫+≤
t

t
dssysctbytaTyytg

1
,,,  (3.3) 

where ( ),ta  ( )tb  and ( )tc  are nonnegative continuous functions on 

[ ).,0 ∞=J  

(ii) 

( ) ( ) ( )∫ ∫ ≥≥≥∞<⎥⎦
⎤

⎢⎣
⎡ ττ+

t

t

s

t
tttdsdcsbsa

1 1
.0, 01  (3.4) 

Then the zero solution of (1.1) is uniformly stably. 

Proof. Let ( )tx  and ( )ty  be the solutions of (1.2) and (1.1), respectively, 

with the initial condition ( ) ( ) .111 xtytx ==  By the nonlinear variation of 

constant formula, we obtain 

( ) ( ) ( ) ( ) ( ) ( )( )∫ −ΦΦ+=
t

t
dssTysysgsttxty

1
,,1  

( ) ( ) ( ) ( )( )∫ −ΦΦ+=
t

t
dssTysysgstx

1
,,1

1  

( ) ( ) ( ) ( ) ( ) ( )( ) .,,
1

1
11

1 ∫ −− ΦΦ+ΦΦ=
t

t
dssTysysgstxtt  

Since the solutions of (1.2) are uniformly stable, there exists a positive 
constant M such that 

( ) ( ) .0, 01
1 ≥≥≥≤ΦΦ − tttMst  (3.5) 

In view of the assumptions (3.3) and (3.5), we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ −− ΦΦ+ΦΦ≤
t

t
dssTysysgstxttty

1
,,1

11
1  

( ) ( ) ( ) ( ) ( ) .
1 1

1 ∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ τττ++≤

t

t

s

t
dsdycsbsysaMxM  
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Now, applying Lemma 3.1, we have 

( ) ( ) ( ) ( ) .exp
1 1

1 dsdcsbsaMxMty
t

t

s

t
⎟
⎠
⎞

⎜
⎝
⎛ ττ+≤ ∫ ∫  

Consequently, by the assumption (3.4), it follows that 

( ) ,0, 011 ≥≥≥≤ tttxMLty  

for some positive constant L. This completes the proof. 

Corollary 3.3. Assume that the solutions of (1.2) are asymptotically 
stable. Suppose that the assumptions (3.3) and (3.4) of Theorem 3.2 are 
satisfied. Then the zero solution of (1.1) is asymptotically stable. 

Proof. Since the solutions of (1.2) are asymptotically stable, it follows 
that ( ) 0→Φ t  as ∞→t  which implies ( ) 0→tx  as .∞→t  Let ( )ty  

be a solution of (1.1) with the initial condition: ( ) ( ) .000 xtytx ==  Then 

( ) ( ) ( ) ( ) ( ) ( )( )∫ −ΦΦ+=
t

t
dssTysysgsttxty

0
.,,1  

Since ( ) 0→tx  as ,∞→t  given any ,0>ε  there exists a ( ) 0>ε= TT  

such that ( ) ε<tx  for all ( ) .0>ε≥ Tt  But since ( )tΦ  is continuous and 

( ) 0→Φ t  as ,∞→t  it follows that ( )tΦ  and ( )t1−Φ  are bounded. 

Thus from the assumptions (3.3) and (3.4), we obtain 

( ) ( ) ( ) ( ) ( ) ( )( )∫ −ΦΦ+≤
t

t
dssTysytgsttxty

0
.,,1  

Setting  

( ) ( ) ,21 Mst =ΦΦ −  

we get 

( ) ( ) ( ) ( ) ( ) ( ) .
0 0

2∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ τττ++ε≤

t

t

s

t
dsdycsbsysaMty  
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Now, applying Lemma 3.1, we have 

( ) ( ) ( ) ( ) ,exp
0 0

2 LdsdcsbsaMty
t

t

s

t
ε≤⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ττ+ε≤ ∫ ∫  

for some positive constant L, independent on ε, for all .00 ≥≥ tt  Thus the 

desired result follows. 

Theorem 3.4. Suppose that the assumptions (3.3) and (3.4) of Theorem 
3.2 are satisfied. If the solutions of (1.2) are strongly stable, then so does the 
zero solution of (1.1). 

Proof. It follows from the strong stability of (1.2) that there exists a 
positive constant M such that 

( ) Mt ≤Φ    and   ( ) .0, 0
1 ≥≥≤Φ− ttMt  (3.6) 

Now, using the nonlinear variation of constant formula given in [8], we 
obtain 

( ) ( ) ( ) ( ) ( )( )∫ −ΦΦ+=
t

t
dssTysysgstxty

1
,,1

1  

( ) ( ) ( ) ( ) ( ) ( )( )∫ −− ΦΦ+ΦΦ=
t

t
dssTysysgstxtt

1
,,,1

11
1  

( ) ( ) ( ) 11
1 xttty −ΦΦ≤  

( ) ( ) ( ) ( )( )∫ −ΦΦ+
t

t
dssTysysgtt

1
.,,1

1  

Thus, in view of the assumptions (3.3) and (3.6), we get 

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ τττ++≤

t

t

s

t
dsdycsbsysaMxMty

1 1
.2

1
2  

By Lemma 3.1, we obtain 

( ) ( ) ( ) ( ) .exp
1 1

2
1

2 ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ττ+≤ ∫ ∫

t

t

s

t
dsdcsbsaMxMty  
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Again, from the assumption (3.4), we have 

( ) LxMty 1
2≤  

,1
∗≤ Lx  

for some positive constant .0, 01 ≥≥≥∗ tttL  This completes the proof. 

Theorem 3.5. Assume that the solutions of (1.2) are uniformly 
asymptotically stable. Suppose that the assumptions (3.3) and (3.4) of 
Theorem 3.2 are satisfied. Then the zero solution of (1.1) is uniformly 
asymptotically stable. 

Proof. Since the solutions of (1.2) are uniformly asymptotically stable 
then, there exist positive constants α and M such that 

( ) ( ) ( ) .0, 0
1 ≥≥≥≤ΦΦ −α−− tstMest st  (3.7) 

As in the proof of Theorem 3.2, we have, for any ,01 tt ≥  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ −− ΦΦ+ΦΦ=
t

t
dssTysysgstxttty

1
,,,1

11
1  

( ) ( ) ( ) ( ) ( ) ( ) ( )( )∫ −− ΦΦ+ΦΦ≤
t

t
dssTysysgstxttty

1
.,,1

11
1  

In view of the assumptions (3.3) and (3.7), we obtain 

( ) ( )stexMty −α−≤ 1  

( ) ( ) ( ) ( ) ( ) ( )∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ τττ++ α−α−t

t

s

t
tst dsdeycsbtysaeM

1 1
 

or 

( ) 11
tt exMety αα ≤  

( ) ( ) ( ) ( ) ( )∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ τττ++ αταt

t

s

t
s dsdeycsbesysaM

1 1
.  
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It follows from Lemma 3.1 that 

( ) ( ) ( ) ( ) 011 ,exp
1 1

1 tttdsdcsbsaMexMety
t

t

s

t
tt ≥≥⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ ττ+≤ ∫ ∫αα  

LexM t11
α≤  

or 

( ) ( ) .0, 011 1 ≥≥≥≤ −α tttexMLty tt  

This completes the proof. 

4. Examples 

In this section, we give several examples to illustrate our obtained 
results. 

Example 4.1. Consider the perturbed differential equation of the form 

( ) ( ),,,4sin Tyytgyty +=′  (4.1) 

where RyRt ∈∈ + ,  and ( ) ( ) ( )∫−− +=
t
t

tt dssysheyeTyytg
0

,,, 2  ( ) ∈th  

[ ).,01 ∞L  Consider the linear differential equation of the form 

( ) ( ) .0,,4sin 000 ≥≥==′ ttxtxxtx  (4.2) 

It is clear that the general solution of (4.2) is given by 

( ) ( ) .0,4cos4cos4
1exp,, 00000 ≥≥⎥⎦

⎤
⎢⎣
⎡ −−= ttttxxttx  

Also, the fundamental matrix ( )tΦ  is given by 

( ) ( ) ( ) .0,4cos4cos4
1exp,, 0000 ≥≥⎥⎦

⎤
⎢⎣
⎡ −−=Φ=Φ ttttxttt  

Hence 

( ) ( ) .0,4cos4cos4
1exp,, 0000 ≥≥≤⎥⎦

⎤
⎢⎣
⎡ −−=Φ ttettxtt  
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Therefore, the solution of (4.2) are bounded for all .00 ≥≥ tt  By returning 

of Theorem 2.1, we obtain ( ) tet −=λ1  and ( ) ,2
2

tet −=λ  and ( )tTy  

( ) ( )∫−=
t
t

t dssyshe
0

.2  Clearly, the assumptions (2.1), (2.2) and (2.3) of 

Theorem 2.1 are satisfied. Then all the solutions of (4.1) are uniformly 
bounded for all .00 ≥≥ tt  

Example 4.2. Consider the perturbed differential equation of the form 

( ),,,2 Tyytgyty +−=′  (4.3) 

where ,+∈ Rt  Ry ∈  and ( ) ( ) ( )∫−− +=
t
t

tt dssysheyeTyytg
0

,,, 2  ( ) ∈th  

[ ).,01 ∞L  It is clear that the general solution of the linear differential 

equation 

( ) 0,, 000
2 ≥≥=−=′ ttxtxxtx  (4.4) 

is given by 

( ) ( ) .
3
1exp,, 3

0
3

000 ⎥⎦
⎤

⎢⎣
⎡ −−= ttxxttx  

Therefore, 

( ) ( ) ( ) .0,3
1exp,, 0

3
0

3
00 ≥≥⎥⎦

⎤
⎢⎣
⎡ −−=Φ=Φ ttttxttt  

Hence, all the solutions of (4.4) approach zero as .∞→t  Then by Theorem 
2.2, it follows that all the solutions of (4.3) approach zero as .∞→t  

Remark 4.1. In the preceding example, we have 

( ) ( ) .as03
1exp,, 3

0
3

00 ∞→→⎥⎦
⎤

⎢⎣
⎡ −−=Φ tttxtt  

Then the solutions of (4.4) are asymptotically stable. Moreover, by Corollary 
3.3, it follows that, the zero solution of (4.3) is also asymptotically stable. 
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Example 4.3. Consider the perturbed differential equation of the type 

( ) ( ),,,33cos Tyytgyty +−=′  (4.5) 

where RyRt ∈∈ + ,  and 

( ) ( ) ( ) ( ) [ )∫ ∞∈+= −− t

t
tt LthdssysheeTyytg

0
.,0,,, 1

2  

The solution of the linear differential equation 

( ) ( ) 0,,33cos 000 ≥≥=−=′ ttxtxxtx  (4.6) 

is given by 

( ) ( ) ( )[ ] .0,3exp3sin3sin
3
1exp,, 000000 ≥≥−−⋅⎥⎦

⎤
⎢⎣
⎡ −= ttttttxxttx  

Hence the fundamental matrix is of the form 

( ) ( ) ( ) ( )[ ] .0,3exp3sin3sin
3
1exp,, 00000 ≥≥−−⋅⎥⎦

⎤
⎢⎣
⎡ −
−

=Φ=Φ ttttttxttt  

Thus the inverse matrix ( )t1−Φ  is given by 

( ) ( )
( )

.0,1
det 0

1 ≥≥=
Φ
Φ=Φ− tt

t
tadjt  

Then equation (4.6) is uniformly asymptotically stable. Thus the assumptions 
of Theorem 3.5 are satisfied, and so the zero solution of (4.5) is also 
uniformly asymptotic stable. 
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